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Time- and Position-Dependent Superconductivity

R. H. PARMENTER

RCA Jaborutories, Princeton, Xem Jersey

(Received 27 May 1964)

Anderson's time-dependent generalization of the BCS theory of superconductivity and Parmenter's
position-dependent generalization have successfully been combined. The result is a powerful formalism which
is capable of treating a number of previously intractable problems. The derived boundary conditions are
consistent with but more general than the boundary conditions previously assumed by (1) Ginzburg and
Landau, and (2) Parmenter. The formalism is strikingly analogous to "micromagnetics, " the continuum
theory of ferromagnetism in solids.

'
N 1958, Anderson' generalized the BCS theory' of

- - superconductivity to include time-dependent prob-
lems. Last year, the writer' generalized the BCS theory
to include position-dependent problems. These tw'o

generalizations have now successfully been combined
by making use of a hint supplied by the continuum
theory of ferromagnetism in solids. 4 The result is a
powerful formalism which allows one to solve a number
of problems which have eluded previous analysis.
Certain questions of principle are also resolved, in
particular boundary conditions.

At T=O, the BCS theory' makes use of the Hamil-
tonlan

~u, =-', (bs*+bs),

~ss = si(bs* —bs),

&w = s (1—2bs*bs),

(2)

are the x, y, and s components, respectively, of an
isotopic-spin operator sI„spin up representing absence
and spin down presence of the Cooper pair associated,

' P. W. Anderson, Phys Rev. 112, 19.00 (1958).' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

3 R. H. Parmenter, Phys. Rev. 132, 2490 (1963).
4W. F. Brown, Jr., Jj/A'cromagnetics (Interscience Publishers,

Inc. , New York, 1963);S.Shtrikman and D. Treves, in Magnetism,
edited by G. T. Rado and H. Suhl (Academic Press Inc. , New
Pork, 1963), Vol. III, Chap. 8.
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(The prime on the double summation, indicates that the
term k=k' is missing. ) Here Vsq. is the interaction
potential, ek the one-electron energy associated with
the wave vector k (the zero of energy being taken at
the Fermi surface k= ks). The b's are the Cooper pair
creation and. annihilation operators; the c's are the
electron creation and annihilation operators. Anderson'
pointed out that this Hamiltonian could be rewritten

XBcs —2 Q essss PVss~ (slksla'—+sss&sk')
k k,k'

+const, (1)

where

with wave vector k. From the anticonunutation rela-
tions satished by the electron creation and annihilation
operators, it follows that sk ask =iskbkk, so that sk is
indeed a spin operator. In this fashion, Anderson made
the BCS theory of superconductivity look like a problem
in ferromagnetism. The variational derivative of Apts
with respect to sk is proportional to the effective
magnetic Geld seen by sk. The condition that sk be
parallel to this magnetic Geld leads d,irectly to the BCS
integral equation for the energy gap at T=O. The
energy required, to Qip over sk in its magnetic Geld

corresponds to a pair excitation energy in the BSC
theory. A group of spins magnetically precessing in a
coherent fashion corresponds to a collective excitation.

In this fashion, Anderson was able to generalize the
BCS theory to include time-dependent problems. A
very natural extension will allow position-dependent
problems to be handled as well. One imitates the
procedure pioneered by Landau and Lifshitz' in extend-
ing ferromagnetism to position-dependent problems
(e.g. , domain walls). The Hamiltonian is

se= se(R)de, (3)

5C(R) =-BCncs(R)+XEx(R),

5CEx(R) = g((Vnru)'+(Vasss)'+(Vn~ss)'}, (5)
4m k

where now ss is a function of R and satisfies the com-
mutation relation

ss(R) xss (R') =iss(R)bss 8(R R'). —(6)

In the continuum theory of ferromagnetism, so-called
micromagnetics, XEx represents the contribution of
exchange to the energy density. The only difference is
that here the squares of the gradients of the components
of s& are multiplied by hs/4m rather than by a constant
proportional to the exchange integral. We will later
demonstrate the correctness of this procedure.

The time derivative of sk is given by

N(dss/dt) = Lss,3C],

'L. Landau and E. Lifshitz, Phys. Z. Sowjet. 8, 153 (1935).
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the right-hand side being the conunutator of s~ and X.
With the aid of (6), this can be rewritten

=0. Assume that sI, lies in the xs plane of isospin space,
1.e.,

A(dsk/dg) =sk x Hk,

where

Hk =——(BX/Bsk) —=—(B/Bsk V—gg B/BV ggsk)X

= 2ggit (gg /4ggg) VR sik+Q Ukk'slk']

+2g12[(k'/4ggg) V'gg'sgk+Q' Ukk $2k $

+262((gg'/4ggg) V'gg'Sgk+ ek) (9)

Thus

syk =
~ sine@ ~

1

s2A:=0,

$3)Ir, = g cosep.

Erik=+(02/4ggg) fcos8kpgg28k sin—8k(V gg8k)'j+2Ak,

H2A, =O,
Hgk = —()g2/4ggg) Lsin8k V'gg28k+ cos8k (V gg8k) 2]+2ek,

where, by defin1t1on,

(12)

(13)

is (in suitable units) the effective magnetic field seen
by the spin vector sk. (I, is a unit vector along the ith
direction in isotopic-spin space. ) Note that the effective
magnetic 6eld is the negative of the so-called variational
derivative' of 3C with respect to SI,. In calculating the
coDUnutator of 3'. and s~, one performs a partial integra-
tion with respect to R of the terms (Vggs, k)

2 in order to
avoid having to evaluate the commutator of sg, and
V'gs,7,. This partial integration' leads to the appearance
of Vgg S,k lii Hk.

It should also lead to a delta-function contribution to
Hk on the surface (i.e., a contribution to Hk which is
infinite on the surface and zero everywhere else). Such a
contribution appearing in (8) would lead to pathological
behavior in sI,. The requirement that this surface
contribution to Hk vanish thus leads automatically to
boundary conditions. This delta-function contribution is

(BXSUR/8$2k) —(B$2k/Bgg) ($2k/sik) (BSlk/Bgg)
(1o)

(5Xsiga/bsgk) = (Bsgk/Bgg) (Sgk/Sik) —(Bsik/Bgg) .

Since the magnitude of s& is —'„only two of its three
components can be independently varied. Because of
the form of X, one of these two must be sgk (to insure the
most general variation in X) . It was assumed in Eq. (10)
that the other independent component is s2~,. it could
equally well have been chosen s». At the surface of a
superconductor, (10) must be set equal to zero. s An
obvious generalization is that (10) should be continuous
as one moves along a one-electron trajectory through an
interface separating two metals (or a normal-super-
conducting interface'2).

Consider the static solution 1.o Eq. (8) where dsk/dg

' See, e. g., H. Goldstein, Classical 3Eechasggcs (Addison-Wesley
Publishing Company, Inc. , Reading, Massachusetts, 1950), p. 353.

7 An analogous procedure is used in the second-quantization of
Schrodinger's equation. See, e.g., L. I. SchiG, Quantum mechanics
(McGraw-Hill Book Company, Inc., New York, 1949), p. 338.

8 The idea of a delta-function surface magnetic Geld in micro-
magnetics was introduced by C. Kittel and C. Herring, Phys. Rev.
77, 725 (1950).' This boundary condition was Grst derived for micromagnetics
by W. F. Brown, Jr., Phys. Rev. 58, 736 (1940).' R. H. Parmenter (to be published).

Thus, s~ & 8~=0 becomes

(Ig /Sggg) Vgg 8k= ek Siii8k Ak cos8k.

Making the substitution

2LI, (1—ak)] i

1—2hp

(14)

(15)

Eq. (14) becomes

2ek —(lgs/g ggg) (pgk (1 hk) ) —i I2V gg }—2/gk

= (1—2hj,)Lhk(1 —hk)]-'~'P' Ukk'Lhk (1—hI. )j'~' (16)

This is precisely the equation previously obtained by
the writer' using a completely different method of
generalizing the BCS theory to position-dependent
problems. This check demonstrates the validity of
generalizing Anderson's theory by introducing XEX(R),
which represents center-of-mass kinetic energy density
of Cooper pairs (R is the center-of-mass coordinate of a
Cooper pair).

Substitution of Eqs. (11) and (15) into (10) results
in precisely the boundary conditions assumed in Ref. 3,
namely, continuity of hk and Bhk/Bgg at an interface
between two metals while allowing for the possibility of
a discontinuous change in signature of hI, '~' at the
interface, a possibility crucial for quenching of repulsive
V~I, on the normal-metal side of a superconductor-
normal-metal sandwich. In the isotopic-spin picture,
the two ind, ep end ently varied, components of s&,

namely s» and s», are continuous at the interface, while
the remaining component s» may suffer a discontinuous
change in signature. At a free surface of a superconduc-
tor, Eq. (10) implies that B)'gk/Bgg vanish. In their most
general form, the boundary conditions of the present
paper are consistent with, but more general than,
the boundary conditions previously assumed either by
the writer' or by Ginzburg and Landau" in their
phenomenological theory of superconductivity.

Position-dependent collective and pair excitations
(but not single-particle excitations) can be studied by
solving Eq. (7) for characteristic precessional fre-

"V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor.
Fiz. 20, 1064 (1950).
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quencies, just as was done by Anderson for the position-
independent case. A possible example is a pair excitation
localized and bound near the surface of a supercon-
ductor. (The word "bound" implies that the excitation
energy lies in the energy gap of the superconductor. )
Such a localized pair excitation could occur in the
absence of localized single-particle excitations, the
position-dependent pairing potential Qs(R) being
capable of binding the former but not the latter. "

A second type of dynamic problem solvable with the
present formalism is that of the inertia or eGective mass
associated with a moving normal-sup erconducting
interface. Just as in the analogous ferromagnetic
problem of a moving domain @rail,"the kinetic energy of
the interface results from the additional effective
magnetic held required to cause ss(R) to precess as the
interface passes through R.

~ For closely related discussions, see Secs. I and VI of Ref. 3.
~3 C. Kittel and J. K. Gait, in Solid State I'hysics, edited by

F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1956),
Vol. 3.

In addition to the egecfiee magnetic fields discussed
thus far, the presence of a sea/ magnetic Geld in a
superconductor can be included in the equations of
motion by replacing Vz by Vn i (2e—/hc) A(R), A(R)
being the magnetic vector potential at R. This pro-
cedure, completely analogous to that used by Ginzburg
and Landau, " takes account of the eGect of the real
magnetic Geld on the center-of-mass motion of the
Cooper pairs, but does not properly describe magnetic
effects on the internal motion of the Cooper pairs.

Pote added iN proof By. returning to the methods of
Ref. 3, it can be shown that V& should be replaced by
vg —i(2e/hc)A(R) only in the terms of Kzx contain-
ing sis and sss, not in those containing sss. (For the
latter terms, Vir should remain unchanged. ) Further-
more, only the so-called transverse portion of A should
be included in this replacement. Any longitudinal com-
ponent of A, corresponding to center-of-mass mo-
mentum of Cooper pairs, should be introduced as an
additional kinetic energy in Sic,s, having the form
(1/4m) (2eAi/c)s Qs (st —sss).
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The temperature and magnetic-Geld dependences of the sublattice magnetization in the hexagonal layer-
type compound CrC1& (Tran=16.8'K) have been deduced from the "Cr nuclear magnetic resonance (NMR)
for 0.4& T&8.1'K and 0&B&10 koe. The observed zero-Geld data can be accounted for over the whole
temperature range by a renormaHzed spin-wave model based on isotropic ferromagnetic (Jr) intralayer and
antiferromagnetic (Jz) interlayer exchange interactions in the presence of a weak effective anisotropy field
(Hz). Appropriate renormalized spin-wave dispersion relations are given for the four-sublattice antiferro-
magnetic (weak-field) and two-sublattice ferromagnetic (strong-field) equilibrium spin configurations. The
validity of the two-dimensional approximation to these states is examined in detail for ksT &2

~
Jz ( szS and

) Jr.
~
&&Jr. It is shown that under these conditions the sublattice magnetizations for Jz &0 and Jz &0 are

identical. The three-dimensional zero-field spin-wave fit gives Jr/ks=5 25'K', Hz(0).=650 Oe and a O'K,
zero-field "Cr frequency v(0) =63318Mc/sec. Parallel magnetic susceptibilities calculated with these param-
eters in the range 0.4&T&8.1'K are in quantitative agreement with experimental values based on meas-
ured splittings of the "Cr NMR in weak fields (H&100 Oe). The interlayer constant, Jz/ks = —0.018'K,
used in the spin-wave calculations was obtained from single-crystal bulk magnetization measurements
(xi =9.9 emu/mole for T&4'K), corrected for demagnetizing eifects. These measurements show that the net
anisotropy in the ferromagnetic state (i.e., H& 1.68 kOe) is zero, presumably because of a cancellation of di-
polar and single-ion contributions. The sublattice magnetization behavior in the ferromagnetic state appears
to be strongly inQuenced by long-range dipolar interactions, as evidenced by signiGcantly lower values of
M(T,H)/M (0) for M~(c than for M J c.

I. INTRODUCTION

'HE application of spin-wave theory to the meas-
ured sublattice magnetizations of CrC13' ' and

CrBr3' 4 has provided considerable insight into the un-
usual magnetic properties of these isomorphous hex-

f This work was supported by the U. S. Atomic Energy Com-
mission. Reproduction in whole or in part is permitted for any
purpose of the U. S. Government.

agonal, layer-type compounds. The exchange inter-
actions in both cases are characterized by relatively

*Present address: Bellcomm, Inc., 1100—17th N.W.,
Washington, D. C.

'A. Narath, Phys Rev. Letter.s 7, 410 (1961); A. Narath,
J. Appl. Phys. BS, 838 (1964).

s A. Narath, Phys. Rev. 131, 1929 (1963).I A. C. Gossard, V. Jaccarino, and J. P. Remeika, Phys. Rev.
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4 H. L. Davis and A. Narath, Phys. Rev. 134, A433 (1964).


