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It is shown that the addition of a weak anisotropy 6eld to the spherical model produces a very complete
and realistic mathematical picture of a first-order phase transition. In contrast to the conventional spherical
model of a ferromagnet (or lattice gas), the modi6ed model exhibits phase separation in the Rat two-phase
region of the magnetization curve (or isotherm). The magnetization curve has an analytic continuation
into the two-phase region which may be identified with a homogeneous metastable state. The new model is
not exactly soluble but lends itself easily to a diagram renormalization technique. Except in the immediate
neighborhood-of the critical point, this technique gives rigorous results.

I. INTRODUCTION

'HE spherical model of a ferromagnet' or lattice
gas' ' is probably the most satisfactory model of

a first-order phase transition proposed to date. It is a
three-dimensional model in which the spins or particles
interact via 6nite range forces. It is exactly soluble in
an external magnetic 6eld; that is, one may compute
complete isotherms for the equivalent lattice gas. Thus
the spherical model is more realistic than either Tem-
periey's infinite-dimensional (infinite-range) model' r

or the hard, -rod mod. el of Kac, Uhlenbeck, and Hemmer, 8

which is one dimensional and requires infinite range
forces to produce a phase transition. It is more com-
pletely soluble than the two-dimensional Ising model. ' "

It is all the more disappointing, therefore, that the
spherical model does not give a satisfactory description
of condensation. As we see in the discussion below, the
model does not properly describe the physical separa-
tion of two phases in equilibrium. A related difhculty is
that the spherical model apparently does net exhibit
supersaturation. It is commonly supposed that the
analytic continuation of the magnetization curve —the
van der Waals loop in the isotherm —describes a meta-
stable state. No suitable analytic continuation occurs
for the spherical model.

The present paper describes an attempt to make a
virtue of the above faults by showing that if one
modifies the spherical model in such a way as to en-

courage phase separation, one also recovers super-
saturation. This constitutes a partial verification of the
classic phenomenological theories of condensation and
metastability. " More important, the new model pro-
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vides an extremely detailed mathematical picture of
the phase transition, even throwing some light on the
nature of the mathematical diS.culties near the critical
point. The new model involves the addition of a small
quartic perturbation which plays the role of an aniso-

tropy field. Although not exactly soluble, it is suSciently
simple that many conclusions may be drawn with
confidence.

Sections II and III of this paper are devoted to a
critical review of the spherical model and a qualitative
justification for the proposed. modification. In Sec. II
we reproduce the well-known solution of the spherical
model and emphasize the fact that the differential sus-

ceptibility at zero field diverges below the transition
temperature, thus precluding a smooth transition to a
metastable phase. Some relevant but rather detailed
properties of the partition function for the pure spheri-
cal model are discussed in Appendix A. Then, in Sec. III,
we argue that the lack of a metastable phase is con-
nected with the lack of phase separation in the two-
phase system, and illustrate this unphysical property
of the spherical model by a simple zero-temperature
calculation. Finally, it is shown that the quartic per-
turbation restores phase separation, at least at zero
temperature. The nonlinear differential equation which
appears here and in Sec. VII is discussed in Appendix B.

A perturbation-theoretic formalism for investigation
of the modified model is developed in Secs. IU and. V.
It is clear that the partition function has a singularity
where the strength of the quartic perturbation vanishes.
Accordingly, instead of a direct expansion, we write the
partition function as an integral over a variable s (the
same variable which enters the pure spherical model in
the role of a chemical potential), and make a linked-
cluster expansion of the logarithm of this integrand in
powers of the perturbation. The rules for this expansion
are developed in Sec. IV. In Sec. V, we renormalize
this expansion. The renormalized variables turn out to
be the magnetization and the spin-spin correlation func-
tion, which plays the role of a propagator. Some very
useful variational properties of the renormalized ex-
pansion are also discussed in Sec. V.

The thermodynamic properties of the modi6ed
spherical model are presented in Secs. VI and VII.
%'e 6nd that for a sufficiently small perturbation
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strength and for temperatures not in the immediate
vicinity of the critical point, it is sufhcient to keep only
the erst-order term in the renormalized expansion. The
magnetization curve is computed in Sec. VI. The im-

portant point is that the curve now has a smooth con-
tinuation into what may be interpreted as a region of
metastability. The validity of the calculation is estab-
lished by a self-consistency check. In Sec. VII we deal
with the two-phase region. It is shown that the canonical
free energy is a convex function of magnetization and
has a Rat section corresponding to two separated phases
in equilibrium. The shape of the surface between the
two phases is computed.

+2= 2 2 &l, l'///lgl' ~

1,1'
(2.1)

The spherical model divers from the Ising model in
that the spin variables p1 are allowed to take on all
real values (—pp&/a&& pp) subject to the "spherical
constraint":

Z /2P=&.
1

(2.2)

II. PROPERTIES OF THE SPHERICAL MODEL

Ke consider a lattice of S sites, labeled by the in-
dex I, each occupied by a spin p&. As usual, the spin
states will satisfy periodic boundary conditions. The
interaction between the spins is given by

and the grand canonical partition function

1 |20

Zp(X)= g d/2/ 8(Q p, p —Ã)
1 ~ 1

Xexp( —PHp+X Q /t2)}

1

=/V .p(2/2)e" N"d2/2.
—1

(2 4)

Because 2/&, p is a function only of I—I' for a transla-
tionally symmetric lattice, I' may be diagonalized by
the Fourier transformation

Conventionally, the normalization factor A~ is taken
to be the area of the hypersphere:

A N
—2~N/2JlT&/2 (N—&)/I' (2 Jl/) (2 S)

At this point, we review the evaluation of both of
these partition functions. The techniques are well known
but some of the details are required for use below.

In order to reduce (2.3) or (2.4) to an analytic form,
we use an integral representation of the delta function

$00

8(Q /aP —lV) = ds exp(,VPs —Ps P pP} . (2.6)
2ri i~ 1

With this insertion, we obtain, in the integrand, an
exponential of the following quadratic form in the p1's:

Q I 1,1'/21/21'= 2 (2~1,1' 22/1, 1')//1/21' ~ (2 7)

p) —— P' a, (l,k)o«,„ (2.8)

1 00

-""p(~)= II d/ ~ &(Z/ P—~')

X8(Q /I( —2/2Ã)e ~Np,
1

(2.3)

Statistical averages are to be performed over this g-
dimensional hypersphere in p, space. This model ex-
hibits a phase transition only in three or more dimen-
sions. Accordingly, all further discussion pertains to a
three-dimensional system.

In the following work, we are interested in both the
canonical partition function,

where
k, s 1,2

ag (1,0) = 1/N'/2

a~(l, k) = (2//V)'/' cosk I, k~0,
a2(l, k) = (2///V)'/' sink I,

(2.9)

and the notation P' implies that the sum is to be
taken over only half of the allowed k's in the Brillouin
zone plus k=0. More precisely, if +k is included in
the sum, —k is not. The reader may check that (2.8)
is an orthogonal transformation.

Now consider Zp(X). We transform to the variables o.

and perform the integrations as follows:

00 iGO

VP PZ&, —+~K }
27ric4 N 1 ~ . i~ 2

$00 CO

H dp«, .
I
exp(&Ps PE' p««—,.2+/V'"X o, }

2m'LA N; «, I=&,2 k, e

e N/2 (2P)
—N/2-

4ni

$00

d» exp(/VP(s, lb,)}. (2.10)
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Here,

F(s,X) =Ps—(1/21V) P lnPa+ (X'/4PP p), (2.11)

where the p~'s are the eigenvalues of FL i .
A,Q

Bo
A Pm.

B'
r 0

pt, = s—(vt,/2); (2.12)

and the e~'s are the coe@cients of the Fourier expansion (a) (b)

vi, i = (1/E) Qt, vie'~'&' '&. (2.13) Fio. 1. Magnetization curves for (a) the inttnite dimensional
(in6nite range) model, (b) the spherical model.

The final integral in (2.10) may be evaluated by a
saddle-point technique. Note first that F(s,)) has a
branch cut extending to the left from the branch point
at s=-,'e . For simplicity, let us assume that e~ is a
real function, that the largest va= v,„occurs at 4=0,
and that, near it =0, vt, may be expanded in the form

vg='vp —yk + ' ' ' . (2.14)

It follows then that, near s= vp/2, the singular function
in I" admits the expansion

— Q input= Q ln(s ——,'vt, )

&= (1/&) Zt 51/(vp —»)j
C= (1/3 ~)(2/~)"'

(2.16)

(2.17)

and &p is a function which is analytic at s vp/2.

The saddle-point equation is

cIF
[ =0. (2.18)

2.V & s,——,'vt, 4p(s, ——,'vp)'

The phase transition occurs when the saddle-point
coincides with the branch point; that is, when s, =vp/2.

Accordingly, we may study the neighborhood of the
transition by using the expansion (2.15). Equation
(2.18) becomes

P—8+-',C(s,—-,'vp)'ts+ . — =0. (2.19)
4p(s. pvo)'—

Clearly, we can have s = vp/2 only when X=0, in which
case, we have

(2.20)1/ItT, =P,=B.

The reader is referred to Berlin and Kac' for a more
complete and rigorous version of this analysis.

The main point of interest here is that the mag-
netization curve contains no metastable region. To see

=A+8 (s—-', vp) —C(s——,'vp)'t'

+ (-'—pvs)'p (s) (2 15)

where 8 and C are positive coeNcients

this, we compute the average spin (tt)":

tc 1 cl lnZo tfF(».,X)
(tt)= hm~—~""(1V c)). dX

BF
(2.21)

c)). 2p(», ——,'vp)

where we have employed the stationarity of P with
respect to s at the saddle point. The relevant features
of the (tc) versus X curve may be obtained from (2.19)
for X and s,—vo/2 suKciently small. It is most con-
venient to solve for X as a function of (tt):

)~—=(8P'/9C')(t )D )'—((P—P.)/P)7 (2 22)

This function is plotted in Fig. 1(b). For comparison,
we show in Fig. 1(a) the analogous curve for, say, the
in6nite dimensional model. ~ "Note that the differential
susceptibility d(tt)/D. at A in Fig. 1(a) is 6nite and
remains positive in the metastable region AB. For the
spherical model, on the other hand, the susceptibility
is inhnite at 2' and is negative in A'8', implying that
the analytic continuation of the magnetization curve
cannot represent a physical region.

The lack of a metastable state also shows up clearly
when one examines the analytic properties of Zo in the
complex X plane. These properties are of interest in
themselves because it is important to verify that the
spherical model is consistent with the general theorems
of Yang and Lee'4 concerning condensing systems. Ke
simply state the results here and relegate the detailed
analysis to Appendix A.

In accord with Yang and Lee, it turns out that Zp(X)
has zeros along the imaginary X axis, that is, along the
unit circle in the plane of the fugacity variable e".
These zeros become indefinitely dense as X increases
until, in the limit N —+ ~, the locus of zeros becomes a
a branch cut. It has been conjectured that, if one Grst
takes the limit E—+ and then continues analytically
from, say, positive to negative values of X, that one will

ts We write (pl rather than nt to emphasize that here we mean
an average over the grand ensemble which contains a spread in
values of total magnetization."T.L. Hill, Stattsttca/ Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1956), Chap. 7 and Appendix 9.

"C.N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).
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Fxo. 2. Logarithm
of the canonical par-
tition function for
the spherical model.
The dotted line de-
notes the analytic
continuation of the
smooth function into
the region m'&tno'.

Thus
(2.23)

(~)— /, N/2 (2p)
—N/2—

4ni
ds exp(XXp (s,m) ), (2.24)

where

xp(s, m) =Ps—P(s——',i/p)m' — P ln(s —-', vg). (2.25)2' k~

The saddle-point equation is

1 1
p(1—m') =—g

2 V k~ g~—~'t/k

3C
=p. (s. 2~—p)'—"+' ' '

~ (226)
2

Equation (2.26) has a solution s,& up/2 only if m is
greater than the spontaneous magnetization 8$p'.

~p&m pp= (p p, )/p, — (2.27)

which checks with (2.22) in that mp' is equal to (/t/)'

when A=0. In this case,

(1/E) ln p ———q —-', ln2P+Xp(s„m) . (2.28)

When nz~&mp', however, the peak along the path of

find a smooth continuation onto the second sheet. Such
a continuation does exist for Temperley's model, ' where
the continued function may be unambiguously identified
with the free energy for a metastable phase. Further-
more, the first analytic singularity encountered along
the negative P axis clearly locates the limit of meta-
stability. What happens in the spherical model, as
shown in the Appendix, is that this analytic singularity
occurs at the origin in the X plane, i.e., it lies on the
locus of zeros of Zp.

To complete the discussion of the unmodi6. ed spheri-
cal model, we review the calculation of the canonical
partition function. ' This is easily obtained by deleting
X in the second line of Eq. (2.10) and noting that the
extra delta function in (2.3) implies

steepest descen. t in the s plane occurs at s = ep/2. Thus

(1/X) in=-, =——,
' ——; ln2P+-,'P.,

'Up —Sg)
Pin ~, (2.29)

2S t~o 2

which is completely independent of m. It follows that
the canonical free energy is a concave function with a
Qat top, as shown in Fig. 2. The dotted line in that
figure corresponds to the dotted portion of Fig. 1(b)
and represents the analytic function which is obtained
by using the saddle-point equation (2.26) for all m,
i.e., by forgetting that the saddle point has left the
physical sheet for ns'&nzp'. Again, it is clear that the
dotted portions of Figs. 1 and 2 are of no physical
significance.

III. PHASE SEPARATION AND THE
QUARTIC PERTURBATION

There are two possible explanations for the lack of a
physically sensible analytic continuation of the parti-
tion function for the spherical model. One is that
analytic continuation does not necessarily have any-
thing to do with supersaturation. That is, the spherical
model may supersaturate; but we do not know how to
show this mathematically. It should be remembered
that the only soluble models which have succeeded in
exhibiting an analytic continuation clearly identifiable
with supersaturation are Temperley's model4 and that
of Kac, Uhlenbeck, and Hemmer. ' Both of these in-
volve infinite range forces and thus may be highly un-
realistic in this particular respect. The only general
argument in favor of identification of the analytic
continuation with a metastable state is that, experi-
mentally, passage into the supersaturated region ap-
pears to occur smoothly. The theory of phase transi-
tions, however, is notorious for unpleasant mathematical
surprises; and it seems worthwhile to insist on more
conclusive arguments.

The alternative to the above possibility is that the
spherical model really does not supersaturate. This
second explanation leaves open the possible physical
interpretation of analytic continuation; and it is this
explanation that we try to con6rm. We consider Grst
some intuitive arguments.

The classic picture of the metastable state" envisions,
for example, a uniform liquid at a temperature higher
than the boiling point —or at a pressure lower than the
vapor pressure at the given temperature. The corre-
sponding situation for the spin system has macroscopi-
cally uniform magnetization in a direction antiparallel
to the external magnetic field. Then one considers the
possibility of forming a bubble of vapor or of parallel
magnetization. Because the bulk free energy of vapor is
assumed to be lower than that of liquid, the appearance
of the bubble lowers the free energy of the system by an
amount proportional to the volume of the bubble, i.e.,
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r' where r is the bubble radius. But if there is a positive
surface energy, the total free energy will include a posi-
tive term proportional to r' F. or small enough r, +r'
will dominate —r', and the bubble will tend to dissipate.
There will be a critical radius, say r„above which the
volume energy decreases faster than the surface energy
increases. When, because of some Quctuation, a bubble
radius exceeds r„ the bubble will grow indehnitely; and
the liquid will boil or the magnetization will flip.

The prime requisite for the above picture is that the
system exhibit two distinct phases separa, ted by a well-
defined surface. More precisely, the low-energy sta, tes
of given density or magnetization must exhibit phase
separation. The Ising model with a finite range inter-
action is an ideal example of this. If we 6x the mag-
netization, then the state of lowest energy clearly is the
one in which all of the up spins are separated from all
of the down spins by a surfa, ce of minimum area.

The spherical model, on the other hand, runs into a.

difFiculty here. Because of the continuous nature of the
spin variables, there is no precise distinction between
two phases. A detailed statistical treatment of this is
presented in Sec. VII; but it is a, worthwhile exercise to
perform some preliminary zero-temperature (ground-
state) calculations.

Consider the problem of minimizing the energy HD

subject to the spherical constraint and given a fixed
magnetization. The variational equation is

(~/~~i)l Ho+i 2 ui'+v 2 I i5
1 1

E &l, l'Pl'+2fgl+v 0 yl (3 1)

L, being the length of the lattice in the x direction.
Finally, the spherical constraint determines the inte-
gration constant A:

The result is

A = [2(1—m'))'i'. (3.6)

p(x) =m+L2(1 —m')$'i' cos(Ex+5). (3.7)

(3 g)

It is a trivial matter to check that (3.7) really does
minimize Hp if we choose the smallest nonzero E, i.e.,
Z=2~P, .

Consider Eq. (3.7) first for the case m=0. Instead of
separating into two equal regions of up and down spins,
the p's tend to go from positive to negative values as
gra, dually as possible. The situation may be compared
to the pure Heisenberg ferromagnet in which the Bloch
wall tends to become indefinitely thick in the absence
of an anisotropy field. The second point to note is that,
for nonzero m, instead of dividing into unequal regions
of up and down spins, the spherical model tends to
become as uniform as possible. That is, the p, 's take
values as close to @=A as are consistent with the
spherical constraint. Thus, equilibrium between two
phases in the spherical model does not look at all the
way we think it ought"'to look.

In order to remedy this situation, it is proposed to
add to Hp a, quartic perturbation of the form

where f and v are Lagrange multipliers. Although it is
by no means necessary here, it will be convenient to
assume that p, & varies much more slowly than the
interaction e&, & so that we may replace p& by a function
of a continuous variable, say p(r), where r is measured
in units of the lattice spacing. Then, using (2.13) and
(2.14), we may write (3.1) as a differential equation:

where a is a small positive constant. To see the qualita-
tive effect of this term, note that some of the p's
determined by (3.7) for the pure spherical model have
magnitudes larger tha, n unity. The term H' makes these
large values of p energetically unfavora, ble. Combined
with the spherical constraint, H' has the eftect of
flattening out the peaks in the p, versus I curve. This
effect can be made more obvious by noting that

~p y7'+2—l gp(r) = —v.

This equation has solutions of the form

(3.2)
H =n P(pP —1)o+niV (3 9)

2f+m-
+A cos x+5, (3.3)

v=m(io —2t),
and periodic boundary conditions require

(3.4)

where 5 is an arbitrary phase angle and 2 is a constant
to be determined. The variable x measures distance
parallel to one of the sides of the lattice. The mag-
netization condition implies

by virtue of the spherical constraint. In this form, II'
represents a potential with symmetric minima at p, =~1.
In the strong-coupling limit+ —+~, this modified spheri-
cal model should revert to the conventional Ising model.
For the small values of cx of interest here, H' plays the
role of an anisotropy field.

The quartic perturbation (3.8), when added to Hp
in (3.1), turns Eq. (3.2) into a very interesting nonlinear
di6erential equation:

(
2l+op " 2~—

=—&(integer—=E,
L

(3.5)

—yPp —(io 2l )p+4np'+v=0. — (3.10)

The solutions of this equation are discussed in Appendix
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S. The result is exactly what one expects. The energy
Ho+H is minimized subject to the constrains by taking

p, equal to &1 to order E—"' almost everywhere in the
lattice. In the transition regions where p changes from

+1 to —1, the function y(x) is well approximated by

Let us consider the grand-canonical partition function

1
z(~) = II dpi l~(E vP —.~ )

yexp{ —P(a,+a')+X P &,}. (4.1)

p(x) = tanhgx(2a/y)'"j; (3.»)
As in Sec. II, we use the integral representation (2.6)P""e y ' '"'"' wh for the delta function anc[ Qefine the quadratic form

thickness d is independent of the size of the sample:

d = (v/2~)'" (3.12)

IV. DIAGRAM EXPANSION FOR THE MODIFIED
SPHERICAL MODEL

We turn here to the problem of computing thermo-

dynamic properties of the modified spherical model.

The model is almost certainly not exactly soluble; and
therefore we devise a diagram expansion technique.

P p
ss sco

~(~)= III
2~iA~ l &

Xexpp'Ps —P p Pl, i piyl —Pn p pi'+li Q pl}.

(4.2)

The diagrammatic technique is based on the ex-
pansion

00 ) l, aO

~(~)= II dpi I
«expV Ps PE—~l, l »» +~ 2»}2 —(—Pa) "(2 ltil')"

2miA ~ n=O ~!

where
OQ n

I„(I,, Io, ,l„)=—II dpi exp{—P p J'l l.p,pl. +& p»}II pi,
1 1

(4.3)

(44)

It is apparent from (4.2) that the expansion (4.3) converges, at best, only asymptotically. Accordingly, we try
to re-sum this expansion before performing the s integration.

The coefficients of the expansion (4.3) may be computed most easily by evaluating, instead of I„,the generating

function

~„(6, ,4)—=II dpi exp{—P Q Pl, l pixel +x p pi++ (;pl,},
1 1 i~1

which is related to J by
a

I-(Ii, ",I-)=II —
l &-(6,",$-) le -" =~»=o.

--i a(,)

(4 S)

(4.6)

The integrations over the p, s in (4.5) are performed by transforming to the o. variables introduced in Eq. (2.8).
We obtain

00 n

y„= II' d~l. .. exp{—P p' pool, ,o+Ã"9~o,i++' Q &,a, (1;,k)~l. ..}
k, s=1,2 R, s k, e i=1

I/2 1 n 1/2 1
exp PlV'"+P p,a, (1;,0)]' II' exp tg $;a, (l,,k)]'

Ppo 4ppo s i is,s Ppg 4Pp„s-i
@go

1 a X a ÃXo

e p —2 5'kg(I' —I)+ 2 4+
all ls(PPl, 4P ',~i 2Ppo '-i 4Ppo

The fun. ction g(1;—I,) appearing in the final form of (4.7) is

a, (I;,k)a, (l;,k) 1 e'" "s 's'&'-
g(1*—is) =2'

Pl .V l' (Z——,'i'l)

which will play the role of an unperturbed propagator in the following analysis.

(4.7)

(4 g)
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The complete expression for the partition function now reads

n

Xexp —P &;P;g(1,—I,)+
4P * = 2P(s—l~o) '- (4.9)

where the function F(s,h) is given by Eq. (2.11).
The rules for the diagram expansion may be read

directly from (4.9). The term of order e, i.e., the coe!5-
cient of n", gives rise to a number of diagrams, each
having n labeled points li, 12, . . ., I„. We draw a line
(bond) between the points I; and I; for each factor
(1/2p)g(1; —I;); and we draw a line from point I; to an
external field point X for each factor X/2P(z —i~vo) ob-
tained by differentiating with respect to $; in (4.9}.
Each point I; must have connected to it exactly four
lines corresponding to the four diBerentiations with
respect to $,.

By expanding the exponential in (4.9), we note the
following factors:

(a) Each point I; contributes a factor

—(4!)Pn= —24Pn.

(b) Each pair of points I;, I; joined by m bonds con-
tributes a factor

1/m! L(1/2p)g(l; —I,)j
(c) A point connected to m external field lines con-
tributes a factor

m! 2p(s —-', io)

(d) A bond closed upon itself contributes a factor

$(1/2P}g(0)

The complete numerical contribution of the diagram is
obtained by summing over Ii, 12, , l„and multiply-
ing by 1/e!.

The reduction to unlabeled diagrams takes place in
the usual manner, as does the linked-cluster analysis.
Associated with any unlabeled diagram there are

diferent labeled diagrams, where S is the number of
permutations of the points which transform the labeled
diagram into itself. If a particular linked cluster F
appears in a diagram vp times, then S will contain a
factor vp t. Summing over all vi, we obtain

Z{X)= e "(2P) " ds
4xi

&&exp'VLF(s, X)+C (S,X)], (4.10)

where 3'C is the sum of all linked clusters. That is,

-~YC'= Q (1/Sz) Wr, (4.11)

where 8'q is the numerical contribution of the linked
diagram I' computed according to the Rules (a) through
(d), and Sr is the number of symmetry operations on
the points which leave F invariant. Note that the factors
1/m! in (b) and (c) and the factor 2i in (d) may be
interpreted as additional syrmnetry factors arising from
rearrangements of the bonds.

It is obvious from Eq. (4.8) that it is most con-
venient to compute contributions of diagrams in a
Fourier representation. Accordingly, we label each bond
by a wave vector k and arbitrarily assign to it a direc-
tion. Associated with any such bond is a factor

1 1—gz—=—
2P 2P s——,'eg

(4.12)

Summing over all the I's at the vertices, we obtain
wave-vector conservation throughout the diagrams. In
this notation, we may write for each external-field line
a factor (X/2P)go, which makes the external-field term
just a special case of (6.17), necessarily with k=0 and
with a factor X at the open end of the bond.

V. DIAGRAM RENORMALIZATION

Although strictly classical in its physical implica-
tions, the diagram expansion developed in Sec. IV looks
very much like that for a quantum-mechanical many-
body problem. It is, in fact, somewhat simpler. The
propagators carry only w'ave-vector —and not energy—
variables. There are no wave-vector dependent factors
at the four-vertices. It also should be remarked that,
unlike most lattice problems, there are no excluded-
volume difEculties, i.e., no semi-invariants to worry
about.

It seems very natural now to treat the perturbation
expansion by the diagram-renormalization methods de-
veloped for many-body problems. An excellent formula-
tion of these techniques has been described by Bloch";
and we base our analysis upon his work. For a variety
of reasons, these methods turn out to be remarkably
well suited to the present problem.

"C. Bloch, in Studies in Statistica/ Mechanics, edited by J.
deBoer and G. E. Uhlenbeck (North-Holland Publishing Com-
pany, Amsterdam, 1964), Vol. III.
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In order to express the sum of all diagrams 4 in
terms of BR, we use the fact that, for any tree,

X—~+Ez= 1, (5.1)

Fro. 3.A typical diagram before
BR renormalization.

The diagram renormalization is performed in two
steps. We first eliminate al1. subdiagrams which are
connected to the main diagram by only a single (k= 0)
line. This leads to the definition of the magnetization
function BE. We then perform the "self-energy" re-
normalization leading to the definition of the renormal-
ized propagator g&. We do not attempt any higher order
renormalizations.

The 6rst step is performed as follows. Given any
particular diagram, for example that shown in Fig. 3,
identify all of the bonds such that, if any one is broken,
the diagram separates into two disconnected parts.
Because all such bonds necessarily carry k=0, we refer
to them as "0 bonds. "We then may draw for the dia-

+ Q

+ ~ ~ ~

FIG. 5. Diagram
expansion of the mag-
netization function.
The small open cir-
cles represent the
points at which these
subdiagrams are at-
tached to the rest of
the diagram.

in $0 are shown in Fig. 6; and the corresponding
numerical contributions are as follows:

where X~ is the number of bubbles, S~ is the number
of lines (0 bonds), and X~ is the sum of the articulation
numbers, i.e., the numbers of 0 bonds attached to the
bubbles. For example, the bubble labeled A in Fig. 4
has articulation number 4; 8 has 2; and C has 1.
Equation (5.1) may be proved easily by induction. We
use this relation here to write down an expression in
which each diagram is counted exactly once.

The first term in the desired expression is the sum
of the contributions of all bubble diagrams" computed
by inserting a factor BE for every 0 bond connected to
the bubble. Let us call this term $0. A few leadilig terms

n, (OR) =&OR—P~OR' —(3n/Ã)OR' P g,+ ". (5.2)

FIG. 4. The tree structure cor-
responding to Fig. 3.

gram an equivalent tree, that is, a diagram in which

only the 0 bonds are shown explicitly. Subdiagrams con-

taining no 0 bonds are indicated by shaded bubbles;
and these bubbles are the articulation points of the tree.
The tree structure corresponding to Pig. 3. is shown in

Fig. 4. Note that single external field points and single
four-vertices may qualify as bubbles.

The magnetization function BK is de6ned to be the
sum of the contributions of all subdiagrams which

terminate in a single 0 bond. BK contains the factor
(1/2P)go, but not the factor —4!Pn, which will occur
when BK is connected into a larger diagram. The 6rst
few terms in the perturbation expansion of BK are
shown in Fig. 5.gee see below that BR is, in fact, the
average magnetization of the system.

It should be clear that any diagram with S~ bubbles
is counted S& times in S&.This is easily seen by noticing
th.at we may find any given diagram E& times in X)0 by
basing the construction of the diagram on each of its
Ã& bubbles. The reader may check that symmetry fac-
tors are properly taken care of by this argument.

To complete the calculation of C according to (5.1)
we must find expressions which count each diagram A~
and Xl, times. Let us call these expressions C~ and Cl„
respectively. These expressions are written most con-
veniently in terms of the function g, defined by

OR= (1/2p) goy. (5.3)

Clearly, g includes all of OR, except the leading 0 bond.
Equation (5.3) plays the role of the Dyson equation
for 0-bond renormalization.

y(
+

FIG. 6. Diagram expansion of the function I)&.

Conventionally, these bubble diagrams are called skeletons;
but we reserve the term skeleton for the diagrams which remain
after self-energy renormalization.
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m gn

-Xk(z) +
OR. From the diagrammatic definition of So, it should
be clear that

Thus
cjoy)o/&OR= rl.

W/8OR= g —2Pgo '=0

(5.9)

(5.10)
FzG. 7. Diagram expansion of the self-energy function X.

4» now may be written down by focussing attention
on a,ny. bubble and any one of the 0 bonds attached to
it. The 0 bond is part of a diagram in 5R. The bubble
and all other factors BR associated with it make a part
of 'rl. For any diagram there are Ez choices of bubble
plus 0 bond. Thus

(1/Ã) lnZ= ——,
' ——,

' 1n2P++(z„)),
where s, is the saddle point determined by

(5.11)

a,ccording to the Dyson relation (5.3).
Equation (5.10) may be used immediately in proving

the physical signi6cance of BR. ln general, the integral
(5.7) may be performed by the saddle-point method.
Then

C ~——OR/ = 2Pgo
—'OR' (5.4) 84/Bz=0 at z= z, . (5.12)

counts ea,ch diagram Xg times.
Similarly, 4 & is found by basing the construction of

the diagram on any of its 1V& 0 bonds. Each end of the
bond is attached to a subdiagram which is part of r!.
There is now an over-all symmetry factor —,'. Ke have

Cr. =-', (1/2P)gog=Pgo 'OR' (5 5) FIG. 9. The tree of cycles corre-
sponding to Fig. 8.

One minor error in the above analysis must be cor-
rected now. The diagrams summed by $0, Cz, and Cz.
include one which consists of a single 0 bond with ex-
termal field factors ) at each end. The contribution of
this diagram is

(p) =d%(z.,X)/d'X =8%/N. .

l[(1/2P)go]~'

But this diagram is not really part of the perturbation
The magnetization is

expansion beca, use it contains no e, thus it must be (5.13)

PEG. 8. A bubble diagram.

C = So—C g+C r, —(X'/4p)go
= no —Pgo 'OR' —P s/4P)go.

(5.6)

deleted from 4. Note, however, that exactly this term
appears in P(z, X).

Using the relation (5.1) and Eqs. (5.4) and (5.5),
we write

Because of Eqs. (5.10) and (5.12), we need consider
only the explicit X dependence of 4 in (5.13). Now the
only X which occurs explicitly in%' appea, rs in the term
/~OR in X)o, as given by Eq. (5.2). Thus

g) (z) = fz —it/i, +Xi,(z)j-'. (5.15)

(/s) =OR(z„lt) .

The second step in the renormaliza, tion procedure is
the expression of $0 in terms of the renormalized pro-
pagator, which we call gi, (z). We define the self-energy
function —Xk(z) in the usual way as the sum of con-
tributions from the proper self-energy diagrams. The
first few such diagrams are shown in Fig. 7. The rela-
tion between gi, and X& is the conventional Dyson
equation

Then, from Eq. (4.10), we have

Z( ) &
—N/2(2P) —N/s

4'
where

Our problem now is to eliminate the unperturbed
propagators gi, in favor of the go and still count every

dz exp(!V%'(z,),)}, (5.'I) diagram just once. We do this by essentially the same

@(z,g) =F(z,),)+4 (z,X) =pz+ (1/2E) Q i lng/ (z)

+ n, (z,z,OR) —P(z ——,'~o)OR'. (5.g)

The function + has a useful variational property.
Suppose we consider the explicit dependence of + on

Pro. 10. Diagram
expansion of the func-
tion 5)1. The heavy
lines represent renor-
malized propagators
8.

co
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trick as before. Any bubble diagram in X)o may be
resolved uniquely into a tree of self-energy cycles. For
example, the diagram shown in Fig. 8 has the tree
structure shown in Fig. 9. Each shaded bubble in Fig. 9
contains no self-energy cycles. The relation (5.1) still
holds except that the 0 bonds are replaced by cycles.
That is,

ZI3 E~+—Eo= 1, (5.16)

where E& is the number of self-energy cycles and Ã&
is the number of cycles attached to each bubble summed
over all the bubbles.

The first two diagrams contributing to $0 shown in
Fig. 6 contain no propagators gk, thus we may separate
these out.

In analogy to Eq. (5.10), it turns out that 4 is sta-
tionary with respect to variations of the gz. To see
this, write the Dyson relation (5.15) in the form

X~=g~ '—gs ',
and substitute into (5.21). Then

(5.22)

thus

—Xg = 2'�(8X)i/8 gg);

84/8 gs ——0.

(5.24)

(5.25)

21V(8@/8 g~) = g~ '—gs '+2Ã(t) X),/r) g„) . (5.23)

From the diagram expansions of xk and x)~, we may
deduce that"

Sp = )ASK—pnDR4+4 i.
C ~ now contains three terms counting the diagrams A ~,
Ez, and Et.- times, respectively.

Each shaded bubble in Fig. 9 contains vrhat is com-
monly called a skeleton diagram, i.e., a diagram having
no self-energy cycles. Let us define the function X)i (5E, g)
to be the sum of the contributions of all. skeleton dia-
grams computed by replacing gt by gz in each line of
each diagram. A few of the leading terms of X)~ are
shown in Fig. 10. The renormalized propagators are
indicated by heavy lines. By reasoning similar to that
used before, it should be clear that X)~ counts each
diagram in C~ exactly S~ times.

The expression C~~ which counts each diagram A ~
times is obtained by considering a single bubble and
one of the self-energy cycles to which it belongs. This
gives

rl = )t—4Pn07P+8 St/801', (5.26)

where the function gq is to be held fixed during the
differentiation with respect to SR. The stationarity
property (5.10) and magnetization relation (5.14)
clearly are unmodified.

VI. FIRST-ORDER DIAGRAMS AND THE
MAGNETIZATION CURVE

%e propose now to compute S~ to first order in a
and then work through the formalism as outlined above.

The numerical contributions of the first two diagrams
in Fig. 10 are

m, = —(3n/.V)an' P g, (s)

-3P [(1/2PA~) 2 g.j'. (61)(5.18)C'i~= —(1/2-~) 2 X~gi ~

(5 17) It should be noted that, by virtue of (5.25), Fq. (5.9)
becomes

1 oo 1
C'to= —2 —2 [—g~X~1"=—

g n-i 2g
g ln[1+gtX~)

2 $T

Also, it is easy to see that the sum over all cycles,
All other diagrams are higher order in a. From Eq.
(5.26) we obtain an equation for the magnetization
function:

g =)t—4pnXp+ (8nt/e)OZ)

k'

+Xy= —2X(8$i/8 g~)C'i +1 4 1A+C lc ~ (5.20)

Q 1ngs+ P ln r„(5.19) =)t—4PnBRs —(6n5R/X) Q g~. (s) . (6.2)
2.V ~ 2A

co~its each d;agram ~c t,'mes» finally we use F The self-energy function is determined by Eq. (5.24):
(5.16) to write

We now combine Eqs. (5.8), (5.17), and (5.20) to
complete the renormalized form of the function:

1
e(s,) ) =ps+ g lng, (s)

2)"I| &

1
g Xsgg —P(s——',ep)9R'2' &

+XO)t—Pnoft'+ n, (m, g). (5.21)

"To be absolutely precise, we should subtract the quantity
(1/2%)Zgxggt from both (5.18) and (5.19); bitt these terms
cancel out in the next equation.

=+6nKP+ (3 /P nV) P gg... (6.3)

No« that the right-hand side of (6.3) is independent of
»n t»s first-order approximation. We shall call this
it-independent self-energy function simply X(s). To-
gether with the Dyson rela. tions (5.3) and (5.15) Fqs.
(6.2) and (6.3) determine self-consistently the renor-
malized quantities ~ and g~.

It is clear from what follows that the path of steepest
descent in the s plane does, in fact, pass across a single

' The factor 2 arises from symmetry under the transforma-
tion h -+ —k.
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saddle point z, on the physical sheet of the function 4'.
The stationarity equations (5.10) and (5.25) make the
saddle-point condition particularly simple:

~ ~

/ =P ( / ' ) 2 9&( ) P = " = 8 ( ~ ) curve for the modi6ed
k spherical model for P ap-

preciably larger than P, .
Equation (6.4) is formally exact to all orders in a be-
cause X)q contains no explicit z dependence.

Inserting the saddle-point condition (6.4) into Eq.
(6.3), we 6nd

PC(z,}= gI )

O t

/

\

The renormalized propagator now becomes

gi, (s.)= [s,—-,'eg+6ng-'.

It should be apparent that the quantity

6,—=s,—reee+6n

(6.5)

(6.6)

(6.7)

where we have used Eq. (2.15). The quantity P, is the
critical temperature for the unmodi6ed spherical model
as given in Eq. (2.20).
I"-' By inserting Eq. (6.9) into (6.4), we obtain a rela-
tion between the energy gap and the magnetization:

~.'"=(2P/3C) {~' L(P P.)—/P3 — (6 1o)

Then, if we use (6.9) and (6.10) in Eqs. (6.2) and (6.3),
we may eliminate 5, to And

X—(SP'/9C')DR(5R' —[(P—P,)/P))' —SnPBR'. (6.11)

This equation is to be compared with Eq. (2.22) for
the pure spherical model, which is identical to (6.11)
when o.=0.

At high temperatures, P&(p„ the perturbation cor-
rection in (6.11) makes little noticeable change in the
magnetization curve. Below the critical temperature,
however, (6.11) gives the magnetization curve shown in

Fig. 11.The crucial point is that this curve, in contrast
to Fig. 1(b), exhibits a section AB which presumably
indicates supersaturation. This is exactly what we hoped
would be the effect of the quartic perturbation accord-
ing to the discussion in Sec. III.

On the other hand, there are some very unpleasant
features of Eq. (6.11). In particular, its behavior near
the critical temperature is not physically sensible.
Curves for P=P, and a special value of P&P, are
shown in Fig. 12. The trouble is that the spontaneous
magnetization computed at point A in Fig. 11 does not
go to zero at P=P,. In fact, this solution of the equation
) =-0 simply disappears at a finite value of 5K at some

is playing the role of an energy gap in the spectrum of
states described by gi, (s,). Note:

gi (s,)= [6,+-', (ee —e~)j '—(6,+-,'yk') ', (6.8)

according to Eq. (2.14). We also may write

(1/2X) P gi, (s,)=P,—(3C/2)A, "'+, (6.9)

4,=4+5K'. (6.13)

FIG. 12. Magnetiza-
tion curves for the modi-
fied spherical model for
P=P, and a particular
value of P&P,.

h ~ (Z,) = (P&

A P =Pc

PVP.
' c

ol
(

' A very similar mathematical phenomenon occurs in the exact
solution of the two-dimensional Ising model. See the discussion
given by Berlin and Kac in the reference cited in footnote $,

temperature P &P,. Conventionally one looks for small
values of 5R near the critical temperature; that is, one
would approximate (6.11) by

X=(SP'/9C') [(P—P,)/Py5R, (6.12)

which is just the spherical model with a singularity in
the susceptibility at P =P,. But in our modified problem,
the region of (6.11) for OR 0 is clearly the part of the
curve where the saddle-point method is not valid.

The fact of the matter is that any simple truncation
of the perturbation expansion for X)~ loses its validity
sufFiciently close to the critical point. Quite generally,
the critical point seems to occur when the energy gap
6, vanishes. In the pure spherical model, the gap goes
to zero as we approach T, from above, and remains
zero below T.. With the quartic perturbation, the gap
opens up again below T„as we see immediately below. "
The limitation on the perturbation method follows from
the fact that it is eGectively d, which we are expanding
in powers of a. If the renormalized equations require 6,
to be small of order, say, n' near some P=P„ then we
know that Eq. (6.7) cannot adequately describe such
behavior.

At this point we may determine which parts of the
magnetization curves described by Eq. (6.11) represent
accurate solutions for the model system. We do this
simply by requiring that h„as determined by Eq.
(6.10), be no smaller than order n. Let us check first
that point A, the beginning of the supersaturation curve
in Fig. 11, satisfies this self-consistency criterion. For
X=O and DRACO, we solve Eq. (6.11) and insert it into
(6.10) to find
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The summation of renormalized diagrams proceeds now
just as before, except that we must replace each 5K by
nz and sum only skeleton diagrams with no k=0 lines.
Vfe sha, ll see that the quantity computed in this manner
is not quite the correct canonical partition function

In order to avoid confusion, let us call this function
l. Explicitly,

"i(m) =e "(2P) N" ds exp(XX(s,m)), (7.3)
47ri

FzG. 13. Logarithm of the canonical partition function for the
modi6ed spherical model. The dotted line denotes the function
(1/1Vl In &, computed according to Eqs. (7.3) and (7.4).

If P is greater than P, by a finite amount, independent
of o., then we know that the spontaneous magnetization,
say m„satisfies

m, =mP =0)=((P—P.)/P J"+O(n); (6.14)

thus 6, remains of order 0.. We conclude that, at suS-
ciently low temperatures, the supersaturation eGect
computed here is real. In contrast, we may compute
6, at point A in Fig. 12, i.e., at P=P, . From Eq. (6.11)
we have

which implies in (6.13) that 6, ~a'. A similar result
(A. ccn') perta, ins at point C in Fig. 12 where the tem-
perature is slightly higher than T,. These results give
us some assurance that the physically unreasonable
behavior near the critical point is a feature of the
mathematical approximations and not the model itself.

VII. TWO-PHASE REGION

In order to study the two-phase region, we must
work in the canonical rather than the grand canonical
ensemble. This turns out to be not quite so simple as
it may look at hrst sight; and we see that the formalism
developed so far requires some modification before it
may be used to describe two distinct phases in equi-
librium. The naive calculation is of some interest in
itself, however; so we proceed with that first.

Presumably, in order to compute the partition func-
tion at a 6xed total magnetization Ens, we need only
set X=0 and o.o,~=mX'~' in computing the generating
function @„in Eq. (4.7). That is:

I/2

(~) &
—xs[z-(eo/2)]m& g

kg0 PPg

n

)&exp —P ),g~g'(1,—I;)+no P P, , (7.1)

1
g'(1,—l;) =—Q

E I«S-~&~I

where
1

y(s, m) =Ps—P(s——,'co)eP+ Q lngg(s)
2iV I ~0

P(1—m')= (1/2$) g g„(s,).
%&0

(7.5)

This equation should be compared with Eq. (2.26) for
the unmodified spherical model. Note that (7.5) is
exact to all orders in a.

The trouble with Eq. (7.5) is that it implies an
anomaly in the function (1/1V) ln t(nz) at a value of nz

such that s, is the singular point of the right-hand side
of (7.5). But this singularity must be associated with
the vanishing of the energy gap in the propagator g~2o

',

and we know that the gap is finite of order e at m= m, .
It is easy to convince oneself that the anomaly in
(1/X) ln i(m) as determined by Eqs. (7.3) and (7.4)
occurs at the end of the supersaturation curve, more or
less as shown by the dotted line in Fig. 13.

This mysterious result —a calculation of the super-
saturation curve when we expected a Qat-topped func-
tion describing two phases in equilibrium —is easier to
understand physically than it is mathematically. Physi-
cally, it is clear that the system in the two-phase region
is unstable in a nonuniform external field. That is, an
infinitesimal nonuniform field will produce a macro-
scopic spatial variation of the magnetization; and we
should allow for this in the calculation. Before pursuing
this idea further, however, a few words should be said
about the mathematical pathology encountered here.
How does it happen that the perturbation expansion,
which, according to the discussion of the last section, is
convergent near m=nz„gives a qualitatively wrong
answer?

The first part of the explanation is that the calcula-
tion outlined above is really not canonical but grand

' A more detailed analysis of the renormalization equations
based on the first-order diagrams in $1 shows that the right-hand
side of (7.5) becomes singular when the -energy gap is of order e', :
i.e., at a place where the renormalization procedure is not self-
consistent.

+ Q Xggz —Pnm'+X)i(m, g) . (7.4)
2g I~o

x is stationary with respect to g&, therefore the saddle-
point equation is simply
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canonical. Comparing Eqs. (5.21) and (7.4), we can
write

(1/Ã) ln i(m) = (1/X) InZ(X) —Xm, (7.6)

where m is related to X by

mo
Al"

1 d lnZP)

dX
(7.7)

-e coS K

FIG. 14. A typical magnetization distribution for the
spherical model in the two-phase region.

The point is that, as soon as we try to compute the
canonical free energy by the present perturbation ex-
pansion, then, term by term in the expansion, this
function (1/1V) ln i is identical to the expansion of the
Legendre transform (7.6) of the grand-canonical po-
tential. Now the paradox is that, no matter what the
exact ln (m) looks like, the Legendre transform of
InZ(X) is always a convex function —in fact, the convex
envelope of ln (m). This was emphasized in a previous
paper by the author in collaboration with Bloch. ~

The function (1/X) ln i shown in Fig. 13, however,
clearly is not convex. This is related to a second con-
clusion of the previous paper, ~ namely, that the per-
turbation expansion does not define (1/X) ln i in the
two-phase region but may converge (asymptotically)
to an entirely different function, perhaps the free energy
of the metastable state. This is just what we seem to
6nd here.

Let us return now to the more physical point of view
for calculation of the canonical partition function. The
argument about instability in a nonuniform Q.eld is
best illustrated by a preliminary calculation with the
unmodified spherical model. Suppose we compute the
partition function in the presence of an external field
of the form

where

Xo(s,m, e) =Ps—P(s—-'2vo)m2

P ln(s ——',v2)+ . (7.11)
2/V ~~o 8P (s——.,' vx)

The average Inagnetization is

2 o/ ln o(m, e))
(/ii)=m+ ——

i
cosK I

/V ae i
=m+ cosK. I, (7.12)

2p (s.——,
'

vo)

where s, is the saddle point and we have let eK ~ eo as
X=L' —+~. The saddle-point equation is

Q2

p(1—m')= 2 —,+
2V vwo s,—22vo 8p(s, —2vo)2

2

=P.—(3C/2)(.—l o)'"+-
8P(.-!")'

—e g /ii COSK I,
~

K
~

=22r/I. .

If m' is greater than mo'=1 —p,/p (the spontaneous

(7.8)
magnetization), then s,——',vo remains finite as e ~ 0 and

The point to be demonstrated is that, if we let ~ vanish
at the end of the calculation —after we have taken the
limit N ~~—the magnetization does not revert to a
uniform distribution.

The partition function of interest is

lim =0.
'-2P (s,——',vo)-

(7.14)

lim'~ 2P(s, ——,'vo)

p
—1/2

2 1—sP——

=a L2 (mo2 —m2) g'/2. (7.15)

On the other hand, if m2(mo2, then s, —+ vo/2 as e —+ 0.
From the second line of (7.13) we have

Xexp( PHo+e P /ii cosK—I}. (7.9) If e —++0, the plus sign is appropriate; thus
1

lim (/i]) =m+ L2 (mo' —m') j'/' cosK 1. (7.16)
This may be evaluated by previously described tech-
niques. One 6nds

(m e) —e N/2(2p) —N/2—
4n-i

Xexp(lVXo (s,m, e)}, (7.10)

This function is illustrated in I ig. 14. Note that the
ground-sta, te calculation (3.7) is just a special case of
this result.

%e now wish to repeat this sort of calculation for the
modified spherical model. It is expected that there will

be some qualitative diGerences.



J. S. LANGER

Inserting the nonuniform external field (7.8) into the
generating function 8„, we find, instead of (7.1),

lg g2

d „(m)0) =exp —.)'P (s—0 pp) m +
8P(s—pi'x)

1/2

X g ~

— exp m Q ~p;+—p p; cosK I;
k/0 (PPk 2Ppx

1
+—Z ~@~'(I;-I;), (7»)

This has the eGect that the magnetization function,
constructed according to the obvious topological recipe
as illustrated in Fig. 5, must be allowed to carry all
wave vectors k which may be generated by various in-
sertions of the external Geld. Furthermore, the renor-
malized propagator g is no longer diagonal in the wave-
vector subscripts.

There is no real difhculty in formally repeating the
renormalization program for the diagrams generated by
(7.17). We denote the magnetization function by 9Rk
with the supplementary definition

'I

5Rk—o=m» (7.18)
where g' is again defined by (7.2); i.e., no k=O lines
may appear in the diagrams. The rules for the diagram
expansion again may be read from (7.17) by looking for
the various terms which can be generated by dif-
ferentiating (7.17) with respect to the ('s. The important
new feature is that the nonuniform external Geld
Lgenerated by (0/2Ppx)g, P; cosK I, in (7.17) I now
must be attached in all possible ways to the diagrams.

The Dyson relation analogous to (5.3) is

gk = 2P (s——',vk)92k. (7.19)

Now
Xk, k' (g )k, k' (s 2&k)bk, k' (7.20)

The renormalized propagator is a matrix gk, k, and the
corresponding self-energy matrix is deGned by

where

~(m &) = e ~"(2P) ~i' ds exp(Xg(z, m, c)),
4m-i

(7.21)

1 1
X(s,m, p) =Ps+ Q (Inb)k, k+ 2 Xk, k gk, k

—P Z I
s——~k'

2V k&0 2' k, k' k k 2

ky, k2, ka, k4
DRk, BRk,SRk,ORk,bk,~k,+k,+k, 0+$,(OR, B)+05Rx. (7.22)

and

gk ——p&k, x—4' p ~k,~k,~kpbk, ~k„k, k+~ni/&mtk) k&0 I

kl, kg, kg

The reader should have no difficulty in generalizing (7.22) from (7.4).
The renormalization equations are

(7.23)

Xk, k& — 23'
~ +gk, k'

(7.24)

Our problem is to find out under what conditions the
set of equations (7.23), (7.24), and (7.25) will have
nontrivial solutions in the limit e —+0. The trivial
solution is, of course,

Oak=0, k/0, (7.26)

which brings us back to Eq. (7.4) and the partition

These equations again imply stationarity of p with
respect to variations of 5Rk and gk, k.. It should be

emphasized, however, that (7.23) is not necessarily
valid for k=0, and that x is not necessarily stationary
with respect to variations of PRO=—m. Making use of
the stationarity property, the saddle-point equation
may be written

(1/2-~') 2 b. , k(s) =P(1-2 ~.'). (7.25)

function ™~.It should be apparent now that, in com-
puting i from Eqs. (7.3) and (7.4), we have constrained
the ensemble so that the average magnetization of the
system must be uniform. This is why we believe that,
for m'&m, 2, ™~describes the supersaturated state.

A new class of solutions of Eqs. (7.23)—(7.25) is
possible under the condition that m has a value such
that it is consistent with Eq. (7.23) for k=0. This new
class of solutions coincides with the trivial solution
(7.26) when m=m»» To see this, note that if in (7.23)
we set k=0, e=0, and VRk ——BRbk, p, we obtain exactly
Eq. (6.2) for X=O. This equation, in conjunction with
(7.24) and (7.25) which now are identical to (6.3) and
(6.4), is satisfied by OK= m,».

Under the assumption that (7.23) is satisfied for
k=0, it is most convenient to write the basic equations
in the I rather than k representation. Let us again choose
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For slow variations of fi& we replace 1 by the continuous
variable r and let

vk —+ vp+y7', (7.28)

as in Sec. III. Then Eqs. (7.23)—(7.25) become,
respectively,

g(r) =2PLs ——,'v, ——,,'~V']OR(r)

= e cosK r —4j9nORs(r) —6nOR(r) g(r, r); (7.29)

X(r, r') =X(r)6(r—r')

=5(r—r') L'6nORs (r)+ (3n/p) b (r,r)]; (7.30)

2.3'

1
d'rg(r, r) =P~ 1—— XP(r)dsr ~. (7.31)

E.

Note that (7.31) does not depend on the approxima-
tion (7.27).

If we divide Eq. (7.29) by P, set c=0, and identify
s=t', then this equation looks very much like Eq.
(3.10), which described the ground state of this system.
Indeed, in the limit P ~po, the equations are identica. l."
%e know from Appendix 8 that. there are solutions of
(7.29) in which OR(r) has constant magnitude almost
everywhere in the lattice. This assumption of constant
magnitude greatly simplifies the remaining analysis.
Note tha, t in Eq. (7.31) we can write

1
OR'(r)d'r= OR,'+0(1V "')

,$T
(7.32)

where OR, is the constant magnitude of OR(r) and the
correction 0(X 'is) comes from integrating over the
surfaces where OR(r) goes from —OR, to +OR, . By the
same sort of argument, the function g(r, r) will be
independent of r, except perhaps in the immediate
neighborhood of a surface.

It should be obvious that the relevant value of the
constant BR, is just nz„which is the rigorous solution
of the equations for e= 0 and completely uniform OR(r).
We may achieve any value of m'&m, ' by dividing the
system into a finite number of domains in which OR(r)
=Am, . The particular domain configuration will be
determined by energy minimization in the vanishing
nonuniform external field, for example, as is shown in
Fig. 15. It is essential that the number of domains is
independent of X and that the volume of each domain

for Sj the first-order diagrams, i.e., the first two shown
in Fig. 10. In the I representation, these are

n,=—(3n/X) Q OR'(1) g(1,1)

—3PnL(1/2j9X) Q g(1,1)]'. (7.27)

LIM (tu, (

Q

-e coS Kx

N S

I'IG. 15. Magnetization distribution for the modified spherical
model under conditions the same as those which produced the dis-
tribution shown in Fig. 14 for the pure spherical model.

where
=P, (3C/2)Z, I'—y, (7.33)

A, =s,—(vp/2)+6nm. s+ (3n/P) 5. (7.34)

The quantity that we wish to evaluate is the coeKcient
of the linear term in OR(r) in Eq. (7.29). This is just

s,—(vp/2)+ (3n/p) g= 6, 6ntis, s— (7..35)

Then, from Eq. (6.13), we have

s,—(vp/2)+ (3n/p) g = —2'.s.

Equation (7.29) for e=0 becomes

(7.36)

yV'OR 4—nORs 4—nmP OR=—0 (7.3. 7)

Referring to Appendix 8, we obtain, for the variation
of BR perpendicular to a plane surface,

OR(x) =m, tanhLm, (2n/y)'"x]. (7.38)

The temperature dependence is contained in the quan-
tity m, and seems quite reasonable; i.e., the surface
thickness d increases as the temperature rises:

d(W=-t:1/-. ()](~/2-)

VIII. DISCUSSION

(7.39)

becomes infinite as X goes to infinity. This process
leaves the saddle-point equation (7.31) unchanged to
order S "', and therefore leaves s, 6xed. Furthermore,
notice that 7t(s, res, e=0) in Eq. (7.22) depends only on
OR'(r). Therefore, in the two-phase region bounded by
m= %m„ the function (1/Ã) ln (m) remains constant
to order E "'. The complete function is shown in
I'"ig. 13.

The shape of the surface at finite temperature may
be computed if we make the approximation that g (r, r)
is constant everywhere, including the inside of the sur-
face region. Denote this constant simply by b and set
OR'(r) =m, ' in Eq. (7.30). Then we have

1 vs y 3n
—', g= p s,——+-k'+6nrri, s+—g i

2'V ~ 2 2 P

We have shown that the addition of a weak ani-"The quantity i which appears in Eq. (3.10) vanishes ex-
ponentiaiiy as fV'~~, an/ therefore goes not appear in (7.29) Sotl'OPy field to tile SPlleilCal model PrOduCeS a Vely
See Appendix B. complete and realistic mathematical picture of a first-
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order phase transition. The canonical free energy, and
correspondingly the isotherm for the equivalent lattice
gas, has a Qat section in the two-phase region. The
analytic continuation of the free energy into the two-
phase region seems to describe a metastable state.

The work. presented here is incomplete in at least
two respects, however. First, we have not been able
to study the model near the critical point because the
diagram renormalization technique develops internal
inconsistencies. Perhaps identification of the problem,
as in Sec. VI, will become the first step toward its
solution.

The second shortcoming has to do with the meta-
stable phase. The discussion presented here seems to
the author to be intuitively appealing but not really
rigorous. A more convincing argument might involve
the solution of a time-dependent problem, e.g. , a calcu-
lation of the motion of the system as one changes the
magnetic field in various ways. This would get us in-
volved, however, in the most difFicult sort of irreversible
statistical mechanics. It seems likely that progress can
be made short of such an ambitious project. For ex-
ample, should not the critical radius r, introduced in
Sec. III show up somewhere in the formalism? The
mathematical difhculties involved in discussing the
limit of metastability, however, are probably the same
as those which arise near the critical point. In any case,
it will be interesting to see if something better can be
done.

APPENDIX A

Analytic Proyerties of the Partition Function
for the Spherical Model

We wish to examine Ze P ), defined by Eqs. (2.10) and
(2.11), as a function of the complex variable X. In the
following analysis, we evaluate the integral over s in
(2.10) by the method of steepest descent. Accordingly,
a contour map of ReF(z, X) in the z plane is shown in
Fig. 16. The map is drawn here for a small, real value
of X and P)P, . In drawing this picture, we have taken
the limit 1V —+~ in (2.11) and used the approxima, tion
(2.15). This procedure is legitimate, even for studying
the dependence of Zo on large E, as long as the saddle
points are not close of order (1/1V) to the locus of points
z= t)),/2, i.e. , the branch cut in F. The algebra required
for drawing Figs. 1.6 and 17 is perfectly straightforward
and is not reproduced here.

Im z

Re z

FIG. 16. Contour map of Ret(z, x) for )I real and P
appreciably greater than P,.

Note that in Pig. 16 there are three saddle points on
the physical sheet, here labeled s~, 2'2, and 2'3. The path
of steepest descent C passes through 2'~, thus

(1/1V) lnZe(X) =—-,'——', ln2P+F(zr). (A1)

Let us now move X counterclockwise around a small
circle centered at the origin in the X plane and observe
the resulting variations in the s plane. The saddle

Re z

Fio. 1'/. Contour map of Ret(z, )) for )i pure imaginary.

points move roughly counterclockwise around the
branch point z=r/e/2. As X approaches the imaginary
axis, s2 disappears through the branch cut and s~ and
ss move to complex conjugate positions, as shown in
Fig. 17. Because both saddle points s~ and z3 now lie on
the same level line, the integration contour must pass
through both. In this case, we have

P ) 2z
Z.(' i

)t
i ) =—e-x/2(2p)-N/2 i, )

(p- h+/i/Ei ii)+eib+sr/E iii) j
& V[F"(z,)( &

P p
2z.

z»r(2P) r//2( —
)

e++/r'+&'» cosLX ImF(zi) —i)g y (A2)
E/V[F" (:,}[~

fl= zrargF" (zi). (A3)

The cosine factor implies that Zo oscillates rapidly along the imaginary axis in the X plane; thus the imaginary
axis is the locus of the Yang-Lee zeros.
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I ro. 18. The potential
(A4) V(v,) which appears in Eq.

(a3).

As X crosses the imaginary axis, the dominant saddle
point suddenly becomes 2'3. The limit function

1
lim —lnZp (X)
N—+ca g

is therefore nonanalytic across the imaginary axis.
Suppose that, instead of computing this function, we

consider (Ai) for ) to the right of the imaginary axis,
take the limit E—&~, and thee continue analytically
in P into the left-hand half-plane. Clearly, this analytic
continuation is obtained by using (A1) and following si
as we continue to move X. That is, we evaluate Zp() )
as if we had made a mistake and chosen the wrong
saddle point. When P has completed a half-circle and
returned to the real axis, s~ has moved around to the
position formerly occupied by s2, s3 is now the dominant
saddle point at the former position of s~, and a fourth
saddle point, previously out of sight on an unphysical
sheet, has replaced s3. In the notation of Fig. 1.6, the
function obtained by this analytic continuation is

——',——,
' ln2P+F (ss) . (A5)

APPENDIX 8
Solutions of the Nonlinear Magnetization

Equation (3.10)

Without loss of generality, we may assume that p,

varies in only one direction, say the x direction. Then
Eq. (3.10) becomes

7(d'iildx') = (2f rip)p+4rrlJ'+ —v (8&).
The solutions of this equation are easily found, if we
interpret them as describing the motion in time x of a
particle of mass y, position p, subject to the conserva-
tive force given by the right-hand side of (81). The
energy integral is

where
p7(rIIs/dx)'= —V4)+&

—V(I )= (t sicko)p'+~—y'+vp

(82)

(83)

The important point is that ss and F(ss) are complex.
Furthermore, had we moved P clockwise around the
circle, we should have obtained

—-', ——'
„. ln2P+F (ss) = —-', ——', ln2P+F*(ss) . (A6)

These results are correct no matter how small we choose

( X
~

after taking X~pp. Thus the function defined as
the analytic continuation of (A4) starting from the
right-hand half ) plane has a branch point at ) =0. If
we choose the branch cut to lie along the negative real
axis, then the discontinuity across the cut is 2i ImF (ss) .

A typical function V(ii) is shown in Fig. 18. The solu-
tions of interest are those in which the particle executes
bounded, periodic motion between p, ~ and p2.

We immediately may discard those solutions of (81)
for which a quadratic (harmonic) approximation to
(83) is valid. Such solutions would be identical to those
for the unmodi6ed spherical model as given by Kq.
(3.7). But the energy is minimized for such solutions by
choosing f ,p p —~—0as X—& ~, which is inconsistent
with neglecting rry4 in (83).

A more nearly correct solution to (81) may be found
by choosing v, 1', and E such that dV/dx=0 at pr
= —@2=1.That is,

(84)

Equation (82) becomes

The solution of (85) is

p(x) = Wtanh(x(2n/y)'~'j.

Here the two peaks of V(p) are symmetric. The particle
sits inde6nitely long on one peak, moves to the other
in a time of order (p/2er)'~', and then stays indefinitely
long on the second peak.

The actual solution that we want is one in which the
particle stays a long but 6nite time d x of order S in the
neighborhood of each peak. . Such a solution may be
constructed by making small changes in the parameters
(84) so that the particle never quite reaches the top of
either peak. . Also, by choosing v diferent from zero we
may mak. e the particle spend more time near one peak.
than the other, thus adjusting the value of m. The re-
quired changes in f, E, and v turn out to be extremely
small for large E; in fact they go to zero exponentially
in the limit X—& ~ . It follows that the parameters (84)
characterize exactly the in6nite volume solution of the
magnetization problem. Note that the Qnite tempera-
ture values of these parameters come out of the for-
malism automatically in the derivation of Eq. (7.37).


