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The condition that a given lattice model be stable against all small deformations is that all the eigenvalues
of all the dynamical matrices be positive. The stability of several lattices is studied by calculating the
dynamical matrices for a large number of wave vectors in the Brillouin zone. Central potential interactions
represented by Lennard-Jones and Rydberg forms are used, and the nearest-neighbor distance e is allowed
to vary throughout a range of &10/o of the value ep which minimizes the static lattice potential. The fcc and
hcp lattices are stable for all central potentials and all values of c studied; the bcc is stable for all values of e

for long-range central potentials; and the diamond is stable for a range of c&eo for all central potentials
studied. The sum of the static lattice-potential plus the harmonic zero-point energy is minimized as a
function of c, and it is found for all stable models except diamond that this procedure increases e from 6p

by about epe, where e=h/M't'D't'ep, with M=mass of iona and D=static lattice binding energy. For
diamond, however, there is no minimum in the range of e for which the lattice is stable, for physically reason-
able values of a. Born has suggested that if a lattice is stable for long waves, it is stable for short waves; a
counterexample has been found in the present study for the diamond lattice. A comprehensive table of
accurate lattice sums is given in an Appendix.

I. INTRODUCTION

'HE problem of the stability of crystal lattices has
been extensively investigated by Born and other

workers. ' ' In these studies, the lattice was considered
to undergo a homogeneous deformation, and the elastic-
energy density was expanded in a series up to second
order in the deformation parameters. The equilibrium
condition was that the elastic energy density be sta-
tionary with respect to the deformation parameters, and
the stability condition was that the elastic-energy
density, evaluated at equilibrium, be a positive definite
quadratic form.

The present study of lattice stability is based on the
requirement that if the lattice is to be stable against
all small deformations, all normal-mode frequencies
must be real. Born and Huang4 have pointed out that
the stability against homogeneous deformations insures
only that the long-wavelength modes have real fre-
quencies. It has been shown that the stability against
all deformations follows from the stability against
homogeneous deformations for a linear chain model'
and also for a fcc model with nearest-neighbor inter-
actions. ' In the present work the dynamical matrices
of the harmonic lattice-dynamics problem were calcu-
lated for a large number of points in the Brillouin zone,
for fcc, bcc, dia (diamond), and hcp lattices for models
based on two-body central forces, and these matrices
were checked for positive eigenvalues.
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It has been shown7 that the condition that the elastic-
energy density be stationary with respect to the de-
formation parameters is equivalent to the Born and
Huang infinite-lattice condition that the stresses must
vanish in the equilibrium configuration. In either form,
this equilibrium condition is needlessly restrictive; in-
deed, if the lattice structure and the interatomic poten-
tials are specified, the application of this condition fixes
the value of the unit cell volume. By explicitly including
externally applied forces in the lattice Hamiltoni3n, it
is possible to extend lattice dynamics, and also the
method of homogeneous deformation, to the case of a
crystal in a state of arbitrary initial elastic strain. 7 In
this case the only equilibrium condition is that the net
force on each ion must vanish in the equilibrium con-
figuration. For the lattice models considered in the
present paper, this equilibrium condition is satisfied by
symmetry (with the neglect of surface eRects), and
hence is satisfied for any value of the unit cell volume.
In contrast to the previous studies, in which the unit
cell volume was considered fixed, ' ' the present work
investigates the stability over a wide range of unit
cell volume.

II. METHOD OF CALCULATION

Dynamical Matrices

The potential energy due to the interactions among
the ions in a large finite crystal may be expanded as

U (r nj+nn j)= f/(r nj)+Z n, p Xn pl n p

+sinn', pp' +np, p' np ttn' tt+np' ' '
~ (2 1)

Here and in the following the notation is the same as
that used previously. ' ' The symbol e labels a unit cell,

~ D. C. Wallace, Rev. Mod. Phys. (to be published).' D. C. Wallace, Phys. Rev. 131, 2046 (1963).Two typesetting
errors have occurred in this paper. In (3.15) the inequality for p2
should read 0&p&&-;P. Equation (4.9) should read

n=f2nPD/3e (a—P) jL(n —1)S ~Sn+s —(P—1)Se 'Se+pg.
' D. C. Wallace, Phys. Rev. 133, A133 (1964).
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where
Mp(&kv) 'gkv 1 (2 5)

ak, pp =Q„A„p, p expL —ik (r„,—r J)j, (2.6)

QpMPk, p,v k, p. =M.8„. (2.7)

Equation (2.7) represents the orthonormalization of the
components e~,„of the eigenvectors of a~. The condi-
tion for lattice stability is

gk,)0, all (k,s) . (2 8)

The static lattice potential U(r„;) is taken to be X
times the potential of one unit cell in the interior due
to interaction among the ions. The eGect of isotropic
surface forces is taken into account by allowing the unit

j labels an ion in a unit cell, i labels a Cartesian co-
ordinate, i stands for a pair of indices (Nj), and p
stands for a pair of indices (j,i,) T.here are J' ions per
unit cell, M; is the mass of an ion of type j, and M, is
the total mass of ions in one unit cell. The equilibrium
position of ion (I,j) is r„;=r„+r;, and the displacement
of ion (ri,j) from its equilibrium position is u„;.

The criterion for a given lattice model to be stable
against all small deformations is that all of the normal-
mode frequencies are real. For this study it is not
necessary to take explicit account of the anharmonic
terms in the potential energy, and the harmonic Hamil-
tonian may be used. In the presence of externally
applied forces f„; Leach f„; is applied to ion (I,j)), the
harmonic Hamiltonian is'

&=U(ms)+o Evt„p Mj(mnp) +Evt p(Xvvp fpp)+np

+ o Zen. ', pp' Amp, vv'p'Nppgp'p' y ( )

where u„p is the time derivative of u„p. The equilibrium
condition is

X„, f„,=0, —all (e,p) . (2.3)

The present work is restricted to the case of isotropic
surface forces; hence the f; are applied only to the
ions at the surface of the crystal. In the interior of the
crystal, i.e., farther from the surface than the range of
the interatomic forces, the lattice is presumed to be
perfectly periodic with constant unit cell volume. The
normal coordinates of (2.2) are found, with an error
corresponding to the neglect of surface effects, by apply-
ing the cyclic boundary condition to macrocrystals in
the interior of the large 6nite crystal. ~ Since the f„,
vanish in the interior, the equilibrium condition (2.3)
becomes

X„,=O, all (ri,p) in the interior. (2.4)

The normal coordinates are enumerated by the wave
vectors k and the polarization index s. If the macro-
crystals contain X unit cells, there are X values of k
distributed uniformly over the erst Brillouin zone, and
there are 3J values of s associated with each k. The
circular frequencies co~, of the normal modes are related
to the eigenvalues gk, of the dynamical matrices (ak
matrices) by

cell volume to vary. U(r„,) and the coef6cients X„„
A p p are functions of the unit cell volume. The
volume dependence of A„p,„.p. arises implicitly from
anharmonic terms in the potential energy; the allow-
ance of this volume dependence, and the corresponding
volume dependence of the normal-mode frequencies,
without explicit inclusion of higher order terms in
the potential energy, represents the quasiharmonic
approximation.

It is convenient to take the nearest-neighbor distance
e as the variable which represents the unit cell volume.
Define 0- as

0= 6—Ep 60, (2.9)

(dU/do)o=0 by de6nition; (2.11)

ak(o) = (ak)o+0 (dak/do)o+ (2.12)

Note that in differentiating the a~ matrices with
respect to o (or a), the exponential factor can be
disregarded since k r„; is independent of the nearest-
neighbor distance.

Central Potentia1 Models

Calculations were carried out for a model in which all
pairs of ions in the crystal interact through the central
potential P(r'), where r is the distance between the ions.
For this model 8

A viv'i' ,2L4vv' ~ii'

+2/„„"(r„; r„;)(r„; r„; )j, —(2.13)—
where p„„.' is the 6rst derivative of f(r'), with respect
to r', evaluated at r'= (r„—r„)', and p„„"is the second
derivative. In addition the coeKcients X„,; of (2.1) are
given by

X„„=2 P„.' y„„'(r„;—r„.;), (2.14)

where here and in the following the prime on g' means
to omit the term v= v'. The X„,; vanish by symmetry,
and hence vanish for any unit cell volume, for lattices
for which the present calculations were carried out.
Thus for these lattices with central forces, the equi-
librium condition (2.4) is satisfied identically for any
unit cell volume.

Two forms for the central potentials were used.
These forms lead to the following equations, where the
expressions for U(o) are restricted to one or two ions
per unit cell.

(i) Lennard-Jones (abbreviated LJ):
(')=(A-/ )—(&/'),

where here, and in the following, a subscript 0 means
that a quantity is to be evaluated at the value of e for
which the static lattice potential U(r„;) is a minimum.
The following expansions serve as the basis for the
present work.

U(rp;) = U(o) = Uo+-,'o'(d'U/do') o+ (2.10)
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where A, Be, n, P are positive constants and n) P,

U(.)= ;N-J((A.S./:) —(II,S,/. e)$,
'=-'P&e( ) "+"—A ( ) ' "j

4-"=-'t n(n+2)A-(»-) ""
(2 15)—P(P+2)&p( -) '""3,

(d U/da) p= 0 gives Be= (nS /PSe)A pp e

(d'U/do')p ,'N——Jn—(n P)A—S ep

(ii) Rydberg (abbreviated R):

0 (r') = —dD+v(» —p)7 expL —v(» —p)j,
where d, y, p are positive constants,

U(pp) = ', NJd—e»—$(1 yp)R—p~+yppRi~],

y„„.'= pdy'e»$1 p(r„„)—'j exp( —7»„„.),
4''e $y—(r„„) ' yp(r„„) '—

—p(r-) '3 exp( —~»-), (2 16)

(dU/do)p= 0 gives p/ep R,„/R„——,

other k vectors in the zone are degenerate with the
eigenvalues associated with the k vectors lying in this
portion. The choice of the k vectors for each of the four
lattice types is described in Appendix I. The method
of calculation and the errors have been discussed
previously for the ai, matrices at cT=O the same pro-
cedure was used for the derivative matrices. Then each
a~(o-) was calculated according to (2.12), for o values in
the range —0.1&o-&0.1. These matrices were di-
agonalized by the Jacobi method; for the lattices with
two ions per unit cell the ai, (o) were first transformed to
real symmetric form. A lattice was considered stable
for a particular o- value if, for that o-, every eigenvalue
of the dynamical matrix for each chosen k was positive.
The point k=O was not included in the calculations.
The numerical work was carried out with the aid of a
CD C—1604 digital computer.

The harmonic zero-point energy was computed, in
reduced form, for the case where the masses of all the
ions are the same, and for each o. value which gave a
stable lattice. When all M;=Sf, the eigenvectors are
normalized to unity, and

(.")L(1+~p)R.,-~ ~,j
(d'U/do') p

——

(1—vp)Ro. +v &

gi, v
——M(prj, v)', all M, =M.

It is convenient to define

(2.22)

The following symbols are used here:

r„„= r„—r„, r„= r„,
S =Z. (&/». )

R ~= P„'(r„/e) exp[—pep(r„/p) j.

(2.17)

(2.18)

(2.19)

Eil (JN) ' P——p. -', Apii„,

EH=EiI/D=, '~(JN) ' Qi, , (rli, .)'tp,

K= 5/Mi/2D1/2p

(2.23)

(2.24)

(2.25)

F~ U+NJE~,—.—Fii F~/NJD. —— (2.26)

The lattice sums S,R ~ are independent of e. The de-
fining equations for the lattice vectors are given in
Appendix I for fcc, bcc, dia, and hcp lattices. The re-
quired lattice sums were calculated in the present work
and are tabulated in Appendix II.

All calculations were carried out in terms of reduced
quantities, denoted by bars over the corresponding
symbols.

»vv' rvv'/& v

U= U/NJD,

A„,, „;= (ep/D)A„;, „;.,
n'= ( o'/D)n ',

where D is defined by

Uo= —XJD.

(2.20)

(2.21)

The explicit e dependence of p„„',g„„"is demonstrated
by replacing r,„by cr„„,since r„„.is independent of e.

The reduced dynamical matrices and their first two
or three derivatives with respect to fT, all evaluated at
o-=O, were computed numerically for k vectors in a
small portion of the first zone. This portion of the zone
(sometimes called the "irreducible" portion) is chosen
in such a way that the eigenvalues associated with all

FII is the Helmholtz free energy at T=O, neglecting
explicit anharmonic contributions. Thus in the quasi-
harmonic approximation, the correct value of e at zero
temperature and pressure is that which minimizes

FH(p). In view of the definition of U, (2.20), it is seen
that ~ is a dimensionless parameter which relates the
importance of the harmonic zero-point energy to the
static lattice energy. In calculating (EII/~), the sum
was carried out over the chosen k vectors, with each
contribution being multiplied by a weighting factor.
The weighting factors were chosen so that each point
within the zone would be counted once, and each point
on the surface one-half, if a sum were carried out over
all the equivalent sets of k vectors. The use of such
weighting factors greatly improves the accuracy of the
sums. '

III. RESULTS

Stability

The results of the stability study are summarized in
Table I. The Lennard-Jones potential was studied for
all four lattices for (n,P) = (12,10), (12,8), (12,6), (12,4),
(10,8), (10,6), (8,6), (6,4). The Rydberg potential was

studied for bcc as a function of o- and for dia at o-=O.
For these lattices the dimensionless parameter (ypp/V3)
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Tmr. z I. Stability range for each model. The study was carried
out for —0.1&o-&0.1. Column 4 lists the order to which the series
(2.12) was computed.

I 00.

Lat-
tice Potential

Order
g incre- of
ment (2.12) Stability range

80

fcc LJ all (,P)
hcp LJ all (~,P)

b LJ all (0-',p)
except (6,4)

bcc LJ (6,4)
bcc R, (ypp/V3) =5
bcc R, (ypp/V3) =4
bcc R, (ye0iv3) =3, 2, 1
dia LJ (12,10)
dia LJ (12,8)
dia LJ (12,6)
dia LJ (12,4)
dia LJ (10,8)
dia LJ (10,6)
dia LJ (8,6)
dia LJ (6,4)

0.01
0.02

0.01

0,01
0.01
0.01
0.01
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002

g 2

g 2

g 3

g 2

g 2

g 2

g 3

g 3

g 3

g
g 3

g 3

g 3

g 3

—0.1 to 0.1—0.1 to 0.1
none

—0.1 to 0.1
none—0.1 to —0.06—0.1 to 0.1

0.002 to 0.032
0.004 to 0.036
0.008 to 0.040
0.012 to 0.048
0.006 to 0.040
0.010 to 0.046
0.014 to 0.052
0.032 to 0.080

FIG. 2. Variation
of jt,„with o for hcp,
LJ(6,4) potential, for
k at the point 3f on
the Brillouin zone
surface.

60

20

0 I

-0.08 -0.04 0 0.04 008

OOO-1

fcc lattice

LJ 02,6) potential

FIG. 1. Variation
of gk, with o for fcc,
LJ(12,6) potential,
for k at the point X
on the Brillouin zone
surface. The lower
branch is doubly de-
generate.

300

200

IOO

was taken to have the values 5, 4, 3, 2, 1; this range
covers the values which have been used previously to
discuss the equation of state for several fcc and bcc
metals. ' At o.=0, the dia lattice is not stable for any
of the Rydberg potentials.

positive for a certain range of positive o values, as
listed in Table I.

For a given, (k,s), tis, is expected to decrease in mag-
nitude as o- increases, since the forces of interaction
among the ions generally decrease as o- increases. From
a study of the p&, as functions of o- for many representa-
tive k vectors, it appears that all it)q, i

decrease with
increasing o- for all models which are either stable
throughout the range —0.1&o-& 0.1, or unstable
throughout this range. The variation of 7]I,- with, o ls
illustrated by several representative graphs, Figs. 1—6.
In these graphs the solid lines show the eigenvalues as
calculated with the aid of (2.12), and the dashed lines
show the limits of error. The dashed hne is omitted
when the error is too small to be represented on the
graph. The errors are due almost entirely to cutting off
the series (2.12) after three or four terms; the number
of terms taken is the same as that listed in Table I
for each model.

0 I

-0.08 -0.04 0 0.04 0.08
400

For bcc, the central force models always give one
branch, for k along the L0117 and nearby directions, for
which the eigenvalues are very small in magnitude.
When the lattice is unstable the negative eigenvalues
lie in this region; in fact for every case in which the
bcc lattice is unstable, the matrix for every k along
the L0117direction has exactly one negative eigenvalue.

The situation is entirely different for the dia lattice.
When this lattice is unstable, according to the present
potential models, most of the matrices in the Brillouin
zone have two negative eigenvalues. For the Lennard-
Jones potentials, every matrix in the Brillouin zone has
at least one, and usually two, negative eigenvalues for—0.1&o.&0. But every eigenvalue of every matrix is

Fxo. 3. Variation
of jk, with o. for bcc,
LJ(12,6) potential,
for k at the point E
on the Brillouin zone
surface. The lower
branch is negative
for all o.

500

200

IOO

-40
-0.08 -0.04

I

0 0.0 4 0.08
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|00

50

0-

-0.08 -0.04 0 0.04 0.0 8

j.' IG. 4. Variation
of ql„with 0. for bcc,
I.J (6,4) potential, for
k at the point E on
the 8rillouin zone
surface. The lower
branch is positive
for all 0..

F~(o) is then constructed to order o', and the mini-
mization gives

(dE~/do)o+'o[(d'2Uldo2) o+ (d Ea/do)og '=0 ~ (3 1)

Equation (3.1) is correct to order o., and the solution
will be denoted by fT&. It is seen that 0-& for a given lattice
and potential model depends on ~. The values of a have
been calculated for most elements in the solid state;
some representative values are listed in Table III. For
these calculations D has been taken to be the measured
binding energy per atom, evaluated at T=O where
possible, and tp the observed nearest-neighbor distance
at room temperature. For most elements, (10')« lies in
the range 0.5 to 5.0.

Since sc is small, it is useful to carry out further ex-
pansions in powers of «. Thus, with the aid of (3.1),

Minimization of EII

o'i= Ci«+op«+ ' ' '
&

ci= [« '(dE—~/do) 0j/(d~U/do') 0, etc. ; (3.2)

In practically all cases of physical interest, the value
of 0- for which EII is a minimum is quite small. It is
therefore convenient to express F~ as a Maclaurin
series in 0-. The coeKcients of the appropriate series for
(EIr/«), to order o', were determined from the numerical
calculations of (E~/«) as a function of o, and are listed
in. Table II for models which are stable at cT=O. The
coeKcients are not listed for hcp, since for each Lennard-
Jones potential these quantities are the same as for fcc
within the following limits: for a 'EIIp within 3 parts
in 104 [see Ref. 9, Eq. (4.13)j; for « '(dEIi/do)o within
2 parts in 10'; and for « '(d'Eql/do') o within 2 parts in
10'. The error in « 'EIr(o) as calculated from the data
in Table II is less than 0.2% for 1o

~

&0.02. Figure 7

shows (Eir/«) for the Lennard-Jones (6,4) potential,
throughout the range of fT values for which each lattice
is stable.

The corresponding series for U(o) is obtained from
(2.10) with the aid of (2.15) and (2.16). The series for

200

F~(oi) = —1+can«+ c4«'+

c3=~ 'EIIp, etc. (3.3)

150

100

50

I'IG. 6. Variation
of qg, with o for dia,
LJ(12,6) potential,
for k at the point L
on the Brillouin zone
surface. The two
branches marked (2)
are each doubly de-
generate.

-50
IJ-0.0 2 0

The coeKcients c~, . -, are determined in a straight-

150

100

50

-50
-0,02 0 0.0 4

FIG. 5. Variation
of qg, with 0. for dia,
LJ(12,6) potential,
for k at the point X
on the Brillouin zone
surface. Each branch
is doubly degenerate.

forward way from preceding equations. For the central
force models which are stable at o.=0, the c~ are all in
the range 1.15~0.25; these values are listed in Table II.
For «=5(10 '), the contribution of terms of order «'

and higher in (3.2) is &5% for the models listed in
Table II. In (3.3) the first term is the reduced static-
lattice potential energy at 0-=0, the second term is the
reduced harmonic zero-point energy at 0-=0, and the
remaining terms are corrections due to a-~/0. For
«=5(10 '), the contribution of terms of order «' and
higher in (3.3) is &0.2% for the models listed in Table
II. For «&5(10 '), the contributions of the higher
order terms in (3.2) and (3.3) are correspondingly
smaller.

The variation of (Elr/«) with o for dia with the



STAB I LITY OF CRYSTAL LATTI CES

TAnLE II. Coetiicients of the series for (Err/e) for small 0, and values of c&, Eq. (3.2). Each value is accurate to
1 part in 10"when m+1 significant figures are given.

Lattice

fCC

fCC

fcc
fcc
fcc
fcc
fcc
fcc
bcc
bcc
bcc
bcc

Potential

I.J (12,10)
LJ (12,8)
LJ (12,6)
LJ (12,4)
LJ (10,8)
LJ (10,6)
LJ (8,6)
LJ (6,4)
LJ (6,4)
R, (pep/V3) =3
R, (geo/V3) =2
R, (pep/v3) =1

13.12
11.82
10.38
8.698

10.87
9.567
8.691
6.597
6.332
6.794
5.269
3.681

a '(dZrr/do) p

—146.7—119.4—93.15—67.10—98.60—75.90—59.70—30.44—29.24—27.62—12.71—4.297

~ '(d'Err/du') p

12.2 (10')
9.57 (1(F)
7.20 (10r)
5.26(10')
7.23 (10')
5.27 (10')
3.74(10')
1.58 (1P)
1.52 (19')
0./82 (10')
0.249 (102)
0.0560 (10')

1.22
1.24
1.29
1.40
1.23
1.27
1.24
1.27
1.22
0.962
0.960
1.05

Lennard-Jones (6,4) potential, Fig. 7, is representative
of the behavior for the other Lenn. ard-Jones potentials
for dia. The minimization of ErI(o) for dia was studied
graphically, and it was found that for a((10 ') there
is no minimum in Err(o) in the range of o for which the
lattice is stable for any of the Lennard-Jones potentials.

TABz,E III. I(: values for some elements.

Element Structure (10')s Element Structure

Ne
Ar
Kr
Xe
Ll
Na
K
Rb
Cs
C

fcc
fcc
fcc
fCC

bcc
bcc
bcc
bcc
bcc
dla

33.5
9.62
5.25
3.22
6.42
3.41
2.31
1.50
1.17
4.45

Si
Ge
CU
Ag
Au
Pb
Th
Be
Mg
Gd

dla
dla
fCC
fcc
fcc
fcc
fCC

hcp
hcp
hcp

(10')~

2.67
1.68
1.69
1.25
0.846
0.904
0.426
5.24
3.28
0.737

IO

Application to Inert-Gas Crystals

In a previous paper' the contributions to the static-
lattice potential energy, the harmonic zero-point energy,

and the anharmonic zero-point energy, all at ~=0, were
calculated for the inert gas crystals in the fcc and hcp
lattices. These calculations were based on a Lennard-
Jones (12,6) potential, with the constants A, Bs of
(2.15) being determined from the data in Appendix II
of the article by Dobbs and Jones."For the specified
potential (Table V of Ref. 9) it is appropriate to calcu-
late a from the calculated values of D and eo, rather
than from the measured, values. This has been done for
the fcc lattice, and the results are listed in Table IV.

Tmz, E IV. Application to the inert-gas crystals in the fcc
lattice. ro(1+oq) is in L, and all energy contributions are in
cal/mole.

Ele-
ment (10')rc (10')0| eo(1+a|) Err(o =0) Frr(ui) Io

Ne 29.5 32.5&0.5 3.10 —423 —449 426
Ar 9.14 12.0&0.5 3.75 —1898 —1908 1900
Kr 5.02 6.2&0.3 4.03 —2693 —2697 2694
Xe 3.11 3.9~0.2 4.46 —3724 —3726 3724

Also for fcc, Pzz(o) has been minimized graphically
since It: is large for the inert gas crystals; the results are
listed in Table IV. In addition, Table IV lists the total
calculated binding energy Jo of the crystals at T=O:

EH
K

-O, IO -0.05
I

O.O5 O. IO

Fxo. 7. Variation
of (Err/a) with 0 for
fcc, hcp, bcc, and dia
lattices for LJ(6,4)
potential. The fcc
and hcp are indis-
tinguishable on the
graph /line (a)j.

where Ii&0, the anharmonic zero-point energy, is taken
from Table V of Ref. 9.

It is seen that the nearest-neighbor distance es(1+a &),

as determined from minimizing F~, is in somewhat
better agreement vrith the observed value than is eo

(compare Table V, Ref. 9). In addition it is seen that
the contributions to the total energy at T=O arising
from anharmonicity (Fze) and arising from o &HO

LF&(o&)—F~(0)j are of opposite sign and nearly
cancel one another. Further calculations are in progress
to test the generality of this ending.

A comparison of the fcc and hcp lattices for the

"E.R. Dobbs and G. O. Jones, Rept. Progr. Phys. 20, 516
(1957).
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LJ (12,6) potential shows that the minimization of
F&(o) increases the binding energy of hcp more than
fcc by 5(10 ')% of the total binding energy for Ne,
5 (10 ')%for Ar, 2 (10 ') %for Kr, and 5 (10 ') % for Xe.

IV. DISCUSSION

The present lattice dynamics calculations have been
carried out for varying values of the nearest-neighbor
distance e by means of Maclaurin series in 0-. For all 0-

values, the equilibrium condition is satisfied for central
potential models for the lattices considered here. At
0.=0, the static lattice potential is stationary with re-
spect to variation of 0. It can be shown that this implies
that the static lattice potential is stationary with re-
spect to arbitrary .homogeneous deformation of the
lattice at o.=0, for fcc, bcc, and dia with arbitrary
central potentials. This is also true for hcp with arbi-
trary central potentials when only first and second
neighbors are taken into account, but not when further
neighbors are included. The second equilibrium condi-
tion of Born and Huang, 4 namely that the stresses must
vanish in the equilibrium configuration, is therefore
satisfied only at 0-= 0 for fcc, bcc, and dia for the models
of the present paper. This circumstance causes no

difhculty; when the second condition is not satisfied
it simply means that the lattice model approximates a
crystal which has surface forces applied by external
means.

An interesting result of the present stability study is
that any model which is stable at 0.=0 is also stable
throughout the range —0.1&a &0.1. The close packed
lattices are stable for all potential models studied,
throughout the o- range studied. The bcc lattice is
generally unstable for short-range central forces, but
stable throughout the 0- range studied for long-range
central forces. In spite of the fact that bcc and dia are
both stable for certain central potentials arid certain 0-

values, the central potential models are quite inappro-
priate for the quantitative representation of a real
crystal with either of these structures. For bcc, one
branch of eigenvalues for k along the (011] direction
is very small for all the models (see Figs. 3, 4), while
for dia there is no minimum in Fzz(o), for any physically
reasonable value of s for any of the Lennard-Jones
potentials studied here, in the 0 range for which the
lattice is stable.

For all stable models except dia, the eigenvalues gi„
were found to decrease with increasing 0- as expected.
Thus the Gruneisen parameters p&„defined by

y~, ———d ln(og, /d 1nV,

are in general positive and the thermal expansion for
such a model is in general positive. Aside from questions
of the validity of the model, it is interesting to note
that for dia, for all Lennard-Jones potentials studied
and in the stable 0. range, every dynamical matrix has
at least one and usually two acoustic eigenvalues which

increase with increasing o (see Figs. 5, 6). Thus it is
quite likely that the thermal expansion for dia for the
central potential models wou]d be negative, especially
at low temperatures. Negative thermal expansion co-
eScients have been observed for materials crystallizing
in the dia structure. "

Born' has suggested that if a lattice is stable for long
waves, it is also stable for short waves. For the models
of the present paper, this is true for fcc, bcc, and hcp,
but not for dia. For the Lennard-Jones (12,6) potential
for dia, there is a narrow range of 0- values just below
the stable 0- range for which all long wavelength normal
modes have real frequencies while some of the short
wavelength acoustic modes have imaginary frequencies.
The same result appears to hold for the other potentials
studied for dia. This conclusion is based on the behavior
for a limited number of k vectors in the Brillouin zone.
All possible long wavelength modes can be included by
constructing the elastic energy density with the aid of
the lattice sums of Appendix II; this has not been done
in the present work.

With regard to the minimization of FII(o.), it is
found that for all models stable at o-=0 and for any
~&5 (10 '), o i lies in the range (1.15+0.25)z, including
all errors. It is therefore suggested that 0-~=z is a good
approximation for the relative change in the nearest-
neighbor distance, at zero temperature and pressure,
due to the effect of harmonic zero-point motion, for
most physically reasonable models.

APPENDIX I' LATTICE VECTORS AND
WAVE VECTORS

The lattice sites are defined in terms of unit vectors
and the coeKcients ei, es, es, which are integers (in-
cluding zero). The k vectors are similarly defined in
terms of unit vectors and the coeKcients pi, ps, ps,
which are integers. The restrictions on these two sets
of integers are given here. x, y, and z are unit Cartesian
vectors and P is a positive number.

fcc Lattice

r„= (e/v2) (N,x+esy+msz),

ei+es+rss even int——eger (including zero),

k,= (K2~/eF) (p,x+p,y+p, z).

For k„ lying in (1/48) of the first zone,

0(ps&F,
0&Ps&Ps', Ps'=minimum of (Ps, s&—Ps),

0&pi&pi', pi'=minimum of (ps $F ps p2) ~

The final calculations were done for P= 16, correspond-
ing to 504 points in (1/48) of the zone, or to 16 431 dis-
tinct points in the entire zone, not counting k„=0.

"D.F. Gibbons, Phys. Rev. 112, 136 (1938).
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TABLE V. Lattice sums of the power type. When n11 significant 6gures are given, the error is no more than 1 part in 10".

fcc lattice
S S,

4.79210
3.089418
2.563592
2.326452
2.200869
2.128277
2.083982
2.055958
2,037770
2.025742
2.017677
2.012209
2.008472
2.005900
2,004121
2.002885
2.002023
2.000061
2

4 25.338304
5 16.9675185
6 14.4539211
7 13.3593877
8 12.8019372
9 12.4925467

10 12.3112457
11 12.2009204
12 12.1318802
13 12.0877263
14 12.0589920
15 12.0400241
16 12.0273549
17 12.0188094
18 12.0129983
19 12.0090196
20 12.0062800
30 12.0001848

12

22.638722
14.7585093
12.2536679
11.0542435
10.3551979
9.89458966
9.56440061
9.31326254
9.11418327
8.95180732
8.81677023
8.70298456
8.60625405
8.52353125
8.45250317
8.39135079
8.33860401
8.08018575
8

4.22881
2.605810
2.061402
1.782002
1.606707
1.483018
1.389101
1.314379
1.253128
1.201947
1.158651
1.121731
1.090085
1.062866
1.039402
1.019145
1.001639
0.9156166
(8/~)

bcc lattice
S Sasxaa

10.232845
6.31276034
5.11677158
4.59447603
4.33191374
4.19037213
4.11102360
4.06546760
4.03890471
4.02325119
4.01395609
4.00840524
4.00507587
4.00307204
4.00186265
4.00113108
4.00068771
4.00000494

dia lattice
S 1/z

0.720095
0.7414699
0.7539560
0.7610725
0.7650495
0.7672383
0.7684288
0.7690702
0,7694134
0.7695960
0.7696927
0.7697438
0.7697706
0.7697848
0.7697922
0.7697961
0.7697981
0.7698004
(4/K3)

1.66902
0.8903750
0.6559089
0.5551497
0.5053371
0,4789120
0.4643147
0.4560443
0.4512781
0.4484981
0.4468619
0.4458924
0.4453147
0.4449690
0.4447614
0.4446363
0.4445608
0 nnaa453
(4/9)

hcp lattice
S Sazz Sa~~y h azzzz

25,339080 8.44875 0.175124 5.25765
16.9684363 5.658396 0.199622 3.601729
14.4548973 4.820331 0.2200549 3.113532
13.3603468 4.455195 0.2365781 2.905902
12.8028219 4.269046 0.2496107 2.803005
12.4933217 4.165586 0.2596846 2.747578
12.3118962 4.104851 0.2673447 2.716107
12.2014471 4.067817 0.2730921 2.697565
12.1322938 4.044590 0.2773576 2.686333
12.0880426 4.029704 0.2804952 2.679375
12.0592283 4.019996 0.2827864 2.674985
12.0401971 4.013577 0.2844497 2.672171
12.0274794 4.009283 0.2856513 2.670344
12.0188977 4.006383 0.2865159 2.669143
12.0130600 4.004410 0.2871361 2.668346
12.0090622 4.003059 0.2875797 2.667812
12.0063092 4.002129 0.2878964 2.667452
12.0001852 4.000062 0.2886503 2.666688
12 4 (v3/6) (8/3)

bcc Lattice

r„=( /p%3( nx +n y2+ nzp),

e~, e2, e3 are either all even or all odd,

k~= (VBir/pP) (pix+ ppy+ ppz).

For k„ lying in (1/48) of the first zone,

0&p3&P,

0&p2& p2 ) p2 I111Illllllllll of (p3) P p3) y

0&pi& p2.

The final calculations were done for 8=20, correspond-
ing to 505 points in (1/48) of the zone, or to 16 039 dis-
tinct points in the entire zone, not counting k„=O.

dia Lattice

r„=primitive lattice points,

r„=(22/K3) (n,x+n2y+ npz),

ni+n2+n3 ——even integer (including zero),

basis vector= (2/3 (x+y+z),
ky (~37r/2 pP) (plx+ p2y+p3z)

For k~ lying in (1/48) of the first zone, the rules are
the same as for fcc. The 6nal calculations were done for
P=12, corresponding to 239 points in (1/48) of the
zone, or 6947 distinct points in the entire zone, not
counting k„=O.

hcp Lattice

bi, b2, (33)'12b3 are unit vectors in a simple hexagonal
coordinate system, related to the Cartesian system

according to

x= (bi+b2), y= (3)-'~'(b2 —bi), z= (-',)'"b3.

r„=primitive lattice points,

r„=p(n, bi+npb2+npb3),

basis vector = p (-', bi+-', b2+-,'b3),

k„= (ir/pP) (pici+ p2c2+ ppc3) )

where c,'b, =8,; defines the c,.

For k„ lying in (1/24) of the first zone,

0(p,&P,
0(p2(P,
0&Pi&Pi', Pi' ——minimum of (P2, 2P—2P2).

The final calculations were done for I' =8, corresponding
to 269 points in (1/24) of the zone, or to 4110 distinct
points in the entire zone, not counting k~=0. Note
that the above restrictions give k„ lying in (1/24) of
the zone, while the similar restrictions in Ref. 8 give
k~ lying in (oi) of the zone.

APPENDIX II: LATTICE SUMS

The lattice sums needed in the present and previous
investigations, ' and also the sums needed for the
calculation of elastic constants for these central force
models, are listed in Tables V and VI. These sums are
defined, as follows, with an obvious notation.

5'-=Z.'(r.) "
5 „=P'(r,)'(r )

—I~+2I etc. ;

E„,=g „'(r„)"exp (—ypor„),

R„„,=Q„'(r„,)2(r„)I"—2I exp( yopr„) etc. —
These sums were calculated by direct summation over
all lattice points in a large sphere, with a remainder
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ALE VI. Lattice sums of the exponential type. When m+1 signi6cant Ggures are given, the error is no more than 1 part in 10".

(VzzW~)

1
1
1
1
1

5.66966120
10.6835928
25.0948013
72.5645043

bcc lattice

1.101532
2.113533
5.004281

14.50538
50.26584

dia lattice

2.66064301
5.20842126

12.4733493
36.2762856

5
5
5
5
5

4.53971096(10 ')
5.54581936(10 '}
7.43792674 (10 ')

11.2759740(10 ')

6.31844144(10-2)
6.85626140(10 )
7.68304371(10~)
9.03311393(10~)

1.00483800 (10~)
1.05008748 (10 ')
1.11067430{10 ')
1.19562332(10~)

1.66955181(10 ')
1.71882845 (10 ')
1.77964909 (10 ')
1.85669222 (10 ')

0.8214568 (10 ')
1.039539(10 ')
1.435327 (10 ')
2.220013{10 ')
3.919647(10 ')

1.061355(10~)
1.195587(10~)
1.390091(10~)
1.691268(10~)
2.191750(10~)

1.57/022 (10 ')
1.706439 (10 ')
1.871417(10 3)
2.090116(10 3)
2.394560(10 ')

2.467008 (10 4)

2,620120 (10~)
2.804026(10 4}
3.028840 (10 4)
3.310464(10 4)

1.89190797(10 ')
2.40400020 (10 ')
3.39071947(10 ')
5.393852/'/(10 ')

2.52777813 (10~)
2.74831007(10~)
3.13326823(10~)
3.81634435(10~)

4.08735995 (10 ')
4.20061843 (10 ')
4.39217241(10 ')
4.71833186(10 ')

7.02788180(10 4)
7.08980718(10~)
7.19305390(10 4)

7.36581077(10 4)

added to account for points lying outside the sphere.
Convergence studies were carried out to determine the
accuracy of the sums. Each tabulated value is in error by
no more than 1 part in 10"when n+1 significant Iigures
are given.

The lattice symmetry gives rise to certain relations
between the sums. For fcc, bcc, and dia

Sass =Sayy =Sa z =gSa y

Saszsg =Sayyyy= Sa zzz y

Sassyy =Saxxzz =Sayyzz y

3Sazzzz+ 6Sazzyy =Sa ~

All other sums with up to four Cartesian indices vanish
for fcc and bcc, while for dia there is only one other
nonvanishing sum, namely 5,„,. The contribution to
5 „,for dia vanishes for the primitive points, but not
for the basis points.

For hcp
5 „=5yy&5 „,
S zz= s [Sa Sazzj

Saxxsa =Sayyyy& Sazzz'z p

Sa zz Sayy z+Sa~xyy

Sazzzz = s [Sazz Sazzz'] z

Sazzyy= s[Sa 2Saz:+Sa zzz) I

Saasza =~Sasgyy ~

Thus it is only necessary to know 5, S „,and 5 „„
in order to calculate all the other sums defined above
for hcp. There is one more nonvanishing sum for hcp
with up to four Cartesian indices, namely 5
=—5»y. Again the contribution to this sum vanishes
for primitive points but not for basis points. An analo-
gous set of relations hold, for each lattice, for the
~my) ~myna etc

The results in Tables V and VI are more accurate
than previous tabulations. The previous work includes
values of S for primitive cubic lattices, "values of 5
and 5, , for primitive cubic lattices, some values of
5, 5 „,and 5 „„for hcp, "some values of 5 for fcc
and hcp'4'5 accurate differences between 5 for hcp
and fcc,"and some exponential-type sums for fcc and
bcc."
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