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Abrupt Kink Model of Dislocation Motion. III. The EfFect of Internal Stresses
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The role of internal stresses in determining the internal friction of cold-worked polycrystalline materials
is investigated by means of the abrupt kink model of dislocation motion. An internal friction peak is found
which has a characteristic relaxation time equal to the recombination lifetime of kinks. This is identified with
the less detailed result of the Seeger-Pare mechanism of the Bordoni peak, as found by elementary rate
theory. The results of the theory are shown to be capable of explaining all the features of the Bordoni peak.
The need for further systematic experiments is emphasized, particular reference being made to means of
diBerentiating between the above mechanism and that based upon the hypothesis of thermally activated
kink motion.

I. INTRODUCTION

' 'N previous publications, ' ' we have formulated a new
~ ~ kink model of dislocation motion and have explored
some of its consequences according to diGerent possible
hypotheses regarding the character of the kink motion.
The present treatment, which should be viewed as a
continuation of this development, is devoted to a study
of an additional aspect of the model, namely the effect
of internal stresses upon the dislocation motion. Assum-
ing again that the dislocation loops are firmly pinned,
we show that in this instance the model yields a refined
version of the Seeger'-Pare' theory of the Bordoni peak. '
This more detailed description allows a comparison
between theory and experiment more extensive than
previously possible. It is concluded that this theory,
incorporating internal stresses, or our previous model,
based upon the hypothesis of thermally activated kink
motion, are equally capable of accounting for the basic
properties of the Bordoni peak.

The organization of the paper is as follows. The
following section contains a brief summary of those
earlier results' which are pertinent to the subsequent
development. The physical origin of the relaxation
peak, in terms of our model, is discussed and the mathe-
matical details are presented. Section III is devoted to
a comparison between theory and experiment. We
consider almost exclusively experiments on poly-
crystalline Cu. Particular attention is paid to recent
work on electron microscopy, ' strain-aging, r and the
annealing characteristics of the Bordoni peak. Finally,
Sec. IV contains a summary and discussion of this
work in relation to our previous theory. The present
lack of definite evidence for determining which of the
two mechanisms is responsible for the Bordoni peak is
discussed and further experimental work is suggested.

A model for reconciling both these theories is also
tentatively considered.

In the course of this development we shall have need
to discuss certain topics which, although relevant to our
treatment, are not essential to the main argument.
These are kink statistics and the effect of kink-kink
interactions in our previous theory. Accordingly, they
are discussed in Appendices which are referred to at
appropriate points in the text.

y(x, t) =u
L/2

{n(x', t) —p (x', t) }dx'. (2)

Here, a is the normal distance between close-packed
rows in the slip plane, and the pinning points have been
located at x= + (I./2).

The currents I„and I~ depend both upon the stress
0-, acting on the dislocation, and the mutual interaction
between the kinks of which it is constituted. That is,

Io=Fttp Dctp/ctx, —

II. THEORY

As w e have shown earlier, the motion of a dislocation
may be determined by the coupled transport equations
for the left- and right-kink densities, N(x, t) and p(x, t),
respectively. These are

(art/at)+ (BI„/c)x) g+rr—tp =0,
(Bp/dt)+ (i)I„/Bx) g+rrtp=0, — (1)

where I„and I„are the appropriate currents, g the
generation rate per unit length of double kinks, and r
is a recombination velocity. Solution of (1) yields then
the densities, I and p, from which the dislocation con-
figuration, y(x, t), is found by integration;

' A. D. Brailsford, Phys. Rev. 122, 778 (1961).
I„= Ftt, rt Dctrt/ctx, — — (4)

' A. D. Brailsford, Phys. Rev. 128, 1033 (1962). where F'(x, t) is the force acting on a right kink, and tt

and D are, respectively, the mobility and diffusion
' A. Seeger, Phil. Mag. 1, 651 (1956).
4 V. K. Pare, . Appl. Phys. 32, 332 1961 .
5 D. H. Niblett and J. Wi]ks, gdvances its physics, edited by coeKcient of a kink, it being assumed that the latter

N. F.Mott (Taylor and Francis, Ltd. , I ondon, 1960),Vol. 9, p. &- satisfy the Einstein relation, p~T= D.
6 J. E. Bailey, Phil. Mag. 8, 223 (1963).
r H. K. Birnbanm, J. Appl. Phys. 34, 2175 (1963). 'P. D. Southgate and A. E.Attard, Bull. Am. Phys. Soc. 7, 345
'L. J. Brnner and B. M. Mecs, Phys. Rev. 129, 1525 (1963). (1962).
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The force Ii is given by

—I /2

8U(x —x')
Ln(x') —p(x')]— dx'+aub, (5)

where U(x) is the interaction energy between kinks of
the same type at a separation, x. From elasticity
theory s ""one finds U(x) ~x

~

'. However, this form
is mathematically cumbersome, because the equations
become highly nonlocal. Furthermore, it leads to
(probably) spurious curvature if one attempts to treat
each mobile length of dislocation in isolation from the
rest of the dislocation network. ' Consequently, we

believe it is equally realistic to take the model inter-
action, U(x) =Sa'h(x), which, with the neglect of kink
generation, recombination and diffusion, yields the
familiar string model of line tension S.""Thus, we
obtain from (5)

F=Sa'[8 (n p)/Bx j+—oab. . (6)

Without entering into mathematical details, one can
understand readily the internal friction e6ects which
are associated with the model. For strain-amplitude
independent phenomena, the dislocation response is
determined by the relaxation process tending to oppose
the dislocation motion induced by a small, harmonically
time-varying stress o.

&, say. Now, if the dislocation is
otherwise stress-free, there are two relaxation times. "
One of these, 7D L'/D, ir, is a measure of the time
for kinks to be redistributed along the dislocation
by the stress, O.i (see Appendix C). The other, r@
= Lr (ns+ ps) j ', determines the relaxation, by re-
combination, of any kink concentration in excess of the
thermal equilibrium value. But for sufficiently small 0.

&,

the bowing of the dislocation is achieved completely by
kink redistribution alone. Hence the only pertinent
relaxation time is vL), and the relaxation strength is
determined by the equilibrium concentration of kinks
if interactions are neglected. This is exemplified by our
previous theory.

However, if the dislocation is subject, in addition, to
a large internal bias stress o.;, this qualitative description
needs substantial modification. For in this instance the
dislocations are bowed out. The kink densities are
highly nonuniform and may be greatly in excess of their
thermal equilibrium values. Such is particularly the
case for dislocations which otherwise would be along a
close-packed crystal direction. Their response to a small
additional stress o-i, of necessity must be accompanied

' F. Kroupa and L. M. Brown, Phil. Mag. 6, 1267 (1961).
J. D. Eshelby, Proc. Roy. Soc. (London) A226, 222 (1962).

"J.S. Koehler, Imperfections in Pearly Perfect Crystals, edited
by W. Shockley, J. H. Hollomon, R. Maurer, and P. Seitz (John
Wiley 8t Sons, Inc. , New York, 1952), Chap. 7.

"A. D. Brailsford (to be published).
' See Ref. 1 and Appendix A. Note, however, that due to an

oversight 7-z in Eq. (18) is too large by a factor of 2.

either by the generation of more kinks, or by the
recombination of already existing kinks in opposition
to the stress field 0.;, depending upon the relative sense
of these two stresses. Thus, in this situation, lifetime
e8ects are of extreme importance and enter directly
into the dislocation contribution to the attenuation of
sound waves.

To substantiate the above remarks, we will now

examine a specific example in more detail. Since the
internal stress has most effect upon dislocations with

pinning points along the same close-packed row, we

will restrict attention to this case for the present. There
are then obvious symmetry requirements upon the
solutions of (1), namely,

n(a, x) =p(0, —x),

Q 0) S = 0)$

(7)

The former condition is particularly useful in the
subsequent analysis.

We will consider next the characteristic time for kink
redistribution v.;, which corresponds to rD when 0.;=0.
For large internal stresses, one anticipates r; (L/o;abtI, ).
Its magnitude depends therefore upon the activation
energy 8' for kink diffusion. Experiments'" indicate
that a substantial fraction of all dislocations are mobile
even at He temperatures. Consequently, for these,
8'=0. Inserting then the relation' D=v~b' and using

the typical values L 400b, T 100 K, o-; 10 '0, one
finds, for an angular frequency co, that the product cur;

is small compared to unity even at megacycle fre-
quencies. Thus the lateral redistribution of kinks is
electively instantaneous; the only retarding mechanism
involves the generation or recombination of kinks.

The preceding estimate suggests that a reasonable
starting point for the solution of (1) is

n(x, t) =- np(I+I),
p(x, t) =pr(1+v),

where e~ is the steady-state value of e for the instan-
taneous value of the total stress, o.z ——0.;+oi(t). Thus, to
first order in o.~,

nr =n,+o,(Bn~/Bo;),

"G. A. Alers and D. O. Thompson, J. Appl. Phys. 32, 283
(1961)."J. Lothe attd J. P. Hirth, Phys. Rev. 115, 543 (1959).

n, , {—=n(o, ,x)}, being the kink density appropriate to
the stress 0;only. The functions I and v, which represent
the deviations of the kink densities from the instan-
taneous values given above, will be directly propor-
tional to the recombination lifetime.

Substitution of (g) into (1), using the fact that in
equilibrium the kink currents are zero, ' leads to. the
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following coupled equations:

8 Bs&—(BI.)= i—pp o i +n,~ —g(u+p),
Bx BtTg

B Bpi—(bI~)= —zp& oi +p p —g(u+p)
~&i

where 3 is a constant of integration. The latter is
determined from the equation for N~, i.e.,

8 BRj——(8I„i)=happ o'i +n,up +g (up+ pp), (14)
8$ {90"g

(10) by integrating (14) between x=+(L/2), together with
the use of (12). We find then

where

and

8
&I„= Dn, ——E~+ (Sa'/kT) (n u P,'»—,

Bx

(B
BI„=—Dp;( —Lp —(Sa'/k T) (nu —p p)]. (11)

Bx

where
A = o i (Iz/—Ii)ippr/(1+i (or),

L/2

n; (up/A)Cx,
L/2

L/2

(Bn;/Bo ~)dx,
L/2

(15)

(16)

(17)

It has been assumed that all time-dependent quantities
vary as exp (iprz), and only terms of first order in o i have
been retained. For fixed pinning points, the boundary
conditions appropriate to (10) are

BI„=BI„=O at x=+(L/2). (12)

The above system of equations for the unknown
functions u and p is complicated. (The densities n; and

p; will be discussed presently. ) However, the preliminary
insight into the physical processes involved suggests the
following approximation scheme. Suppose for the
present that g=0. The remaining right-hand members
of (10) are proportional to the frequency. Hence, if
these terms are treated as small, successive orders in a
perturbation expansion of u (and p) must generate a
power series solution in ~7-;, which, as we have seen, is
very small. This may be verified by writing (10) in
dimensionless form. For g&0, the additional expansion
parameter, now regarding the complete right-hand
member of (10) as a perturbation, is similarly a function
of (r;/r@) For suppose .we write u= up+ui+, where
the suffix denotes the order in perturbation theory (to
be proper we should multiply the right-hand member
of (10) by the factor X, in which case u„~ X"). Then to
lowest order the solution of (10) with the boundary
condition (12) is BI„,=O, i.e., no current flow. Clearly
this will correctly describe the relaxation of the dis-
location as long as the lateral redistribution of kinks
is much faster than the time for recombination or
generation.

In practice, we have only carried this perturbation
approach to first order. The zeroth-order solutions are
presented below; the corrections to first order are
derived in Appendix A. The latter indicate that the
mathematical results used in the text are in error by a
few percent at most.

To lowest order, therefore, the result 5I„,=0,

and the relaxation time 7 is given by

r =Ii/2gL, .

In order to utilize these results for determining the
internal friction parameters, we must first determine
the densities n; and p;, which describe the bowing out
of the dislocation in the stress 0-;. Again, since the
currents vanish in equilibrium, we have from (1)

n;p;= g/r. (19)

g/r= np', (20)

where np is the kink density for o;=0. Thus, (4), (6),
(19), and (20) yield the equation

8 sp 8
o;ab+Sa' n, +—kT—Inn, =—0,

8$ Qg 8$
(21)

which may be integrated to give

o ~abx+Sa'fn; (np'/n;) )+kTln (n—;/n p) =0, (22)

the arbitrary constant being determined by (7). These
allow us to simplify (16) and (17) by noting the results

and
Bn;/Bo; = (x/o;) (Bn;/Bx), (23)

(n,up/A) (kT/o;a—b) (Bn;/Bx) . (24)

)The term we have neglected in (13) is always small
compared to unity when n, is large. ) Hence we obtain

Ii (n= n+) (kT/o;ab),

Ip (L/2o ~) (n +n+ 2——n), —
(25)

(26)

Furthermore, if we ignore any stress dependence of g
and r, it follows' that

together with (7) and (11),yields the solution where n& are the values of n; at x= &L//2, respectively,
and n denotes the average left kink density on the line.

up(x) =op(—x) =A(1+ (2Sa'p;kT) }/ In addition one can now proceed to express the
(1+Sa'(n~+p, )/kT}, (13) decrement b, and modulus defect hM& entirely in
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eg) ——(b&V)
L/2

(27)

6= (G/2rr
~

o.i
~

s)Re 0 q*i~dt, (28)

AMn ——GRe(eg)/o i), (29)

we find, after some algebra, the following contribu-
tions, '~ for a dislocation density h„:

cor (AMo) = d, = Ag)(ur/(1+(o' r'), (30)
where

An = (GabA, L/2o. ;)(n +I+ 2n)s/(I— n+), —(31)

and r is given by

r= (ts —I+) (kT/2o;abL)g '. (32)

It will be noted that both h~ and r are even functions
of 0;, as of course they must be if internal stresses are
to have any eGect at all. Moreover, in the limit of small
o; (specifically o;abL(&2kT) it is easily shown, from a
power series solution of (22), that r ~ rs and

Ag& ~(Ga'b'A, L'ns/18kT) (o;abL/2kT)' . (33)

These results are of more than academic interest, even
though we show in Sec. III that in fact (o;abL) 20kT.
For (33) indicates explicitly how the attenuation is
increased by the change in kink density resulting from
the internal stress. This point is relevant in attempting
to relate A„ the "active" density, to the total density
A in any region of the solid. So far we have only treated
dislocations with pinning points in the same close-
packed row. However, it is clear that other dislocations,
which do not have this precise orientation, must con-
tribute also if they are situated in internal stress Gelds
suKciently large to increase their kink density sub-
stantially. A reasonable criterion, then, is to assume
that any dislocation contributes if it resides in an
internal stress field greater than the stress' 0., at which
it is just forced along a close-packed row. Now if one
ignores kink-diffusion o,= (2S/bL)tan8, where 8 is the
orientation of the pinning points relative to the close-
packed direction. Thus, assuming the orientations in
the slip plane are random —the only reasonable assump-
tion for prestrained polycrystalline samples —we esti-
mate the fraction f of all dislocations which are "active"
to be

f=7 5)1 coses], . —

where it has been anticipated that

gp ——tan —'(o;bL/2S) (s./6.

(34)

"In addition to the modulus defect (30), there is an additional
frequency and relatively temperature-independent contribution
which subsequent numerical work shows to be small. It has been
neglected for the sake of simplicity.

terms of these new parameters. Thus, from (2), (8),
(9), and (13) et seq. , and the relations

L/2

In contrast to (33), for large internal stresses, (31)
and (32) indicate a relatively temperature-independent
relaxation strength and characteristic relaxation time
proportional to g '. Since one expects' "

g goexp
(—2e&/kT), where gs is some "attempt" frequency per
unit length and e~ is the kink self-energy, it follows that
the activation energy associated with the relaxation is
2&I,. On the basis of rate-theory arguments, a model with
this activation energy built in has been proposed by
Seeger, later amended by Pare, to account for the
Bordoni peak. However, the latter is not very specific
in detail and one is forced to use empirical reasoning to
account for those properties of the Bordoni peak which

distinguish it from the many other peaks observed in
cold-worked metals. ' We believe that (30) et seg.
constitute a more detailed description of the Seeger-
Pare mechanism. The results will be compared exten-
sively with experiment in the next section.

In the course of this comparison, we shall utilize
numerical solutions of (22). These have been obtained
with the following relations between parameters:
es ——rsSa'/w, where to is the kink width, m=3b, and
Ns b' e——xp( — /eskT). Each of these require comment.
The first follows from literal application of the string
model to its extreme, but it is dificult to see, on purely
dimensional grounds, how any other relation could hold.
More detailed models' "give essentially the same result.
The second is governed purely by the geometrical
consistency of the model. For significantly larger widths,
the concept of individual kinks becomes meaningless.
(However, the possibility of larger widths is also dis-
cussed in Sec. IV.) Finally, on the choice of kink
statistics, we retain the form given earlier. Several
alternative versions appear in the literature. """We
believe the latter are only applicable at very low tem-
peratures and should be replaced by the configurational
entropy result, given above, at the temperatures of
current interest ( 80 K). This subject is discussed in
detail in Appendix B.

III. COMPARISON WITH EXPERIMENT

Apart from one prefacing remark (Sec. III.1), we

shall consider exclusively experimental observations of
the Bordoni peak in cold-worked polycrystalline Cu.
This is necessitated by the fact that relevant experi-
mental details, apart from investigations of the peak
itself, do not appear to be available for other materials.

The comparison will make use of the recent electron
microscope observations of Bailey. He found that with
small amounts of cold work ( 0.1% extension) the
dislocation structure was highly nonuniform and, with

's J.Lothe, Z. Physik 157, 457 (1960).
T. Jgssang, K. Skylstad, and J. Lothe, in Proceedings of

Conference orI, The RelutiorI, Between the Strlctlre used MechurIical
Properties of Metals (H. M. Stationery OfIIce, London, 1963),
Vol. II, p. 528.' For example, S.Okuda and R. R. Hasiguti, Acta Met. 11,257
(&963)."A. Seeger and P. Schiller, Acta Met. 10, 348 (1962).
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increasing deformation, consisted of densely populated
three-dimensional tangles forming cell boundaries which
enclose regions of comparatively low-dislocation density.
The densities in the "cell" region, A„and the boundary
region, A~, are approximately in the ratio 1:5.It will be
shown in (III.3) and (III.5) that only A, appears to
contribute to the Bordoni peak.

We now consider the different experimental aspects
in detail.

j.. Grain Size

If the Bordoni peak has its origin in the presence of
internal stresses, one would expect empirically that a
small grain size material would show a well-developed
peak for smaller amounts of prestrain than a large grain
size sample, since presumably there are more regions of
stress concentration in the former case.

Some weak support for this conclusion is provided by
the observation" that the peak in a single crystal
extended 3.25% consists of only a bump on a monoton-
ically increasing background, whereas similar deforma-
tion in polycrystals produces well-developed peaks. '
Unfortunately, no systematic investigation of grain-size
effects has been carried out to our knowledge. However,
experiments" on the behavior of the peak in Al do seem
to bear out the qualitative conclusion reached above.

gob= 1.25X10 3o.coD, (36)

where n is the experimentally determined attempt
frequency in units of the Debye frequency ~&. Un-
fortunately, in view of the uncertainties mentioned. , we
can only place n within the wide range 5X10 ' to
1X10 '. The need for further experimental study is
clear, as emphasized by the discussion in Sec. IV.

The theoretical problem of calculating a generation
rate (but Not per unit length) has recently been at-
tempted by j'i6ssang et al. t9 They find an attempt fre-
quency co& for this process which is essentially

(vg- (2')'~'(b'/aw) Pcs D, (37)

where "P is some number that might be appreciably
smaller than one.""If one arbitrarily normalizes co~ to
unit length by setting go

——(co~/sb), and takes" P 0.1,
the value of s obtained from (36) is at least 10'. This
seems unduly large and indicates that cog is significantly
less than the value 0.1 ~D obtained with P=0.1.

For a given value of y, the only remaining unknown,

go, should be determined from (35). Following Pare, we
shall take y=1, a result we verify independently in
Sec. III.3. From (22) we have found g, =0.05. Thus,
we obtain

2. Frequency

According to (30) and (32), the internal friction
should exhibit a maximum at the frequency co given by

~= (y/ti, )(4Ey/kT)gob exp( —2ei/kT), (35)

where y = (o,abL/2&~), rl; =bl, and n+ has been
neglected. , since it is negligibly small compared with e
provided y/0.

Thus, a plot of ln~ versus T, the peak temperature,
should yield the activation energy 2&I„ if the tempera-
ture range is narrow enough so that the pre-exponential
is essentially constant. Such plots' do indeed yield a
linear relationship (but with significant scatter) and
give 2~~ ——0.12 eV and. an attempt frequency of 2.4X 10"
rad sec '. However, we again' are confronted with the
conclusion that, to some degree, the position of the peak
should be sensitive to sample preparation. For not only
the loop length but also 0.; may be expected to vary
from one sample to another. Consequently, there still
seems merit in following Niblett and Wilks and con-
sidering only data from samples deformed by com-
parable amounts in the same manner. In this case, they
find 2&&

——0.08 eV and an attempt frequency 6X10'
rad sec '. Since this point has still not been completely
resolved, we shall compromise and take eI, ——10 kT in
order to examine typical results which are pertinent for
the whole range of measurement.

"D.O. Thompson and D. K. Holmes, J. Appl. Phys. 30, 525
(1959).

'3 T. S. Hutchison and G. J. Hut ton, Can. J.Phys. 36, 82 (1958).

3. Cold Work

Equation (33) indicates that the initial growth of the
peak is associated with the accompanying increase in
the internal stress. The subsequent insensitivity' to
further amounts of cold work above =2% elongation,
w'e will show, results from this increase being offset by
the decrease in loop length.

The first point to be resolved is whether the dis-
locations in the "cell" boundaries, or those in the
relatively sparsely populated. regions, are responsible
for the Bordoni peak. On physical grounds, one would
guess the latter, for it is reasonable to expect that in the
densely populated regions the only response would
consist of collective modes of vibration of the whole

group rather than the independent motion of individual
dislocations. This speculation finds support through the
consistency with which experimental observations can
be interpreted. For suppose, on the contrary, that the
"bound, ary" dislocations could move freely. Then,
since'40, ~Ghat, and Aq L ', we find y is a constant
independent of the amount of prestrain. But from (35)
it follows that the peak position in temperature, for
fixed frequency, depends only upon p. Thus the ob-
served shift in peak temperature with cold work cannot
be accounted for on this basis. Furthermore, the
annealing behavior of the peak (see Sec. III.5) cannot
be explained. We conclude therefore that only the
density A, contributes to the peak.

'4 J. E. Bailey and P. B.Hirsch, Phil. Mag. 5, 485 (1960).
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With25
0.,~0.1GbA, 'l",

and" 5=0.2 Gb' we estimate that

Similarly, with A, = fA„(31) yields

&ts=7.5f(st /y) {1—2(tt/st )}'A L'

where f is found from (34) to be

f 0.2A,L'.

(38)

(40)

(41)

-2
5x IO

O0
O

&I 2

—0.4—

0.2 oo

Thus, the only free parameter is p, or equivalently
A,L'. For y= 1 we have found, from (22), ss=gn. This
yields the values A,L'=0.6, f=0.12 and AD ——0.015.
Since the height of the peak is (1/2)AD, the calculated
value is 7.5X10 '. This is in very good agreement with
the value 6X10 ' measured by Bruner and Mecs' on
polycrystalline samples (grain size 1 mm) after 3%
tensile deformation at 4.2 K. Moreover, although the
electron microscope observations were performed on
smaller grain size material (=0.02 mm), deformed at
room temperature, the density estimated from Bailey' s
work (A, 6X10' cm ') appears to give an acceptable
loop length, namely, I 400b.

It should also be noted that the value of A,I' is
reasonably close to the ideal value of 3 (for a simple
cubic lattice of dislocations). This suggests a dislocation
morphology (in the sparsely populated regions) grossly
similar to the ideal one, for the above deformation, and
explains the insensitivity of the peak to further cold
work.

As we mentioned earlier, (33) provides a qualitative
description of the growth of the peak for very small
prestrains. However, any attempts to be more quanti-
tative introduce more arbitrary parameters (initial
density, morphology, impurity density) than the one
phenomenon one is attempting to describe. It seems
premature to pursue the matter at the present time.

Since only =12%of the density A, contributes to the
peak, we must still investigate the internal friction
effects associated with the majority. Following Bruner
and Mecs, we assume they are responsible for the Koster
effect which is produced immediately after deformation
at 4.2'K. This is easily shown to be

(AE/E) t, =(1—f) LA'/6, —(42)

which has the numerical value —8.8X10 '. Again, this
is in reasonable agreement with the experimental result~—5.1X10 '

In conclusion we will calculate the associated internal
friction. According to the damped string model, ""this
gives a contribution ~, which, at low frequencies, is
given by

A, =n (1 f) (8Gb'A LsosB/—sr'S'), (43)
ss H. G. van Bueren, IrnPerfeetions sn Crystals (North-Holland

Publishing Company, Amsterdam, 1961),p. 146.

0 I

lpp
I I I

200 300
ANNEALING TEMPERATURE (4K)

FIG. 1.Variation of the modulus defect AM~ associated with the
Bordoni peak as a function of annealing temperature, and the
variation of the inverse of the yield point as a function of aging
temperature. The broken part of the latter curve for temperatures
less than =140'K indicates that this behavior was obtained by
linear interpolation of the data given in Ref. 7.

where 8 is the effective damping constant and n is a
numerical parameter which depends upon the loop
length distribution. Inserting the experimentally deter-
mined value 8 2X10 4 dyn-sec-cm ' gives 6, 4
X10 'n for the frequency investigated (=0.6 kc/sec).
This is negligible compared to ~& for any reasonable 0..

5. Annealing

The smooth curve in Fig. 1 describes the data ob-
tained by Bruner and Mecs on the behavior of the
modulus defect at 100'K associated with the Bordoni
peak, following 16-h anneals at the temperatures shown,
after prior deformation at 4.2'K. The other data, taken
from Birnbaum's work, ~ shows the variation of the
inverse of the yield point after strain-aging at the
corresponding temperatures for 10' min, following
previous deformation at 78'K. Over the whole range,
the Koster effect exhibits a monotonic decrease.

To explain these results we assert, first of all, that the
Koster effect" is a result of loop length changes alone,

ss W. Koster, Z. Metallkunde 82, 282 (1940).

4. Peak Width

Various factors have been introduced to account for
the anomalous half-width, namely distributions in loop
lengths, ' differences in the constitution of kinks, ' dis-
tributions in internal stress4 and dislocations being
"kinked" relative to other than just close-packed.
directions. " The present theory should, in general,
incorporate all four. No calculations of half-widths have
been performed since there is obviously ample scope to
explain almost any experimental result on this topic.
However, there is one qualitative result we will note. '
That is simply that if the half-width decreases, there
should be a corresponding increase in peak height. This
will be of use in the following section.
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since this should be insensitive to the internal stress.
The gross behavior of~A~ then obviously has the same
cause. Reference to Fig. 1 shows the close correlation
with the variation in the inverse of the yield point.
Birnbaum has attributed the laQer solely to changes in

loop length, but we believe this requires some slight
modification. The argument is based upon the small
increase in DM& subsequent to the minima at
=160 and =300'K. Bruner and Mecs have already
drawn attention to the contrary behavior of hM~ and
(AE/E)s in these temperature ranges. In order to
account for it, we must postulate that some small dis-

location rearrangement occurs which tends either to
narrow the spectrum of internal stresses, or increase the
mean internal stress, or both. The 6rst of these alterna-
tives is necessitated by the observed decrease in peak
width and increase in height for all annealing tempera-
tures above 200'K. Any tendency to ordering is ex-

pected to promote this effect. The second, which
parametrically should be contained in the ratio
(oP, 'I'/Gb) o—f (38), is contrary to first expectation.
However, it cannot be ruled out on the basis of internal

energy requirements because of the competing effect of
the narrowing in stress distribution. Moreover, the
continuity of the flow stress curve' (ignoring yield
points), which involves gross dislocation movements, is
not a valid argument against either possibility; for the
fIow stress is determined by the regions of highest
resistance to dislocations which, by their very existence,
must be the densely populated regions. ""As we con-
cluded earlier, the latter are not responsible for the
Bordoni peak.

It does not appear possible to go beyond the above
qualitative reasoning. However we believe that the
theory is not inconsistent with presently available
annealing data.

The slight changes in the temperature of the peak
with annealing may be interpreted according to the
discussion in the next section.

6. Impurities

It is known that impurities reduce the magnitude of
the peak and, for fixed frequency, cause a small decrease
in the peak temperature.

A semiquantitative description of this effect has

previously been derived on the assumption of thermally
activated kink motion. ' We found

(&,„/h.)exp(W/kT) =const. (44)

It is of interest to obtain an analogous expression in the
present case. For this purpose, to a 6rst approximation

» G. A. Alers and D. O. Thompson, J. Appl. Phys. 32, 283
(1961).

~8 Vfe are compelled to leave aside the moot point of whether
electron micrographs are representative of the bulk. Also we would
remind the reader that we are discussing polycrystalline materials
and these comments are not a judgment of various work-hardening
theories.

(n/n ) will be assumed. constant. We have calculated
q; as a function of y. To within =10%%u~ the results can
be represented by the empirical relation

"' exp(2es/kT)

{1+0.626 .„'~s)s
= const. (46)

Hence this model gives the same qualitative variation
as (44), namely, any decrease in height of the peak
should be accompanied by a shift to lower temperatures.
Of course, it is tacitly assumed that the internal stress
distribution and loop length distribution are qualita-
tively the same, but experimentally, as a general
characteristic, the behavior described by (46) is a
distinguishing feature of the Bordoni peak,

To test (46) quantitatively we have only been able
to find detailed work" on cross-rolled single crystals of
Cu containing small amounts of Au (0.065 and 0.25
at. %%ua) . Temperatur eshift scalculate d from thi sdata
and (46), with es ——10 kT, are 0.7 and 2'K compared
with the experimental value of 2 and 6'K. The im-
perfect agreement could be partly due to uncertainties
in the value of eI, since, for example, if we take 2&1,——0.08
eV, the estimates are increased by a factor two. It would
be of interest to investigate (44) and (46) by neutron
irradiation experiments. As yet, insufFicient experi-
mental data are available.

7. Niblett and Wilks Peak

There has been considerable speculation on the origin
of the subsidiary maximum first observed by Niblett
and Wilks. ' However, any attempt at a simple classifi-
cation appears to encounter difFiculty. For example,
since the peak height is approximately half that of the
Bordoni peak after tensile deformation at 4.2'K, ' it is
tempting to attribute the subsidiary maximum to
mainly screw dislocations and the main peak to dis-
locations with Burgers' vector at =60' to the close-
packed direction. This point of view is supported by the
observation that, after deformation in torsion, the peaks
in polycrystalline Au have roughly the same magni-
tude. "Further, it has been found that the main peak is
lowered in temperature by impurities, whereas the
subsidiary peak remains unaltered. But while these
factors conform with expectation, there exists the
seemingly convicting evidence that low temperature
anneals, which presumably allow migration of defects to

"H. L. Caswell, J.Appl. Phys. 29, 1210 {1958).Further details
in Tech. Rept. No. 3, Cornell University, 1957,AFSOR-TR-57-69
(unpublished).

ss S.Okuda, Sci. Papers Inst. Phys. Chem. Res. (Tokyo) S7, 116
(1963).

(45)

with ) =0.07, in the range of interest (&=1). In con-
junction with (35) and (37) etc. , these give the approx-
imate relation
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the dislocations, cause the subsidiary peak to decrease
in magnitude about as rapidly as the main peak, in Cu,
and even faster than the main peak, in Au."

In the light of this apparently convicting experi-
mental evidence, such a simple classification does not
appear plausible. An alternative possibility is discussed
in the following section.

IV. DISCUSSION

In the preceding treatment we have examined the
role of internal stresses in determining the internal
friction of a solid. A specific set of assumptions have
been made, the most pertinent of which are that the
lateral motion of kinks does not require thermal activa-
tion and that the generation of kinks is rapid enough to
account for the relaxation at the temperature of the
Bordoni peak. We have compared the theory with
experiment and shown that it can provide an explana-
tion of all the observed properties.

We now wish to compare this theory with an alterna-
tive' one which was based upon the assumption of
thermally activated kink motion. This is usually
summarily dismissed by referring to the Koster effect
which is observed at 4.2'K immediately after deforma-
tion. The implicit assumption made here, that if some
dislocations may require thermal activation eo dis-
location motion at all is possible at He temperatures,
is overlooked. That it may be, in fact, a false conclusion
is considered in the discussion given below.

In Appendix C we present some previously un-

published work on the effect of kink-kink interactions
on the relaxation peak associated with thermally
activated kink motion. This problem has been treated
independently by Southgate and Attard using another
approach. The results are identical.

We find in this case a maximum decrement given by

= (4k+'Gb'/m"S),

and a relaxation time

rn =L'/+Sg'rI, p

where now we suppose p= po exp( —W/kT). With
A, = f'A„where f' is the fraction of the total density
contributing to the relaxation, and all other parameters
the same as used previously, we find 6 f'/8 Thus to.
obtain the correct magnitude of the Bordoni peak
requires f' 0.05. To understand how this might arise
we shall consider the following possibilities, none of
which can be excluded a priori:

(i) The generation of kinks is much smaller than
assumed in the earlier sections. This would be the case
if, for example, relations of the type ei i~Su'/w, which
apparently ignore distortion in the core region, were a
signiGcant underestimate of the kink self-energy. In
such an event, the relaxation peak discussed in the pre-
vious sections would occur at some higher temperature.

(ii) The Bordoni peak is associated with dislocations
in those regions of the material where the internal stress
is eGectively zero.

(iii) Contrary to our original hypothesis, the kink
width is greater than 3b. Thus kinks in dislocations
with pinning points at appreciable angle to close-packed
directions do not move as isolated entities but, through
mutual interference, cause the activation energy 8' to
tend to zero when they begin to overlap.

Only (ii) and (iii) are relevant to the value of f'
Neither can be calculated with any precision. However,
a crude estimate can be obtained as follows. Suppose
the probability distribution P(0.) for the internal stress,
o. is P(a)= (2oo) ', (~0 ~

(00), and zero otherwise (that
is, a square distribution). Then, for a given orientation
0 of the pinning points, if we consider only d.islocati. ons
in stresses less than 0;, we obtain the fraction (o,/ap)
~(2S0/o gL). The total fractional reduction f' is there-
fore f (5S803/o.pbL), where 80=(a/w) is the angle at
which overlap occurs. Hence, identifying 0-; given by
(38) with the mean deviation for the distribution P(a),
and using the remaining values given in the text, we
find f 5(b/m)'. The width, w=5b, which is required to
obtain numerical agreement with experiment, probably
has little significance other than to illustrate that the
above conditions can combine to yield the correct order
of magnitude without extremely large values of m.

It is also possible to account for the other experi-
mental properties. In particular, the Roster e6ect at
4.2'K is a direct consequence of (iii), and its contrary
behavior, relative to the modulus defect associated with
the Bordoni peak, can be described again in terms of the
variation in the stress distribution, etc. For example,
that the peak half-width decreases for annealing above
200'K could be interpreted as a narrowing of the loop
length distribution possibily accompanied by a decrease
in the mean internal stress. Moreover, the insensitivity
of the peak height to large prestrains is enhanced
because of the additional factor that fewer dislocations
are favorably located in the internal stress Geld. In fact,
there appear to be only two properties which differ in a
way which is amenable to further experiment. One is the
value of the attempt frequency, the other is the sensi-
tivity to impurities. We will consider each in turn.

From (48) the attempt frequency can be estimated
using' po (coob'/2mkT) and inserting a mean value
(Noa) 5eo'/2. We find coo 10 4'~. There is a certain
amount of Qexibility in this number, but it certainly
should not be in error by a factor 10'. Consequently
this model deGnitely favors the lower attempt frequency
and activation energy quoted earlier. It would be of
great interest to investigate by further experiments if
the values suggested by Niblett and Wilks are correct.
We should re-emphasize that data collected on materials
of diGerent purity, deformed, by different amounts, in
different ways, and subject to diferent heat treatments,
are useless for deciding this question.
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The sensitivity to impurity content depends to some
extent upon the internal stress distribution. In general,
f' (b/I)P(0), and 6 ~ fAI.' Thus, if P(0) ~0, ", we

find
{A '/A~' "'}exp(W/kT) const. (49)

Since this relation depends explicitly upon the density,
it should preferably be applied only to changes in the
peak induced by neutron irradiation. For the same
activation energy, (49) would predict peak shifts 5

to 6 times those obtained from (46). We have been able
to locate only one datum in the literature which is
relevant to this question, namely, an observation of
Niblett and Wilks. " They found that neutron doses
sufficient to reduce the peak height by 6 relative to
unirradiated material (A 2.5X10 ') also produced a
peak shift 5'K. The value obtained from (46),
AT 2'K,. does seem to favor the generation rate model.
However, since the data were obtained from different

samples we hesitate to decide on the basis of this one

example. Of course, we have ignored the additional
complication that, should the peak consist of several

components, "the net shift could be influenced also by
a change in their relative intensity. This might be better
assessed if more data were available.

On the basis of the preceding discussion, we believe

that, with the available experimental data, to decide

upon the mechanism responsible for the Bordoni peak
would be premature. While much of the discussion of
this section is highly speculative, the need for further
experimental and theoretical study is obvious. The
accurate determination of the attempt frequency
associated with the Bordoni peak is of paramount
interest since any value in excess of 10 'co& would

exclude the kink-diffusion mechanism from further
consideration. Should this be the case in fact, there are

two possibilities. Both would imply that (i) above is

false. One is that thermal activation for kink motion is

never of importance even down to He temperatures.
The other is that indeed some kinks do require thermal
activation Lin the sense of (iii)$ and that the associated
relaxation is the Niblett and Wilks peak.

In the event of this last possibility there would be in

effect three classes of dislocations, the majority, with

pinning points not near the same close-packed row,

giving rise to a Koster effect, described by the "string"
model, for example. The minority would be divided into

two types, those in large internal stress fields, which

give rise to the Bordoni relaxation, and the remainder,
in the regions of small stress, which produce the Niblett
and Wilks peak. As a result, the relative magnitude of
the two peaks would depend upon the mode of deforma-

tion, as observed. In well-annealed single crystals the

minority would compromise just one class, presumably
a fraction q 3(b/w)' of the total density. These would

still give rise to an internal friction peak. Its estimated
magnitude is 8&10 '

q, if one uses the value of AI.2

31 D. H. Niblett and J. Wilks, Phil. Mag. 2, 1427 {1957).

determined by Alers and Thompson" for an annealed
crystal. Since the damping associated wi. th the string
model (i.e., kinks requiring no thermal activation),
when corrected for resolved shear stress effects, " is

7)&10 ' this peak could easily be buried within the
experimental scatter without postulating unduly large
values of (w/b). At lower frequencies these simple ideas
may be insufhcient. In this case it might be necessary
to consider the effects of distributions in loop length and
activation energy in some detail. "

Evidently, there is still ample freedom within the
model to construct a unified picture of internal friction
eBects associated with dislocations. Future develop-
ments may be awaited with interest.

APPENDIX A

In the following analysis we derive an upper limit for
the first-order corrections to the solutions given in
Sec. II.

The erst Eq. (10) is of the form

—B(BI )/Bg=} Lito{at(Bn,/Bo, )+e,g}+g(N+v)$, (A1)

where we have introduced the expansion parameter ).
Thus, for X&1, we obtain a power series solution

8=go+It+ ' ' ') 8„&X

Equating powers of) gives 5I 0
——0, and

(A2)

—B (BI.,)/Bx = ),Lico {o,(Be,/B(r, )
+e,lo}+g(@o+&o)], (A3)

—B(BI„o)/Bx=}t;iron;Nt+g(ug+tr) j,
and corresponding equations for higher order. Denoting
by C (x) the integral of the right-hand member of (A3)
between I/2 and x we obtain —from (A3) and (11),

where
e,+(Sa'/kT)(e, N, —P,n,)=F(x)+C, (AS)

F(x)=D-'
—L/2

C (x')/e; (x')dx', (A6)

and C is s constant of integration. The latter is deter-
mined by the boundary condition 6J„2=0, i.e., from
(A4),

L/2

—I/2
B~%rlS+ g

L/2

I /2

(ur+or)dx=0. (A7)

"R.M. Stern and A. V. Granato, Acta Met. 10, 358 (1962}.
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From (A5) and (7), we find

ui ——[{1+2$(x))C+{1+$(x))F(x)
+0(x)F(—x)1/[1+4 (x)+4 (—x)3, (A8)

where p(x)= (Sa'p, /kT). Using (A6), we derive then

L/2

rr
rr

rr//

C= —I. '
L/2

F (x)dx+ (ipi/2g L)

L/2

L/2

(n,up/~)R(x)dx (1+ipir) i, (A9)

6

O

I

where up and r are defined in (13) and (18).
A suitable measure of the accuracy of this method is

to calculate the fractional change in the total kink
density, which we denote by E..After some manipulation
we obtain the following relation (for ii= 1),

I /2

0
t

0.25
(xtL)

t

0.50

FzG. 2. Comparison of the kink density, e =5 'p, as obtained by
numerical solution of (22) with the approximate analytic ex-
pressions quoted in the text.

R= (Ii/Ip)(ip~ro. i) ' L '

L/2

—I /2

L/2

y must vanish at x= —(L/2). Thus, from (A6) ei st.

L/2

s 'QOFdx n, updx . (A10) F&{4/2Dy(1+i(or))
L/2 L/2

{1—(2x/L)) n; 'dx. (A16)

x(x) = Ip(x)/I p uorI, (x)/I, (1+u—pr)

/2x—
~

—+1 2 (1+i~r), (A12)

and the argument attached to the integral denotes that
in (16) and (17) the upper limit is the variable, x.

The behavior of z(x) can be understood by inspection
of the form of the density e, in the two cases where an
analytical solution can be found. Thus, from (22), if we

ignore diffusion we find

n, = '[{(o,bx/—Sa)'+4n p')'" (o,hx/Sa) j. —(A13)

Alternatively, if we ignore interactions (S=O) there
results

n;= np exp —. (o,abx/kT) . (A14)

In either case, the density, e; is very small in the region
x&0, for the range of parameters under consideration.
Thus, for x&0, to a good approximation we can take
Ip(x) =Ip, and Ii(x) =Ii so that

X(X)=-,'{1—(2X/I.)) (1+i4pr) ', X)0. (A15)

For x&0, x does not have such a'tidy form but never
exceeds the value of (A15) in order of magnitude. We
shall assume (A15) holds in the region x&0 for sim-
plicity. This overestimates F slightly since the correct

To evaluate (A10) we note first that C (x) can be written
in the form

C (x) = (i4oo iL/2o ~) (n +n~ —2n)x(x), (A11)
where

For the approximate evaluation of (A16) we shall
employ the diGusion result. This gives densities which
are larger than the calculated results near x= —L/2.
This behavior is unimportant, however, since x should
vanish there. At the other extreme, (A14) gives too low
a density (see Fig. 2). Thus we again overestimate on
this account. Finally, one can easily see, by similar
reasoning to the above, that the second member of
(A10) is small compared to the first. Consequently after
performing the required integrals we find

R& {(n n„)e&L')—/{Sp4npDr), (A17)

where p= (p,p&,/kT). With the values quoted in the text
we find g(3)&10—' for the smallest value of 7- in the
range given in (36). Since we have consistently over-
estimated (and in particular we note here that the
di6usion result is 20 times smaller than the calculated
value at x=L/2) we believe that the above value is
extremely conservative.

Ã0 2 X(E)e esdL~, —

APPENDIX 8

If it is assumed that kinks can move freely along the
dislocation, the increment in energy of a dislocation E
associated with a kink having momentum p is

8= pp+ (p'/2np),

where ns is the effective mass of a kink. Thus, for low
concentration, the total density of kinks per unit
length is
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FIG. 3. Variation of C (ppp)'~' as a function of (pep)'~'.

where iV(E) denotes the density of states per unit
energy per unit length and P= (kT) '. The differing
results in the literature are essentially determined by
the differing treatments of (82).

Applying the usual quantization procedure to this
one-dimentional case gives

1 ) ns q'i'
I (Z)=—

( ) (~—p.)-'I', E&"
2' 4 2hsl

=0, E&eI„

(83)

and insertion of (83) into (82) yields the result given
by Eshelby. " Unfortunately, this is incorrect. For one
overlooks thereby the fact that the dislocation has only
a 6nite number of degrees of freedom per unit length,
namely b ' Thus the. integration in (82) should termi-
nate at 8= pq+ pp, where pp= (k m'/2mb'). After insert-
ing this cutoG the integral becomes

np (ntKT/2m&') "C ((Ppp)' ')exp( —Ppp), (84)

where C (a) is the error integral. The behavior of C as a
function of Ppp is shown in Fig. 3. As Ppp ~ ~, C'~ 1
and (84) is then Eshelby's result. But as Ppp~0,
C —& (2/+7r) (Ppp)'I' and one obtains

np —b exp ( pg /KT) (»)
which is the con6gurational entropy result. That is, the
one obtained from combinatorial arguments. The
reason for the diferent forms is clear. The combinatorial
approach ignores the distribution of states in kinetic
energy and amounts to approximating E(E) by a delta
function at ej,. This should be reasonable as long as the
exponential in (82) varies slowly over the range pi to
pp+ pp, i.e., if Ppp(1. On the other hand, it will be poor
in the opposite extreme. Then the cutoff is irrelevant

a
Lci (ni —pi)/Bt 1+—(I„—I„)=0.

8$
(C1)

Using Eqs. (2) and (6), together with the boundary
conditions I„=I„=O at x=&L/2, this yields, after
integration, the following result

8$»—D.r, = o.ia'bti(np+pp),
2

(C2)

where y» is the displacement and D,« is given by

D.rr =D(1+Sa'(np+ ps)/jrT) . (C3)

Equation (C3) is identical in form with Eq. (29) of
Ref. 1, with D,ff replacing D alone. The internal friction
is given by Eq. (35) of the latter work but there Eq.
(37) should read now

6 (L,T) =8Ga'b'L'(n p+ p p)p/D, rr Vrr", (C4)

since aT appeared specifically (i.e., aT —& D,ff/p)
For temperatures =80 K, as long as eou&10 ', the

kink interactions dominate and the ordinary diffusion
term in (C3) can be neglected. This and (C4) then give
Eqs. (47) and (48) of the text. In conclusion, we note
that changes in kink density associated with thermal
excitation are unimportant here since at most they will
give changes in (npa) 10 '.

and the density is identical with the electron concen-
tration in a one-dimensional intrinsic semiconductor,
for example.

To estimate Ppp, we take ni=t pi,/cP where cg is the
transverse sound velocity and f a numerical constant
of proportionality. Hence, with the values typical of
Cu, we find (Pep)'Is =0.6l 'I' for T=80'K. Since
specific models give f'& 1, we conclude from Fig. 3 that
the result (CS) is the more appropriate, as indicated by
the broken line. We should mention that this conclusion
is contrary to the statement of Lothe and Hirth who
assert that the cutoff in their (different) calculation is
not important and who obtain essentially the low-
temperature result (C —= 1) given by (84).

Finally, one can check the approximation of ignoring
the interaction between kinks. Since left and right kinks
will on the average be alternately spaced on the line the
interaction energy' of one kink with all others will be

Ga'b'np/4m(1 —v). This is negligible compared with
its self-energy.

APPENDIX C

%e will consider here the internal friction associated
with the model when o,=0. The stress in Eq. (6) is then
0 0 i exp(sort). We let n= np+ni, and p= pp+pl Bv
subtraction, we find from (1)


