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Deformation Potentials of Lead Telluride*f
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A computer calculation of the important deformation potentials of PbTe was made. The calculation was
based on an extension of the augmented-plane-wave method. Group theory was extensively used in con-
nection with the reduction of the cubic group of this material by a uniaxial strain. The calculated pressure
coefficient of the energy gap is in excellent agreement with experiment. This fact confirms that the highest
valence band is an L~+ state at the edge of the Brillouin zone, along the (111)direction. The calculated co-
efBcients for shear strain do not agree with the numbers derived from experimental work. Here, it is felt that
incomplete models were assumed in the analysis of the experiments. In particular, it is suggested that the
intravalley one-phonon acoustical model for scattering of carriers is inadequate for lead telluride.

I. INTRODUCTION

'HE present article is a report on a computer
calculation of the properties of lead telluride

under a general strain. The starting point of the calcu-
lation is the set of eigenvalues and wave functions,
obtained during the band structure calculation for this
material. ' The method for calculation of the deforma-
tion potentials is an expansion of the augmented-plane-
wave (APW) method; the crystal potential for the de-
formed lattice is defined analogously. Then, with the
definition of the deformed potential, it is possible to
6nd an expression for the strain Hamiltonian.

In Sec. II, the straie Hamil/oriana of Pikus and Bir
is presented, its symmetry is discussed, and the effects
of strain on the important electronic states are derived
by means of group theory. In Sec. III, the numerical
values of the important matrix elements of the strain
Hamiltonian are presented, the linear relations among
these matrix elements are discussed, and a brief intro-
duction to the method of calculation is made. In Sec.
IV, the effects of spin —orbit interaction, on the strain
formalism, are discussed. It is then shown that, because
the levels become nondegenerate, ' the effects of strain
on each level, at the point L of the Brillouin zone, can
be described by 6E=D;,e;;. Here, 5E is the change in
the energy due to the strain tensor e;;, and D;; is the
deformation potential tensor. For reasons of symmetry,
the deformation potential tensor, for the states at the
point L, can be written as D,;=Dsb,,+D um;, where
(+ruses) is the unit vector along (111).At the center
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'In fact, there is the time-reversal degeneracy, which simply
doubles the number of states in each band. This degeneracy, for
the rock salt structure of lead telluride, is never destroyed by a
strain deformation.

of the zone, the important F8 state is treated by means
of the formalism of Kleiner and Roth. 4 The numerical
results are then compared with some results from
experimental work, and two important conclusions are
di awn:

1. The highest state in the valence band is a Li+
state, and not a L~+ as it was thought formerly. '

2. The scattering of current carrying electrons and
holes is rot the intr avalley one-phonon acoustical
process (deformation potential model).

II. STRAIN HAMILTONIAN AND SYMMETRY
CONSIDERATIONS

As shown by Pikus and Bir,' if in Schrodinger's
equation for a strained crystal

we substitute the values (5,,+e„)x; for the variables
x;(i=1, 2, 3), we obtain

In Eq. (1), the symbol Vs(r) stands for the self-
consistent potential of the unstrained crystal and 5;;(r)
is the strain Hamiltonian. Vs(r) is the self-consistent
potential for the strained lattice, and we have neg-
lected terms that are second-order in the strain com-
ponents. The explicit expression for the strain Hamil-
tonian is given by

S,;(r) =2(8/r)x, ) (8/r)x, )+Vg(r),

where V@(r) is defined by

Vs (x,—e;,x,)—Vs (x;)
V;;(r) = lim

ei2'-+0

(2)

It can be shown, by a simple argument, that the
strain Hamiltonian transforms as follows: JL,et R be an

4W. H. Kleiner and L. M. Roth, Phys. Rev. Letters 2, 334
(19S9).' L. E. Johnson, J. B. Conklin, Jr., and G. W. Pratt, Jr., Phys.
Rev. Letters 11, 538 (1963).
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TABLE I. CoeKcients for the linear expansion of the strain
components e;; in terms of the uniaxial strains along the important
cubic directions.
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FIG. 1. Some im-
portant single-group
states in PbTe (sche-
matic).
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15 A uniaxial strain e along a direction u is here defined by euu. The sym-
bols 6IQQ ' ' ' eII], mean uniaxial strains along the (100),~ ~ ~, (111) cubic
directions, respectively.

r
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operation of the point group, and let a,; be the matrix
that rotates a vector v by R, or

Rv= a;p;.

Then, there follows the relation

RS,;(r)R '=a„;S (r)a;=Sg(R 'r). (3)

lf we now apply the operator R to Eq. (1), there results

L V'+ V—o(r)ya, e;,a,s „(r)]P»(r)=ZP»(r), (4)

which clearly shows that the eigenvalue E remains
constant, if both the strain tensor t.;; and the wave
vector k are rotated by the same operation.

In order to fully describe the effects of strain on a
given energy level, we have to deal with the six inde-

pendent components of the tensor e;;. This general
strain tensor can be described in a better way: Consider
seven uniaxial strains along the crystallographic direc-
tions (100), (010), (001), (111), (111), (111),and (111)
in the cubic system of PbTe. By a uniaxial strain e

along the direction given by the unit vector u we mean
the tensor eu.u. It can be shown that the components

e;; of the general strain tensor can be expanded, in

terms of uniaxial strains along the principal directions,
according to Table I.

The most important states at I' (center of the
Brillouin zone) and at L (center of the hexagonal face
perpendicular to the (111) direction) are plotted in

Fig. 1. This is a schematic drawing based on the band
calculation. ' The actual position of the states was

slightly corrected to account for some experimental
facts. The results on which Fig. 1 is based include the
mass-velocity and the K p corrections, but exclude the
spin —orbit interaction. It has been proven that F and
I. are the most important points, in the Brillouin zone,
for the conduction processes. ' ' ' The labeling of states

' K. F. Cuff, M. R. Ellett, and C. D. Kuglin, Proceedings of the
International Conference on the Physics of Semiconductors, Exeter,
July lP6Z (The Institute of Physics and the Physical Society,
London, 1962), p. 316.' P. J. Stiles, E. Burstein, and D. N. Langenberg, Proceedings
of the International Conference on the Physics of Semiconductors
Exeter, July 196Z (The Institute of Physics and the Physica
society, London, 1962), p. 577.

according to the names of their irreducible representa-
tions was made for the center of symmetry located at
the lead site. The corresponding names of the repre-
sentations, when a tellurium site is chosen as the center
of symmetry, are presented in Table II. In that table,
we also exhibit the way the partners of the irreducible
representations transform, under the rotation of the
group.

From Eq. (4) we know that, for the point I', the
strains (100), (010), and (001), and (111), (111),(111),

TALK II. Correspondence between representations for center of
symmetry at lead and tellurium sites.

Lead site
Transform as the Repre-
functions of the sentation

coordinates name

Tellurium site
Repre- Transform as the

sentation functions of the
name coordinates

(*,y)
(8)
(1)

(sx,sy)
(x,y,s)

L3
L2

+
L+
~15

L3+
Ll+
L2
L3r„-

(zz,zy)
(1)
(~)

(g,y)
(~,y,z)

a The x, y, and s axes are oriented along the (110), (112), and (111)
directions, respectively.

TABLE III. Group of the wave vector at I'(000)
(point group of the crystal).

p Ca
pC

F15
I'25~

3C4'

1
1
2—1—1

6C4

1—1
0
1—1

8C3

1—1
0
0

6C2

1—1
0—1
1

a Superscript C stands for the cubic symmetry.

and (111) are equivalent; while for the point L along
the (111) direction, the uniaxial strains (100), (010),
and (001), and (111), (111),and (111)lead to equiva-
lent eigenvalues. Therefore, we can describe the effects
on F of any strain tensor in terms of the effects of the
uniaxial strains along (001) and (111) only. For the
point L,, the uniaxial strains along (001), (111), and
(111) are sufFicient to determine the whole behavior of
the bands.
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TAnLz IV. Group at F(000) whe»educed by a u»axia»tr»n deliberately omitted and each of the irreducible re re-
along (001).The following relation holds: Fq5c =Fsr +FP' .

sentations may be of even or odd parity.

C42 2C4 2C2 2C2' III. RESULTS AND METHOD OF COMPUTATION
p Tb
r2T
P3T
F4
r5T

—1—1
0

1—1
1

0

1—1—1
1
0

a See Table III.
b Superscript T stands for the tetragonal distortion.

%e can see the effects of the uniaxial strain deforma-
tions, mentioned in the preceding paragraph, by means
of group theory. According to Eq. (4), the group that
leaves the total Hamiltonian invariant is the subgroup
of the point group that transforms the strain tensor e,,
into itself. Therefore, a uniaxial strain deformation
preserves only the following operations: inversion, the
rotations about the axis of strain, the dyad axes per-
pendicular to the strain direction, and the operations
derived therefrom by product combinations. The group
of the wave vector at I', or better, its character table, is
given in Table III. A uniaxial strain along (001)
creates a tetragonal distortion, so that the group at I

Tpnr, E V. Group at I'(000) when reduced by a uniaxial strain
along (111).The following relation holds: Fis =F2 +Fs

Z Rb

p R

Z R

3C2

1—1
0

' See Table III.
b Superscript R stands for the rhombohedral distortion.

FAnLE VI. Group of the wave vector at L(111).(A uniaxial strain
along (111}does not reduce this group. )

L c
I C

LC

2C3 3C2

1—1
0

a Superscript C stands for the cubic symmetry.

becomes reduced to that of Table IV. In that table,
it is also shown how the irreducible representation
r»~—,of the cubic group, splits under the tetragonal
distortion. A uniaxial strain along (111) creates a
rhombohedral distortion, and reduces the cubic group to
that of Table V. For the point I.along (111),the group
of the wave vector is given by Table VI. A uniaxial
strain along (111) does not reduce the group of Table
PI, but a uniaxial strain along (111) reduces it to the

group of Table VII. Finally, a uniaxial strain along
(001) reduces the group of the wave vector at I. to
that of Table VIII. It is worth mentioning that in
Tables III—VIII, the improper rotations have been

The results were derived by means of the APE(
method. In the APW method, the space occupied by
the crystal is filled with nonoverlapping spheres, around
the atoms, inside which spherically symmetrical poten-
tials are assumed. Outside the spheres the potential is
approximated by a constant. The best value for this
constant is somewhat uncertain, but the following rule
has been shown to be a good one: The spheres are made

TABLE VII. Group at L(111) when reduced by a uniaxial
strain along (111). The following relations hold: Lp+=Lrn+;
L2c-—L2R—.L C+ L R++L R+. L C- L R-~L R

s 3 1

LRb
L R

C2

a See Table VI.
b Superscript R stands for the rhombohedral distortion.

TanLz VIII. Group at L(111) when reduced by a uniaxial
strain along (001). The following relations hold: L~c+=LjT+;
L2c-—L T—.L c+—L T++L T+. L c— L T—~L T—s3 2 p 3 I + 2 ~

L,Tb
LT

C2

a See Table VI.
b Superscript T stands for the tetragonal distortion.

spherically symmetrical potentials are assumed. For the
region outside the ellipsoids, the rule of the paragraph
above has to be extended. The spherically symmetrical
inside potentials are not constant throughout the
ellipsoidal surfaces, and therefore, for each atomic
species, we make an average of the inside potential at
the points where the ellipsoid touches neighboring
ellipsoids. The constant outside is then defined as the
average, among the atomic species, of the averages
above.

To make these definitions clearer, we show how to
calculate the potential part V;;(r) of the strain Hamil-

to touch; their radii are chosen so that the inside
potentials, for the different atomic species, become
equal at the sphere surfaces; the constant outside the
spheres is made equal to the value of the inside poten-
tials at the sphere surfaces. This rule leads to a continu-
ous crystal potential, and has been yielding results that
are comparable with experiment.

For a consistent definition of the strain Hamiltonian,
we must have a rule for the construction of the crystal
potential in the strained lattice. Because of the strain,
the touching spheres of the normal lattice become
touching ellipsoids. Inside the ellipsoids, the same
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TABLE XI. Matrix elements of the uniaxial strain Hamiltonian
along (111)for the I'~3o state (eV).~

I'zG. 2. Atom of Pb sur-
rounded by six Te.

Representation
Partnerb

Fi5c

Reduced
representation FP

1.309
0
0

0
1.309

0

F R-

0
0—6.593

tonian of Eq. (2). Consider a uniaxial strain along an
arbitrary direction. Orient the s axis along the direction
of strain, therefore making the strain tensor have the
folII1 eg=83, 8j 3 Let epb(r) and nr, (r) be the spheri-
cally symmetrical potentials inside the lead and tel-
lurium ellipsoids. Inside a lead sphere, the potential, in
the normal lattice, is Vs(r) =vpb(x, y,s), and the poten-
tial in the strained lattice is Vs(r) =trpb(x, y,s). There-

a The uniaxial strain tensor along (111) is here defined as the tensor
yfvf if v=(111)j.

b The coordinates x, y, z are along the directions (110), (112), and (111),
respectively.

neighboring tellurium spheres, and the points of tan-
gency, in the normal lattice, are (Rpb, 00), (O,Rpb, O),
(0 O,Rpb), (—Rpb, 0,0), (0, —Rpb, 0), and (0, 0, —Rpb).
Here Epb stands for the radius of the lead spheres. If
we denote by r; any one of these six vectors, and by u a

TABLE XII. Matrix elements of the isotropic strain
Hamiltonian' for point I. along (111) (eV).

TABLE IX. Matrix elements of the isotropic strain
Hamiltonian' for the 1 i3o state (eV).

Representation
Partner

L3C x
y

—5.29
0

0—5.29

Representation L3c
Partnerb x y

I C+

1
I C+

sy

0
0

FisC
—3.975

0
0

0—3.975
0

0
0—3.975 L c+

—4.78

—16.33

& The isotropic strain tensor is here defined as the tensor 8;~.
L,c+

sy

—4.98
0

0—4.98

fore, the contribution «,,V;;(r) to the strain Hamil-
tonian is

OPb (X)y) S+ea) —OPb (X,y, a)
eV„(r)=e

—&=0

= es pb'(r) s'/r. (6)

Similarly, inside a tellurium sphere we get the
contribution

eV„(r)= evT.'(r)s'/r.

& The isotropic strain tensor is here defined as the tensor 8&;.
b The coordinates x, y, and z are along the directions (110), (112), and

(111),respectively.

unit vector along the strain direction, the distance from
the ith point of tangency to the center of the lead
ellipsoid, in the deformed lattice, becomes

d'= L(r' »)'+ (r'. u)'(~+ e)'7"=Rpb+ e(r'. «)'/Rpb,

so that the inside potential at the ith point of tangency

@Or the COntributiOn OutSide the SphereS We flrSt COn- TABLE XIII. Matrix elements of the uniaxial strain Hamiltonian

sider a lead atom. (See Fig. 2.) This sphere touches six along (111) for point I. along (111) (eV).

TABLE X. Matrix elements of the uniaxial strain Hamiltonian'
along (001) for the state Fi5c (eV).

Representation L3c
Partnerb x y

L c+

zx
L C+

sy

Representation
Partner

Reduced
representation FP

—2.633
0
0

F T—

0—2.633
0

0
0

1.291

Lc- g

Lgc+ 1

L3C+ sx
sy

3.49
0

0
3.49

3.93

1.53

1.79
0

0
1.79

a The uniaxial strain along (001) is here defined as the tensor esv~ if
v =(OO1).

b The coordinates x, y, and z are along the directions (100), (010), and
(001), respectively.

Is The uniaxial strain tensor along (111) is here defined as the tensor
o&v~ if v =(111)/~3.

b The coordinates x, y, and z are along the directions (110), (112), and
(111),respectively.
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TABLE XIV. Matrix elements of the uniaxial strain Hamiltonian along (001)' for point L along (111) (eV).

Representation
Partner"

C-

I C+

Reduced
representation Lj

2.02
0

L2T+
I T+

0—5.55

5.96

0
5.96

—1.60

I C+

1

0
7.19

1.13
0

J C+

7.19

0—4.45

& The uniaxial strain tensor along (001) is here defined as the tensor vsv& if v =(001).
The coordinates x, y, and s are along the directions (110), (112), and (111),respectively.

becomes

vpb(d') = vpb(Rpb)+vpb (Rpb)e(r; n)'/Rpb.

Making an average over the six points of tangency,
we get

(average for Pb)=v pb(Rpb)+evpb (Rpb)Rpi/3.

Finally, the constant value outside the ellipsoids is
assumed to be the average between the averages above,
for lead and for tellurium:

(constant potential) = LVpb(Rpb)+VT (RT )j/2
+e(vpb (Rpb)Rpb+vTe (RTe)RTp]/6,

from which it follows that the potential part of the
strain Hamiltonian outside the spheres is given by

eV (1') = eLvpb (Rpb)Rpb+vT (RT )RT ]/6. (8)

Equations (6) and (8), together with Eq. (2), de-
6ne the strain Hamiltonian completely. The reader
may observe that the model we used, to derive the
contribution V,;(r), is neither the rigicl ion nor the
deformable ion model, but one that comes directly

from the APW method. Inside the spheres, our model
resembles the rigid-ion model.

Once the uniaxial strain Hamiltonian is known, we
have to calculate its matrix element between two gen-
eral symmetrized combinations of augmented plane
waves. ' This is a very long calculation and cannot be
reproduced here. It is believed that the interested
reader could easily remake it, if he is familiar with the
formalism of the APW method. ' "The final expressions
for the matrix element of the strain Hamiltonian were
careful1y checked. In particular, the empty lattice
test" was made, and the deformation potentials for
isotropic expansion were compared against a recalcula-
tion of the band for a larger lattice parameter.

The numerical results are presented in Tables IX—
XV. In each table, the values of the matrix elements
for unit strains are given. A unit isotropic strain is
here defined as the strain 8;,, while a unit uniaxial
strain along (vivsvs) is defined as v;v;. Whenever the
unit strain reduces the group of the wave vector, the
names of the representations of the reduced group are
given. The notation follows that of Tables III—VIII.
It is important to observe that the nonzero entries are

TABLE XV. Matrix elements of the nniaxial strain Hamiltonian along (111)'for point L along {111)(eV).

Representation
Partnerb

L3C

I2C-

Reduced
representation

L R-
J R-

L R+

I R+

g R+

J R—

—1.05
0

J C-

R—

0—5.98

4.44

I R—

0
444

—7.77

0
4.35

—1.66
0

4.35

0—3.96

& The uniaxial strain tensor along (111) is here defined as the tensor vsv; if v =(iil)/.
~ The coordinates x, y, and s are along the directions (110), (112), and (111),respectively.

' J. M. Ziman, Efectrorss and Phonorss {Oxford University Press, London, 1960), 1st ed. , Chap. 3, p. 183.
9 J. H. Wood, Phys. Rev. 126, 517 (1962)."J.C. plater, Phys. Rev. 51, 846 (1937).
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not all independent, because there is a general relation
among them, that we now consider. Let (E) denote
the group of the wave vector k. Let (E) have E ele-
ments and let (A) be the complex of operations such
that

(E)X (A) =point group of the crystal.

Consider a representation p of (E) and suppose that,
because of a uniaxial strain along v, the representation
breaks into representations p~, ,p„of the subgroup
of (E) that leaves the strain invariant:

u=ui+ +u'
Let u have dimension u„and u;(i=1, ,n) have di-

mension e„;. Similarly, because of a uniaxial strain

along A v, obtained from v by an operation of the
complex (A), the representation u breaks into repre-
sentations p&,

. ,uz . Denoting by (u, fdvfu~) the
matrix element of the unit uniaxial strain Hamiltonian
along Av, for the representation p; coming out of the
reduction of the representation p, , and by (u I

iso
I p) the

matrix element of the unit isotropic strain Hamiltonian
for representation p, the general linear relation between
matrix elements is

Av

E2 CZ u. '(u'I~vlu')]= 1«.( Iisolu) (5)
(A) i=1

Equation (5) implies the following relations among
the entries of Tables IX—XV:

(r, - f001
I
r, -)+2(r, —I001I I' —

) = (r„-I so fr„-),
(r" l»1lr ' )+2(r ' l»1lr ' )=(ri' Iisolr~' ),
3(Lq~+

I
111

I
L~a+)+ (L~ +I 111

I
LP+) = -', (L~o+

I
iso

I
LP+),

3(I ' I»llL2' )+(L~' I1»IL2' )=-'(L2' fisolL2' ),
3 (Lga+

I
111

f
L,a+)+3 (L2"+

I
111

f
Lp+)+ 2 (Lg +

f
111

f
L3c+)=s (La +

I
iso

I
L3c+),

3(Lga I111ILg )+3(L,"—f111ILp )+2(L3 f111IL3c )=f(L3 I1SOIL3 ) ~

(Lgr+
f
001

f
L,r+) = '(LP+

I

iso
I

—Lgc+),

(L2'
I
oo1

I

L~' ) = l (L '
I
iso

I
L2' ),

(L,r+ I
001

I
Lqr+)+ (Lp+

I
001

f
L2r+) = '(L3~+

I
iso

f
I3c+)—

(L~' l001I Li' )+ (L '
I
«1 IL,r-) = -'(L '

I
i»

I
L ' ).

IV. DISCUSSION

When we consider the spin —orbit interaction, the
band picture becomes that of Fig. 3. Again, this is a
schematic drawing. The actual band calculation gave
an I.6 (L2 ) state slightly below the L6+(L~+). This
order of levels would make a metal instead of a semi-

conductor. It is felt here that a lack of self-consistency
in the potential can cause small displacements in the
position of the levels. The two L6 states, namely, the
one coming from L3 and the one coming from L2,
mix. The same thing happens to the two L6+ states.

Unfortunately, the amount of this mixing cannot be
determined accurately, because the potential is not
self-consistent. But we shall assume that it is not large.

The most important consequence of the spin —orbit
interaction, for point L, is the removal of degeneracies.
Because the levels are nondegenerate, the effects of
strain in any of the states at L, in the first order, can
be described by

bE= D,-,.e;, ,

where bE is the change in the energy of the state, and
D,;-is the deformation potential tensor. No simple
equation like Eq (9) exi.sts for degenerate levels. It
can be shown that the deformation potential tensor for
the nondegenerate states at L can be written as

05—
0
C

c 04—
ls

I'6
0.3—

1

tooo)

L6

~L6
L 6

L„',L+q

L6

FIG.3 Some impor-
tant double-group
states in PbTe (sche-
matic).

D,;=Dgb;,+D„u,u;,
where n= (u~u2u3) is the unit vector along the (111)
direction. Therefore, the parameters D~ and D„, for
any given state with wave function f, can be calculated
by the following relations:

8 I
i» lk) =D -=3D.+D. ,

Q l»114) =D.+D-.
The values of D;„,Dd, and DqjD„, for the important

states at L, are given in Table XVI. Because of the
spin —orbit mixing of the L6 states, the Gnal Dq and D
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vrill have the form

D-,d(Ls') = (1—p)D-, ~[Le'(Ll')]+pD-, ~[Le'(Ls')]
D„g(L, )= (1——q)D g[L4

—
(L2 )]+gD,d[L6 (Ls )].

We assume that the spin —orbit mixing is small, so that
q and p are small for the lowest Ls and the highest
L6+, and large for the highest I6 and lowest 1.6+. It is
important to note that, in the first order, the isotropic
strain and the uniaxial strain along (111)are sufhcient
to determine the behavior for all states at I.. In the
second and higher orders, though, the uniaxial strains
along (001) and (111)are also important.

The spin —orbit interaction splits the F~5 state, at
the zone center, into F8 and F6 . F8 becomes higher
than F6 by 0.943 eV. Since there have been reports
suggesting an important valence band maximum at the
center of the zone, ' and according to the band structure
calculation this can only be a F8 state, it is important
to consider the deformation potential of this state in
detail.

F8 is a fourfold degenerate state and therefore the
problem of the effects of a strain on this state are found,
once the 4&&4 matrix of the strain Hamiltonian corre-
sponding to Fs is known. Proceeding from an argument
similar to that of t.uttinger, " Kleiner and Roth' sug-
gested the following form for this 4X4 matrix:

H =Hs+D4(e„+ e„„+e„)
+-',D„[(J, J'/3) ...+—c p)]..

+-,'D. [(J„J,+J,Jv)e„,yc.p.],
where Ho is the 4)(4 diagonal matrix of the unper-
turbed Hamiltonian, the D's are the deformation po-
tentials, and c.p. means a cyclic permutation. J„J„,J,
are three 4)&4 matrices that satisfy the commutation
relations of an angular momentum, with

J2—J 2+J 2+J2

and such that in a transformation of the basis that
corresponds to a rotation of the point group, J,J,, J,
transform as the components of an angular momentum.
The explicit expressions for the 4)&4 Inatrices J, J„,J,
are given by Luttinger. "

Therefore, from the entries of Tables IX—XV we
can find the values of Dd, D„, and D„which are listed
in Table XVII.

There have been published in the literature a number
of experiments whose results are related to the behavior
of the material under strain. The first set of experiments
related to the deformation potentials of the material is
the thermal expansion of the gap, determined by two
observers"" to be about 4X10—4 eV/'C. From this
number we can get a rough estimate of D;„(conduction)
—D;„(valence) if we take into account that the coeK-

"J.M. Luttinger, Phys. Rev. 102, 1030 (1959).
"A. F. Gibson, Proc. Phys. Soc. (London) B65, 378 (1952)."D. G. Avery, Proc. Phys. Soc. (London) B66, 133 (1953);

67 (1954).

TABLE XVI. Deformation potentials for states at I (eV).

I4, 4 (1-4 )

I +(I +)
I4, 4+(I-a+)

Diso

—5.29—4.78—16.33—4.98

—4.39—4.36—8.93—3.38

7.89
8.29

10.46
5.18

D4/D

—0.557—0.526—0.853—0.652

TABLE XVII. Deformation potentials for Ps (eV).

Dd—1.33
D'Q—1.96

D„r
3.95

'4 W. Paul (private communication).
~5 H. A. Lyden, Electrical Engineering Department, MlT,

Doctoral thesis, 1962 (unpublished).
E. Z. Gershtein, T. S. Stavitskaia, and L. S. Stil'bans, Zh.

Techn. Fiz. 11 2472 (1957) LEnglish transl. :Soviet-Phys. —Techn.
Phys. 2, 2302 (1957)j."R. S. Allgaier and W. W. Scanlon, Phys. Rev. 111, 1029
(1958).

cient of thermal expansion for PbTe is 27X10 '/'C.
Therefore D;„(conduction) —D;„(valence) = 15 eV. In-
accurate though this number may be, and despite the
fact that the variation of the gap depends on many
things besides the thermal expansion, this calculation
points to the fact that the valence band is certainly
Ls+(Ll+) and not I4+(I.s+) as was thought at first,
since the latter would not be consistent with a thermal
expansion of the gap. Indeed, from Table XVI the
reader can observe that

D;,.[L;(L;)]—D;,.[r.,+(L,,+)]

is very small and not compatible with an appreciable
variation of the energy gap with either temperature or
pressure. However, the value 11.6 eV for D;„[Ls (L2 )]—D;„[Ls+(Ll+)],is consistent.

The variation of the energy gap with pressure has
been measured optically, " and the results point to a
pressure coeKcient between —2.5X10 ' and —9.0
X10 ' eV cm'/kg. If we use the value of the elastic
constant cil+2c» ——12.48X 10u dyn/cm' as reported in
the literature, and since a strain —e5;; corresponds to a
pressure

P= (Cll+2C12) e

we get

D;,.(conduction) —D;„(valence) =9.5—11.4 eV.

This result is in excellent agreement with the theoretical
calculation. The latter one is 11.6 eV, assuming no
spin —orbit mixing between 1.3+ and L,~+, and 9.4 eV for
the strongest colplirlg that would still preserve Ls+ as
the highest valence state.

The mobility of PbTe was extensively studied by
I.yden" among other authors. "' lt seems very well

established that for both bands, at room temperature,
the main scattering mechanism is due to lattice vibra-
tions, since only this mechanism can justify a relaxation



A 1608 LUI Z G. VER RE I RA

TmLE XVIII. Comparison of results.

D;s, (conduction) D.„ D—D;„(valence) (conduction) (valence)

Calculated'
Pressure

experiment
Thermal

exp ansionb
Calculated
Piezo resistance'
Mobility~

9.4—11.6 eV
9.5—11.4 eV

15.0 eV

8.3 eV
2.6 eV

27.0 eV

10.5 eV
4.0 eV

60.0 eV

a The exact value cannot be determined without precisely knowing the
energy separation between L1+ and Lg+. The spin-orbit mixing of L1+ and
Ls+ lowers the coefficient from 11.6 eV to a minimum value of 9.4 eV.
This lower limit is calculated from the minimum energy separation between
L1+ and Lg+, compatible with the requirement of the highest valence state
being Le+(LI+).

b Thermal variation of the energy gap was wholly attributed to the
thermal expansion of the lattice.

o Includes no correction for the variation of the mobilities with strain,
and assumes nondegenerate statistics.

d Assuming a one-acoustical-phonon intravalley scattering.

time proportional to E '~'. On the other hand, if we
assume that the lattice scattering is of the one-phonon
acoustical type, we expect a free carrier mobility pro-
portional to T '", which does not compa. re well with
the T "' law observed for both holes and electrons in
PbTe. In his work on the free carrier mobility in PbTe,
Lyden, in agreement with other authors, " concludes
that the deviation from the T '" law might very well
come from the variation of the effective masses with
temperature. According to Lyden, the conductivity
effective ma, ss might vary by as much as a factor of 2

between liquid helium and room temperature.
Herring and Vogt" have studied the one-phonon

scattering in an anisotropic valley and derived the
following formula for the mobility:

where c~ is a combination of elastic constants and f is
a function that depends on the ratio Dq/D, on the
effective mass ratio m„/mr and on the elastic constants.
We have calculated f for different values of Dd/D, for
the elastic constants reported in the literature, and for
different eRective mass ratios. For Dq/D in the range
—3 to 3, the function f changed only by 10'~ on vary-
ing nz&~/mr from 2 to 8, which makes it possible to
know f for a given Dq/D„even though the effective
mass ratio is not quite well known. From this calcula-
tion we concluded that for —1&&DE/D„~&0, f= 1, while
for Ds/D„&~—1, f~(Dd/D ) '. If we assume a ratio
Ds/D„between —1 and 0, as our calculations suggest
for the bands at J, we obtain from Lyden's results
~D (conduction)

~

=27 eV and ~D (valence)
~

=60 eV.
Although the value of D„ for the conduction band is
not impossible, the value for the valence band seems

' I. Smirnov, B.Moizhes, and E. Nensberg, Fiz. Tverd. Tela 2,
1992 (1960) LEnglish transl. : Soviet Phys. —Solid State 2, 1793
(1961)j."C.Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

much too large to be acceptable (5 to 10 times larger
than what has been obtained for other materials, to
which PbTe should be comparable). "

The piezoresistance of extrinsic samples of PbTe has
also been the object of some study, of which the work
of IlisavskiP' seems the most extensive. Using the for-
mula derived by Herring and Vogt'

tÃ44= &D„(pt& yr)/9k—Tp,

which relates the elastoresistance coe%cient m44 to the
deformation potential D„and the mobility ratio
(ir&~

—ir&)/p, Ilisavskii estimated that

D„(conduction) = 2.6 eV, D„(valence) =4 eV

(see Ref. 21). Here we recall that the coefficients
m11, m12, m44 are the coefEcients that relate the 3)&3
matrix (Ap/p) „—which is a symmetric matrix according
to Onsager's principle —to the strain, and therefore
they are analogous to the elastic constants that also
relate two symmetric tensor, namely stress and strain.
The Herring-Vogt formula was derived assuming that
only the relative motion of equivalent va, lleys con-
tributed to the elastoresistance m44. This is known to
be an oversimplihcation, though one can improve on
the estimation of D from Eq. (10) using only that
part of m44 that is proportional to T ', as suggested by
Pikus and Hir."The argument used by these authors is
that the other factors contributing to the elastore-
sista, nce m44, namely, the variation of the effective
masses and of the relaxation time with strain, should be
almost independent of temperature, a fact which the
enormous thermal variation of the effective masses, as
determined by Lyden, " clearly refutes. Also, Eq. (10)
is only valid for nondegenerate statistics. Ilisavskil's
samples ha.d 10" carriers per cc and were somewhat
degenerate. The use of Eq. (10) in these cases under-
estimates the deformation potential D„..

For the reader's convenience we present a comparison
of the results in Table XVIII. The estimates of

D;„(conduction) —D;„.(valence)

are in excellent agreement with experiment. On the
other hand, aside from small deviations, the calculated
band structure of lead telluride seems to be consistent
with the experimental evidence. The k p perturbation,
for instance, and our knowledge of the effective masses
are compatible. "All these facts give a measure of con-
fidence in our results. The biggest problem in a band
calculation is the crystal potential. Once the potential
is properly defined, the AP% method becomes a very

so Yu. V. Ilisavskii, Fiz. Tverd. Tela 4, 918 (1962) /English
transl. : Soviet Phys. —Solid State 4, 674 (1962)g."We corrected Ilisavskii's values for D because of an apparent
error in sign and because the author had no experimental results
for c44."G. E. Pikus and G. I.. Sir, Fiz. Tverd. Tela 4, 2090 (1962)
/English transl. : Soviet Phys. —Solid State 4, 1530 (1963)g.

'36. W. Pratt, Jr., and L. G. Ferreira, paper given at the
International Conference on the Physics of Semiconductors,
Paris, 1964 (unpublished).



DEFORMATION POTENTIALS OF PbTe A 1609

precise and practical one for a calculation of the band
or of a perturbation thereon. But a numerical estimate
of the errors cannot precede a better experimental
knowledge of the material.

There is something disturbing about Table XVIII.
The values for the uniaxial strain potentials are in bad
disagreement. In our opinion, the results from the
mobility measurements only prove that the intravalley
acoustical scattering is an improper model for PbTe:
another kind of scattering must be thought of. The
results from the piezoresistance experiment are not too
reliable; at least, let us not rely on them more than
Ilisavskii does."It is not that Ilisavskii's measurements
are doubtful, but that the model he assumed to derive
the numbers for the deformation potentials is too simple
for the complex situation in PbTe. In particular,
Ilisavskii was not able, for lack of data, to compensate
the degeneracy of the electronic gas. Depending on the
degree of degeneracy, his model can underestimate D
by a factor of 2, 3, or more, which would bring his
numbers much closer to ours. So, it is very possible
that our numbers are very near the truth.

Finally, a word about previous works. Kleinman and
Goroff have calculated the deformation potentials for

silicon. '4 Their work differs from the present one in
that:

(1) In the case of silicon, a uniaxial strain can re-
move the inversion center; and there is no such compli-
cation in PbTe.

(2) Their method was based on the orthogonalized-
plane-wave method, and ours is based on the APW.

(3) There is the all-important problem of definition
of the crystal potential. As long as the potential is not
self-consistent, it is diflicult to know, a priori, how good
it is. The only possible basis to judge a potential lies
in the quality of the results. It is the author's opinion
that a good potential should consistently give good
results, in terms of the order of levels, k. p perturbation,
strain deformation or any other perturbation. And we
are pleased with the results obtained so far.
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Transverse magnetoresistance measurements on iron whiskers with axes along (100), (110), and (111)
have been made in fields up to 50 kOe. Measurements have been made on whiskers with diameters ranging
from 40 to 400 p. Sharp minima observed in the rotation diagrams measured at 50 kOe for all three orienta-
tions are consistent with the existence of open orbits along (100) and (110)directions. The held dependence
curves show a region of negative magnetoresistance at low fields and at high Gelds the resistance varies as
B~, where 1 Cm &2. The extent of the negative magnetoresista ~ce region depends both on the Geld orienta-
tion and the diameter of the whisker and appears to be correlated with the domain structure. A size eGect
has also been observed on the Geld dependence of resistance at high fields and on the residual resistance
ratio tsar/a4s'. Values of pttr/p4 v,

' range from 200 to 2000 for the whiskers which have been measured.

INTRODUCTION
' AGNETORESISTANCE measurements on single

crystals of ferromagnetic metals have recently
been used to obtain preliminary information on the
nature of the Fermi surface in these metals. ' ' In the
case of iron, whiskers offer one of the best possibilities
of obtaining well-oriented high-purity crystals for such
studies. De Haas —van Alphen studies on iron whiskers

~ Research supported by the U. S. Atomic Energy Commission
and the U. S. Ofhce of Naval Research.' E.Fawcett and W. A. Reed, Phys, Rev. Letters 9, 336 (1962).' E. Fawcett and W. A. Reed, Phys. Rev. 131,2463 (1963).

by Gold' have already been very successful, and pre-
liminary data on Hall effect and magnetoresistance have
been reported by Dheer. 4 Reed and Fawcett' have also
reported initial results on the magnetoresistance in iron
whiskers along with data on strain annealed crystals.

In this paper we report on the results of transverse
magnetoresistance measurements on iron whiskers
grown by the hydrogen reduction of ferrous chloride.

3 J. R. Anderson and A. V. Gold, Phys. Rev. Letters 10, 227
(1963).

4 P. N. Dheer, Bull. Am. Phys. Soc. 9, 550 (1964).
s W. A. Reed and E. Fawcett, Phys Rev. 136, A.422 (1964).


