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The condition that a given lattice model be stable against all small deformations is that all the eigenvalues
of all the dynamical matrices be positive. The stability of several lattices is studied by calculating the
dynamical matrices for a large number of wave vectors in the Brillouin zone. Central potential interactions
represented by Lennard-Jones and Rydberg forms are used, and the nearest-neighbor distance e is allowed
to vary throughout a range of 2109, of the value e which minimizes the static lattice potential. The fcc and
hep lattices are stable for all central potentials and all values of e studied; the bece is stable for all values of e
for long-range central potentials; and the diamond is stable for a range of e> ¢ for all central potentials
studied. The sum of the static lattice-potential plus the harmonic zero-point energy is minimized as a
function of ¢, and it is found for all stable models except diamond that this procedure increases e from &
by about e, where xk=7#%/M2D"V2¢, with M =mass of ions and D=static lattice binding energy. For
diamond, however, there is no minimum in the range of e for which the lattice is stable, for physically reason-
able values of x. Born has suggested that if a lattice is stable for long waves, it is stable for short waves; a
counterexample has been found in the present study for the diamond lattice. A comprehensive table of
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accurate lattice sums is given in an Appendix.

I. INTRODUCTION

HE problem of the stability of crystal lattices has
been extensively investigated by Born and other
workers.'~¢ In these studies, the lattice was considered
to undergo a homogeneous deformation, and the elastic-
energy density was expanded in a series up to second
order in the deformation parameters. The equilibrium
condition was that the elastic energy density be sta-
tionary with respect to the deformation parameters, and
the stability condition was that the elastic-energy
density, evaluated at equilibrium, be a positive definite
quadratic form.

The present study of lattice stability is based on the
requirement that if the lattice is to be stable against
all small deformations, all normal-mode irequencies
must be real. Born and Huang* have pointed out that
the stability against homogeneous deformations insures
only that the long-wavelength modes have real fre-
quencies. It has been shown that the stability against
all deformations follows from the stability against
homogeneous deformations for a linear chain model!
and also for a fcc model with nearest-neighbor inter-
actions.® In the present work the dynamical matrices
of the harmonic lattice-dynamics problem were calcu-
lated for a large number of points in the Brillouin zone,
for fcc, bee, dia (diamond), and hcep lattices for models
based on two-body central forces, and these matrices
were checked for positive eigenvalues.

*This work was supported by the U. S. Atomic Energy
Commission.
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It has been shown’ that the condition that the elastic-
energy density be stationary with respect to the de-
formation parameters is equivalent to the Born and
Huang? infinite-lattice condition that the stresses must
vanish in the equilibrium configuration. In either form,
this equilibrium condition is needlessly restrictive; in-
deed, if the lattice structure and the interatomic poten-
tials are specified, the application of this condition fixes
the value of the unit cell volume. By explicitly including
externally applied forces in the lattice Hamiltonian, it
is possible to extend lattice dynamics, and also the
method of homogeneous deformation, to the case of a
crystal in a state of arbitrary initial elastic strain.” In
this case the only equilibrium condition is that the net
force on each ion must vanish in the equilibrium con-
figuration. For the lattice models considered in the
present paper, this equilibrium condition is satisfied by
symmetry (with the neglect of surface effects), and
hence is satisfied for any value of the unit cell volume.
In contrast to the previous studies, in which the unit
cell volume was considered fixed,!'=® the present work
investigates the stability over a wide range of unit
cell volume.

II. METHOD OF CALCULATION
Dynamical Matrices

The potential energy due to the interactions among
the ions in a large finite crystal may be expanded as

U(tpitn))=U (1)t 20,0 Xnglhny
+32 a0t Anp,nt o Umpthnt prt - (21)
Here and in the following the notation is the same as
that used previously.?? The symbol # labels a unit cell,
7D. C. Wallace, Rev. Mod. Phys. (to be published).
8D. C. Wallace, Phys. Rev. 131, 2046 (1963). Two typesetting

errors have occurred in this paper. In (3.15) the inequality for p,
should read 0<p,<4P. Equation (4.9) should read

Q=[2a8D/3&(a—B) I (a—1)Sa S ar2— (B—1)SsSps2].
9 D. C. Wallace, Phys. Rev. 133, A153 (1964).
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4 labels an ion in a unit cell, 7 labels a Cartesian co-
ordinate, » stands for a pair of indices (%,7), and p
stands for a pair of indices (j,2). There are J ions per
unit cell, M; is the mass of an ion of type 7, and M, is
the total mass of ions in one unit cell. The equilibrium
position of ion (,7) is r.;=r,+1;, and the displacement
of ion (n,7) from its equilibrium position is uy;.

The criterion for a given lattice model to be stable
against all small deformations is that all of the normal-
mode frequencies are real. For this study it is not
necessary to take explicit account of the anharmonic
terms in the potential energy, and the harmonic Hamil-
tonian may be used. In the presence of externally
applied forces f,; [each f,; is applied to ion (%,7)], the
harmonic Hamiltonian is’

H=U ) +5 Xm0 Mi(Unp) 200 (Xnp— frp)thnp

+% znn’,pp’ Ana,n’p’unpun’p’; (22)

where 1., is the time derivative of #,,. The equilibrium
condition is
Xnp—fnp=0, all (n,p). (2.3)

The present work is restricted to the case of isotropic
surface forces; hence the f,; are applied only to the
ions at the surface of the crystal. In the interior of the
crystal, i.e., farther from the surface than the range of
the interatomic forces, the lattice is presumed to be
perfectly periodic with constant unit cell volume. The
normal coordinates of (2.2) are found, with an error
corresponding to the neglect of surface effects, by apply-
ing the cyclic boundary condition to macrocrystals in
the interior of the large finite crystal.” Since the f,;
vanish in the interior, the equilibrium condition (2.3)
becomes

X,,=0, all (n,p) in the interior. (2.4)

The normal coordinates are enumerated by the wave
vectors k and the polarization index s. If the macro-
crystals contain NV unit cells, there are N values of k
distributed uniformly over the first Brillouin zone, and
there are 3J values of s associated with each k. The
circular frequencies wy, of the normal modes are related
to the eigenvalues 7y, of the dynamical matrices (ax
matrices) by

Mo (wks)*=n5ks, (2.5)

where
Ok, pp"= Zn’ A np,n'p’ exp[——zk (rnf_ rn’f’):l ) (26)
ZP ijk,psv—k,ps’ = Mcass’ o (2.7)

Equation (2.7) represents the orthonormalization of the
components vy, ,; of the eigenvectors of ax. The condi-
tion for lattice stability is

7s>0, all  (k,s). (2.8)

The static lattice potential U(r,;) is taken to be N
times the potential of one unit cell in the interior due
to interaction among the ions. The effect of isotropic
surface forces is taken into account by allowing the unit
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cell volume to vary. U(r,;) and the coefficients X,
Anpwey are functions of the unit cell volume. The
volume dependence of A,, ., arises implicitly from
anharmonic terms in the potential energy; the allow-
ance of this volume dependence, and the corresponding
volume dependence of the normal-mode frequencies,
without explicit inclusion of higher order terms in
the potential energy, represents the quasiharmonic
approximation.

It is convenient to take the nearest-neighbor distance
€ as the variable which represents the unit cell volume.
Define o as

o= (e—¢p)/ €0, (2.9)

where here, and in the following, a subscript 0 means
that a quantity is to be evaluated at the value of e for
which the static lattice potential U(r,;) is a minimum.
The following expansions serve as the basis for the
present work.

U(ts)="U(c)=Ust1c*(@U/do?) ot -+, (2.10)
(dU/da)o=0 by definition; (2.11)
ax(0)= (aw)oto(dax/do)ot- - - . (2.12)

Note that in differentiating the ax matrices with
respect to e (or o), the exponential factor can be
disregarded since k-r,; is independent of the nearest-
neighbor distance.

Central Potential Models

Calculations were carried out for a model in which all
pairs of ions in the crystal interact through the central
potential ¢ (#?), where 7 is the distance between the ions.
For this model,?

Avi,v’i'= —2[¢W',6ii’
+2¢yy’,, (rvi— rv’i) (rvi' - rv’i')] ) (2' 13)

where ¢,,/" is the first derivative of ¢(#?), with respect
to 72, evaluated at 7*= (r,—r,,)?, and ¢,,/”’ is the second
derivative. In addition the coefficients X, ; of (2.1) are
given by

Xv,z'—': 2 Zv’/ ¢vv’l(7ui_ rv’i) ) (2'14)

where here and in the following the prime on >’ means
to omit the term »=y". The X,,; vanish by symmetry,
and hence vanish for any unit cell volume, for lattices
for which the present calculations were carried out.
Thus for these lattices with central forces, the equi-
librium condition (2.4) is satisfied identically for any
unit cell volume.

Two forms for the central potentials were used.
These forms lead to the following equations, where the
expressions for Ul(e) are restricted to one or two ions
per unit cell.

(i) Lennard-Jones (abbreviated LJ):
YL ()= (4da/r%)— (Bs/7"),
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where 4., Bg, a, 8 are positive constants and a> 3,
U(e)zéNJ[(AaSa/ea)_ (Bﬂsﬂ/eﬂ):l )
¢w’, = '%I:BBB (7vv')_(6+2) - OZA P (7’,,,/)—(““}'2)] ,
$on"'=Halab DA u(r,) (e
_6(:3+2)Bﬂ (rvv’)_(ﬂ‘H):] )
(@U/da)o=0 gives Bg= (aSo/BSp) A x€0® ,
(?U/do*)o=%NJa(a—B)A S ®.
(ii) Rydberg (abbreviated R):
Yr(r?)=—d[1+vy(r—p)]exp[—v(r—p)],
where d, v, p are positive constants,
U(eo)=—3NJde [ (1—yp)Roy+veoR1y] ,
¢’ = ldfyZe'YP[:l -p (7'1'1")_1] exp(—'yr,,,.r) ’
b’ = —3dv?e? [y (1,0) 7 —p(100) "
——p(l’,,,,r)_3] CXP(‘—'Y”W') ,
(@U/do)o=0 gives p/eo=Rsy/R1y,
(veo)*L(1+7p)Roy—veoR3,]
(1—yp)Roy+veRsy

The following symbols are used here:

(2.15)

(2.16)

(@2U/do?)g=

(2.17)
(2.18)
(2.19)

rw’:lrv_rv' ) rv=lrvl;

Sa=2_,/(¢/1,)*,
Ruy=22,(r./ )™ exp[—veo(r,/€) 1.

The lattice sums S4, Rny are independent of e. The de-
fining equations for the lattice vectors are given in
Appendix I for fcc, bee, dia, and hep lattices. The re-
quired lattice sums were calculated in the present work
and are tabulated in Appendix II.

All calculations were carried out in terms of reduced
quantities, denoted by bars over the corresponding
symbols.

7‘,,,,:=r,,,.r/e,
i U=U/NJD, (2.20)
Ay o= (e/D)Ayiyer
Nrs= (GOQ/D)"'Iks ’
where D is defined by
Uo=—NJD. (2.21)

The explicit e dependence of ¢,,/’, ¢, is demonstrated
by replacing 7,,» by €f,,, since 7,,+ is independent of e.
The reduced dynamical matrices and their first two
or three derivatives with respect to o, all evaluated at
o=0, were computed numerically for k vectors in a
small portion of the first zone. This portion of the zone
(sometimes called the “irreducible” portion) is chosen
in such a way that the eigenvalues associated with all
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other k vectors in the zone are degenerate with the
eigenvalues associated with the k vectors lying in this
portion. The choice of the k vectors for each of the four
lattice types is described in Appendix I. The method
of calculation and the errors have been discussed
previously for the ax matrices at ¢=0;® the same pro-
cedure was used for the derivative matrices. Then each
a, (o) was calculated according to (2.12), for ¢ values in
the range —0.1<¢<0.1. These matrices were di-
agonalized by the Jacobi method; for the lattices with
two ions per unit cell the ax (o) were first transformed to
real symmetric form.® A lattice was considered stable
for a particular ¢ value if, for that o, every eigenvalue
of the dynamical matrix for each chosen k was positive.
The point k=0 was not included in the calculations.
The numerical work was carried out with the aid of a
CDC-1604 digital computer.

The harmonic zero-point energy was computed, in
reduced form, for the case where the masses of all the
ions are the same, and for each o value which gave a
stable lattice. When all M;= M, the eigenvectors are
normalized to unity, and

=M (wis)?, all M;=M. (2.22)

It is convenient to define
Ep=(IN)" Lk 3w , (2.23)
Ey=Ey/D=3(JN) 3 x.:(Frs)"?,  (2.24)
k="h/ MDY 2¢, (2.25)
Fy=U+NJEy; Fuy=Fy/NJD. (2.26)

Fy is the Helmholtz free energy at T=0, neglecting
explicit anharmonic contributions. Thus in the quasi-
harmonic approximation, the correct value of e at zero
temperature and pressure is that which minimizes
Fy(e). In view of the definition of U, (2.20), it is seen
that « is a dimensionless parameter which relates the
importance of the harmonic zero-point energy to the
static lattice energy. In calculating (Ex/k), the sum
was carried out over the chosen k vectors, with each
contribution being multiplied by a weighting factor.
The weighting factors were chosen so that each point
within the zone would be counted once, and each point
on the surface one-half, if a sum were carried out over
all the equivalent sets of k vectors. The use of such
weighting factors greatly improves the accuracy of the
sums.8

III. RESULTS
Stability

The results of the stability study are summarized in
Table I. The Lennard-Jones potential was studied for
all four lattices for (a,8)= (12,10), (12,8), (12,6), (12,4),
(10,8), (10,6), (8,6), (6,4). The Rydberg potential was
studied for bcc as a function of ¢ and for dia at o=0.
For these lattices the dimensionless parameter (yeo/V3)
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TaBLE I. Stability range for each model. The study was carried

out for —0.1<¢<0.1. Column 4 lists the order to which the series

(2.12) was computed.

LATTICES
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hcp lattice
LJ(6,4) potential
P PP5iP=080;8

Order

Lat- o incre-  of
tice Potential ment (2.12) Stability range
fcc LJall (a,8) 0.01 ¢ =01 to 01
hep %] aﬂ (Ex,ﬁ)) 0.02 ¢ —01 to 0.1

Jall (a8
bee { el 4)} 001 o none
becc  LJ (6,4) 0.01 ¢ =01 to 01
bcc R, (yeo/V3)=35 0.01 a? none
bee R, (yeo/V3)=4 0.01 o2 —01 to—0.06
bec R, (yeo/V3)=3,2,1 0.01 2 —01 to 0.1
dia LJ (12,10) 0.002 o? 0.002 to  0.032
dia LJ (12,8) 0.002 o 0.004 to  0.036
dia LJ (12,6) 0.002 o 0.008 to  0.040
dia LJ (12,4) 0.002 a® 0.012 to  0.048
dia LJ (10,8) 0.002 a3 0.006 to  0.040
dia LJ (10,6) 0.002 7t 0.010 to  0.046
dia LJ (8,6) 0.002 al 0.014 to  0.052
dia LJ (64) 0002 o  0032to 0.080

was taken to have the values 5,4, 3, 2, 1; this range
covers the values which have been used previously to
discuss the equation of state for several fcc and bcc
metals.® At =0, the dia lattice is not stable for any
of the Rydberg potentials.

\ fcc lattice
400"‘\ LJ (12,6) potential

\ P P, P;iP=00,6;16

F16. 1. Variation 300

of 7xs with o for fec,
LJ(12,6) potential,
for k at the point X
on the Brillouin zone
surface. The lower
branch is doubly de-
generate.

3

200

100

For bcc, the central force models always give one
branch, for k along the [0117] and nearby directions, for
which the eigenvalues are very small in magnitude.
When the lattice is unstable the negative eigenvalues
lie in this region; in fact for every case in which the
bee lattice is unstable, the matrix for every k along
the [011] direction has exactly one negative eigenvalue.

The situation is entirely different for the dia lattice.
When this lattice is unstable, according to the present
potential models, most of the matrices in the Brillouin
zone have two negative eigenvalues. For the Lennard-
Jones potentials, every matrix in the Brillouin zone has
at least one, and usually two, negative eigenvalues for
—0.1<¢<0. But every eigenvalue of every matrix is

F16. 2. Variation
of 7ys with o for hep,
LJ(6,4) potential, for 3
k at the point M/ on
the Brillouin zone
surface.

positive for a certain range of positive ¢ values, as
listed in Table I.

For a given (k,s), 7k is expected to decrease in mag-
nitude as o increases, since the forces of interaction
among the ions generally decrease as ¢ increases. From
a study of the 7y, as functions of ¢ for many representa-
tive k vectors, it appears that all |7y, decrease with
increasing ¢ for all models which are either stable
throughout the range —0.1<¢<0.1, or unstable
throughout this range. The variation of i, with ¢ is
illustrated by several representative graphs, Figs. 1-6.
In these graphs the solid lines show the eigenvalues as
calculated with the aid of (2.12), and the dashed lines
show the limits of error. The dashed line is omitted
when the error is too small to be represented on the
graph. The errors are due almost entirely to cutting off
the series (2.12) after three or four terms; the number
of terms taken is the same as that listed in Table I
for each model.

\ bece lattice
LJ(12,6) potential

P, P, Py P=0,10,l10;20

400

300

F1c. 3. Variation
of 7xs with ¢ for bcc, 7
LJ(12,6) potential,
for k at the point N
on the Brillouin zone
surface. The lower
branch is negative
for all o.

200

100
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100
bce lattice
LJ(6,4) potential
75 P, Py Py P =0,10,10; 20
I'16. 4. Variation
= 50l of s with o for bec,
n L] (6,4) potential, for
k at the point N on
the Brillouin zone
surface. The lower
251 branch is positive
for all o.
(o]
1 1 1
-008 -0.04 g_ 0.04 0.08

Minimization of Fy

In practically all cases of physical interest, the value
of ¢ for which Fy is a minimum is quite small. It is
therefore convenient to express Fy as a Maclaurin
series in ¢. The coefficients of the appropriate series for
(Bu/x), to order o2, were determined from the numerical
calculations of (Bx/k) as a function of ¢, and are listed
in Table IT for models which are stable at ¢=0. The
coefficients are not listed for hcp, since for each Lennard-
Jones potential these quantities are the same as for fcc
within the following limits: for ko within 3 parts
in 10% [see Ref. 9, Eq. (4.13)7; for k2 (dEx/do)o within
2 parts in 103; and for k1 (d>En/do?) within 2 parts in
102. The error in kB () as calculated from the data
in Table IT is less than 0.29, for |¢| <0.02. Figure 7
shows (Eg/x) for the Lennard-Jones (6,4) potential,
throughout the range of o values for which each lattice
is stable.

The corresponding series for U(s) is obtained from
(2.10) with the aid of (2.15) and (2.16). The series for

200
dia lattice
LJ(12,6) potential
150+ p’pzpa;P=0,0,l2;|2

F16. 5. Variation
of 7xs with ¢ for dia,
LJ(12,6) potential,
for k at the point X
on the Brillouin zone
surface. Each branch
is doubly degenerate.

100

S|

50

-50 1L 1 1 L
-0.02 [¢]
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Fy (o) is then constructed to order o2, and the mini-
mization gives

(dEu/do)o+o[ (@2U/do?) o+ (@Eg/de?)¢]=0. (3.1)

Equation (3.1) is correct to order o, and the solution
will be denoted by . It is seen that o; for a given lattice
and potential model depends on k. The values of « have
been calculated for most elements in the solid state;
some representative values are listed in Table III. For
these calculations D has been taken to be the measured
binding energy per atom, evaluated at 7=0 where
possible, and e the observed nearest-neighbor distance
at room temperature. For most elements, (10%)« lies in
the range 0.5 to 5.0.

Since « is small, it is useful to carry out further ex-
pansions in powers of . Thus, with the aid of (3.1),

o1=ci+cor®4- - -,

1= —[x"(dEr/do)o]/ (@U/ds")0, etc.;  (3.2)
Fr(o) =—14cs+ e+ -,
cs=«"Enm, etc. (3.3)

The coefficients ¢y, - - -, are determined in a straight-

dia lattice
LJ(I2,6) potential

P PP P=6,6,6 ; 12

150

100 F16. 6. Variation

of 7xs with ¢ for dia,
LJ(12,6) potential,
for k at the point L
on the Brillouin zone
surface. The two
branches marked (2)
are each doubly de-
generate.

3

50

-50
1
-002 O

0.08

forward way from preceding equations. For the central
force models which are stable at ¢=0, the ¢; are all in
the range 1.1540.25; these values are listed in Table II.
For «=5(10"%), the contribution of terms of order &
and higher in (3.2) is <59, for the models listed in
Table II. In (3.3) the first term is the reduced static-
lattice potential energy at o=0, the second term is the
reduced harmonic zero-point energy at ¢=0, and the
remaining terms are corrections due to o15%0. For
k=5(10"%), the contribution of terms of order «* and
higher in (3.3) is <0.29, for the models listed in Table
II. For «<5(107%), the contributions of the higher
order terms in (3.2) and (3.3) are correspondingly
smaller.

The variation of (Eg/x) with ¢ for dia with the
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TaBLE II. Coefficients of the series for (By/k) for small ¢, and values of ¢i, Eq. (3.2). Each value is accurate to
1 part in 10" when n+-1 significant figures are given.

Lattice Potential k 1HEyq kY dEgr/do)o kW (@2 Er/de?)o I3
fce LJ (12,10) 13.12 —146.7 12.2(10%) 1.22
fco L] (12.8) 11.82 —1194 9.57(10%) 1.24
fee L] (126) 10.38 —93.15 7.20(10%) 1.29
feo LY (12,4) 8.698 —67.10 5.26(10%) 1.40
fce LJ (10,8) 10.87 —98.60 7.23(102) 1.23
fcc LT (10,6) 9.567 —75.90 5.27(10%) 127
fee LT (8,6) 8.601 —59.70 3.74(10%) 1.24
fce LJ (6,4) 6.597 —30.44 1.58(10%) 1.27
bee L] (6.4) 6.332 —29.24 1.52(10%) 1.22
bee R, (veo/V3)=3 6.794 —27.62 0.782 (102) 0.962
bec R, (ye/V3)=2 5.269 —12.71 0.249 (10%) 0.960
bce R, (ve/V3)=1 3.681 —4.297 0.0560(10%) 1.05

Lennard-Jones (6,4) potential, Fig. 7, is representative
of the behavior for the other Lennard-Jones potentials
for dia. The minimization of Fz(s) for dia was studied
graphically, and it was found that for x< (10~2) there
is no minimum in 74 (s) in the range of ¢ for which the
lattice is stable for any of the Lennard-Jones potentials.

TaBLE III. « values for some elements.

Element Structure (10«  Element Structure  (10%«
Ne fcc 33.5 Si dia 2.67
Ar fec 9.62 Ge dia 1.68
Kr fee 5.25 Cu fcc 1.69
Xe fcc 3.22 Ag fec 1.25
Li bee 6.42 Au fec 0.846
Na bee 3.41 Pb fcc 0.904
K bee 2.31 Th fcc 0.426
Rb bee 1.50 Be hep 5.24
Cs bec 1.17 Mg hep 3.28
C dia 4.45 Gd hep 0.737

Application to Inert-Gas Crystals

In a previous paper® the contributions to the static-
lattice potential energy, the harmonic zero-point energy,

!
LJ(6,4) potential
(a) fcc,hep
o (b) bee
(c) dia
8-
Ey Fig. 7. Variation
3 of (Ku/k) with o for
4 fec, hep, bee, and dia
lattices for LJ(6,4)
potential. The fcc
and hcp are indis-
6 tinguishable on the
graph [line (a)].
5._
-010  -0.05 ° 0.05 0.0
o

and the anharmonic zero-point energy, all at ¢=0, were
calculated for the inert gas crystals in the fcc and hep
lattices. These calculations were based on a Lennard-
Jones (12,6) potential, with the constants 4., Bg of
(2.15) being determined from the data in Appendix II
of the article by Dobbs and Jones.® For the specified
potential (Table V of Ref. 9) it is appropriate to calcu-
late x from the calculated values of D and e, rather
than from the measured values. This has been done for
the fcc lattice, and the results are listed in Table IV.

TaBLE IV. Application to the inert-gas crystals in the fcc
lattice. €(14-01) is in A, and all energy contributions are in
cal/mole.

Ele-

ment (103« (10®)e1 e(1+01) Fale=0) Fu(or) Ly
Ne 29.5 32.54+0.5 3.10 —423 —449 426
Ar 9.14 12.0+0.5 3.75 —1898 —1908 1900
Kr 5.02 6.24+0.3 4.03 —2693 —2697 2694
Xe 3.11 3.94+0.2 446 —3724 3726 3724

Also for fcc, Fz(s) has been minimized graphically
since « is large for the inert gas crystals; the results are
listed in Table IV. In addition, Table IV lists the total
calculated binding energy Lo of the crystals at 7’=0:

Lo=—[Fu(o1)+Fao], 3.4)

where F 40, the anharmonic zero-point energy, is taken
from Table V of Ref. 9.

It is seen that the nearest-neighbor distance eo(1+407),
as determined from minimizing Fg, is in somewhat
better agreement with the observed value than is e
(compare Table V, Ref. 9). In addition it is seen that
the contributions to the total energy at T'=0 arising
from anharmonicity (Fao) and arising from o520
[Fu(o1)—Fgr(0)] are of opposite sign and nearly
cancel one another. Further calculations are in progress
to test the generality of this finding.

A comparison of the fcc and hcp lattices for the

B E, R. Dobbs and G. O. Jones, Rept. Progr. Phys. 20, 516
(1957).
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LJ (12,6) potential shows that the minimization of
Fy (o) increases the binding energy of hcp more than
fcc by 5(107%)9, of the total binding energy for Ne,
5(1079)9, for Ar, 2(105) 9%, {or Kr, and 5(10~%) 9, for Xe.

IV. DISCUSSION

The present lattice dynamics calculations have been
carried out for varying values of the nearest-neighbor
distance e by means of Maclaurin series in ¢. For all
values, the equilibrium condition is satisfied for central
potential models for the lattices considered here. At
=0, the static lattice potential is stationary with re-
spect to variation of ¢. It can be shown that this implies
that the static lattice potential is stationary with re-
spect to arbitrary homogeneous deformation of the
lattice at ¢=0, for fcc, bee, and dia with arbitrary
ceatral potentials. This is also true for hcp with arbi-
trary central potentials when only first and second
neighbors are taken into account, but not when further
neighbors are included. The second equilibrium condi-
tion of Born and Huang,* namely that the stresses must
vanish in the equilibrium configuration, is therefore
satisfied only at ¢ =0 for fcc, bee, and dia for the models
of the present paper. This circumstance causes no
difficulty; when the second condition is not satisfied
it simply means that the lattice model approximates a
crystal which has surface forces applied by external
means.

An interesting result of the present stability study is
that any model which is stable at ¢=0 is also stable
throughout the range —0.1<¢<0.1. The close packed
lattices are stable for all potential models studied,
throughout the o range studied. The bcc lattice is
generally unstable for short-range central forces, but
stable throughout the o range studied for long-range
central forces. In spite of the fact that bcc and dia are
both stable for certain central potentials and certain o
values, the central potential models are quite inappro-
priate for the quantitative representation of a real
crystal with either of these structures. For bcc, one
branch of eigenvalues for k along the [011] direction
is very small for all the models (see Figs. 3, 4), while
for dia there is no minimum in Fz(s), for any physically
reasonable value of « for any of the Lennard-]Jones
potentials studied here, in the o range for which the
lattice is stable.

For all stable models except dia, the eigenvalues 7y,
were found to decrease with increasing o as expected.
Thus the Gruneisen parameters yx,, defined by

Yirs=—d Inwy,/d 1InV,

are in general positive and the thermal expansion for
such a model is in general positive. Aside from questions
of the validity of the model, it is interesting to note
that for dia, for all Lennard-Jones potentials studied
and in the stable o range, every dynamical matrix has
at least one and usually two acoustic eigenvalues which

WALLACE AND ]J.
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increase with increasing o (see Figs. 5,6). Thus it is
quite likely that the thermal expansion for dia for the
central potential models would be negative, especially
at low temperatures. Negative thermal expansion co-
efficients have been observed for materials crystallizing
in the dia structure.!!

Born! has suggested that if a lattice is stable for long
waves, it is also stable for short waves. For the models
of the present paper, this is true for fcc, bee, and hcep,
but not for dia. For the Lennard-Jones (12,6) potential
for dia, there is a narrow range of o values just below
the stable o range for which all long wavelength normal
modes have real frequencies while some of the short
wavelength acoustic modes have imaginary frequencies.
The same result appears to hold for the other potentials
studied for dia. This conclusion is based on the behavior
for a limited number of k vectors in the Brillouin zone.
All possible long wavelength modes can be included by
constructing the elastic energy density with the aid of
the lattice sums of Appendix IT; this has not been done
in the present work.

With regard to the minimization of Fg(o), it is
found that for all models stable at ¢=0 and for any
k<5(107%), o1 lies in the range (1.1540.25)«, including
all errors. It is therefore suggested that o1~« is a good
approximation for the relative change in the nearest-
neighbor distance, at zero temperature and pressure,
due to the effect of harmonic zero-point motion, for
most physically reasonable models.

APPENDIX I: LATTICE VECTORS AND
WAVE VECTORS

The lattice sites are defined in terms of unit vectors
and the coefficients #4, 79, #3, which are integers (in-
cluding zero). The k vectors are similarly defined in
terms of unit vectors and the coefficients p1, pa, Ps,
which are integers. The restrictions on these two sets
of integers are given here. X, y, and z are unit Cartesian
vectors and P is a positive number.

fcc Lattice
1= (¢/V2) (m1X+n2y+ns3z),
#1+ne+n3=even integer (including zero),
ky= (V2r/eP) (p1X+ pay+psz).
For k, lying in (1/48) of the first zone,

0<p:<P,

0L p2e< 2/, po’=minimum of (ps, P—ps),

0<p:1<p!, pi’=minimum of (ps, $P— ps— p2).

The final calculations were done for P= 16, correspond-
ing to 504 points in (1/48) of the zone, or to 16 431 dis-
tinct points in the entire zone, not counting k,=0.

1D, F. Gibbons, Phys. Rev. 112, 136 (1958).
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TaBLE V. Lattice sums of the power type. When #-+1 significant figures are given, the error is no more than 1 part in 10

fcc lattice bec lattice dia lattice hep lattice

(o4 Sd Sazrxz Sa Sazzzz S:x Suzya Sazzxz: SL! ‘a 2z xxrry Sazzzz
4 25.338304 4.79210 22.638722 4.22881 10.232845 0.720095  1.66902 25.339080 8.44875 0.175124  5.25765
5 16.9675185 3.089418 14.7585093 2.605810  6.31276034 0.7414699 0.8903750 16.9684363 5.658396 0.199622  3.601729
6 14.4539211 2.563592 12.2536679  2.061402 5.11677158 0.7539560 0.6559089 14.4548973 4.820331 0.2200549 3.113532
7 13.3593877 2.326452 11.0542435 1.782002 4.59447603 0.7610725 0.5551497 13.3603468 4.455195 0.2365781 2.905902
8 12.8019372 2.200869 10.3551979  1.606707 4.33191374 0.7650495 0.5053371 12.8028219 4.269046 0.2496107 2.803005
9 12.4925467 2.128277 9.89458966 1.483018 4.19037213 0.7672383 0.4789120 12.4933217 4.165586 0.2596846 2.747578
10 12.3112457 2.083982 9.56440061 1.389101 4.11102360 0.7684288 0.4643147 12.3118962 4.104851 0.2673447 2.716107
11 12.2009204 2.055958 9.31326254 1.314379 4.06546760 0.7690702 0.4560443 12.2014471 4.067817 0.2730921 2.697565
12 12.1318802 2.037770 9.11418327 1.253128 4.03890471 0.7694134 0.4512781 12.1322938 4.044590 0.2773576 2.686333
13 12.0877263 2.025742 895180732 1.201947 4.02325119 0.7695960 0.4484981 12.0880426 4.029704 0.2804952 2.679375
14 12.0589920 2.017677 8.81677023 1.158651 4.01395609 0.7696927 0.4468619 12.0592283 4.019996 0.2827864 2.674985
15 12.0400241 2.012209 8.70298456 1.121731 4.00840524 0.7697438 0.4458924 12.0401971 4.013577 0.2844497 2.672171
16 12.0273549 2.008472 8.60625405 1.090085 4.00507587 0.7697706 0.4453147 12.0274794 4.009283 0.2856513 2.670344
17 12.0188094 2.005900 8.52353125 1.062866  4.00307204 0.7697848 0.4449690 12.0188977 4.006383 0.2865159 2.669143
18 12.0129983 2.004121 8.45250317 1.039402 4.00186265 0.7697922 0.4447614 12.0130600 4.004410 0.2871361 2.668346
19 12.0090196 2.002885 8.39135079 1.019145 4.00113108 0.7697961 0.4446363 12.0090622 4.003059 0.2875797 2.667812
20 12.0062800 2.002023 8.33860401 1.001639 4.00068771 0.7697981 0.4445608 12.0063092 4.002129 0.2878964 2.667452
30 12.0001848 2.000061 8.08018575 0.9156166 4.00000494 0.7698004 0.4444453 12.0001852 4.000062 0.2886503 2.666688
o 12 2 8 8/9) 4 (4/3V3) (4/9) 12 4 (V3/6) (8/3)

bee Lattice

r.= (¢/V3(n1x+n2y+n3z),

n1, %2, N3 are either all even or all odd,

k,= (V37/€P) (p1x+ pay-+ psz).

For k, lying in (1/48) of the first zone,

0<ps<P,
0<p2<ps, po’=minimum of (ps, P—ps),
0<p1<po.

The final calculations were done for P=20, correspond-
ing to 505 points in (1/48) of the zone, or to 16 039 dis-
tinct points in the entire zone, not counting k,=0.

dia Lattice
r,=primitive lattice points,
ta= (2¢/V3) (m1x+nsy+n37),
#1+ne.+-ns=-even integer (including zero),
basis vector= (¢/V3) (x+y-+1z),
k= (V37/2¢P) (p:1x+ pay-+p32).

For k, lying in (1/48) of the first zone, the rules are
the same as for fcc. The final calculations were done for
P=12, corresponding to 239 points in (1/48) of the
zone, or 6947 distinct points in the entire zone, not
counting k,=0.

hcp Lattice

b1, b2, (3)12b; are unit vectors in a simple hexagonal
coordinate system, related to the Cartesian system

according to

x=(bi+by), y= (3)72(bo—by), z= (§)"*bs.

r,=primitive lattice points,

In,= €(n1b1+1’l2b2+%3b3),

basis vector= e(1b;+2b.+3bs),

k,= (7/€P) (pre1t p2catpscs),

where ¢;+b;=4;; defines the c,.
For k, lying in (1/24) of the first zone,

0<p:<P,

0<p<P,

0<p:1<p/, p/’=minimum of (ps, 2P—2p,).
The final calculations were done for P=8, corresponding
to 269 points in (1/24) of the zone, or to 4110 distinct
points in the entire zone, not counting k,=0. Note
that the above restrictions give k, lying in (1/24) of

the zone, while the similar restrictions in Ref. 8 give
k, lying in (}) of the zone.

APPENDIX II: LATTICE SUMS

The lattice sums needed in the present and previous
investigations,®? and also the sums needed for the
calculation of elastic constants for these central force
models, are listed in Tables V and VI. These sums are
defined as follows, with an obvious notation.

Sa= ZﬂI(TV)~a7
Saze= 2 (Fra)? (7)) etc.;
Ruy=2_ (7)™ exp(—yeofs),
Royos=2_0 (To2)? () ™2 exp(—yeof,) etc.

These sums were calculated by direct summation over
all lattice points in a large sphere, with a remainder
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TasLE VI. Lattice sums of the exponential type. When #--1 significant figures are given, the error is no more than 1 part in 10,
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bece lattice

dia lattice

1.11067430(10~%)
1.19562332(10-%)

1.66955181 (1073)
1.71882845(1073%)
1.77964909 (10-3)
1.85669222 (107%)

1.871417(109)

4.39217241(1073)

(760/\/3) m Ry ¥ -Rm'yza:zz -Rm'y
1 0 5.66966120 1.101532 2.66064301
1 1 10.6835928 2.113533 5.20842126
1 2 25.0948013 5.004281 12.4733493
1 3 72.5645043 14.50538 36.2762856
1 4 50.26584
2 0 4.53971096 (1071) 0.8214568 (101) 1.89190797 (1071)
2 1 5.54581936(1071) 1.039539(1071) 2.40400020(101)
2 2 7.43792674(1071) 1.435327(1071) 3.39071947(1071)
2 3 11.2759740(1071) 2.220013(1071) 5.39385277(10™)
2 4 3.919647 (10
3 0 6.31844144(1072) 1.061355(1072) 2.52777813(1072)
3 1 6.85626140(107%) 1.195587 (1072 2.74831007 (1072)
3 2 7.68304371(1072) 1.390091(1072) 3.13326823(1072)
3 3 9.03311393(1072) 1.691268(1072) 3.81634435(1072)
3 4 2.191750(1072)
4 0 1.00483800(1072) 1.577022(1073) 4.08735995(107%)
i ; 1.05008748 (1072) 1.706439(107%) 4.20061843(1073)
4 3
4 4
5 0
5 1
5 2
5 3
5 4

2.090116(107%) 4.71833186(1073)
2.394560(1073)

2.467008 (10%) 7.02788180(107%)
2.620120(1074) 7.08980718(10™)
2.804026(107*) 7.19305390(10~4)
3.028840(10™) 7.36581077(107)
3.310464(1079)

added to account for points lying outside the sphere.
Convergence studies were carried out to determine the
accuracy of the sums. Each tabulated value isin error by
no more than 1 part in 10* when #-1 significant figures
are given.

The lattice symmetry gives rise to certain relations
between the sums. For fcc, bee, and dia

— —_ —1
Sazz—Sauy—Sa-z_ESa H

Sazzzz= Sayym/= Sazeze )

Sazxw/ = Saz:czz = Sayyzz )

3Saza::vz+ 6Sazzyy = Sa .

All other sums with up to four Cartesian indices vanish
for fcc and bee, while for dia there is only one other
nonvanishing sum, namely Sqzy.. The contribution to
Sasy: for dia vanishes for the primitive points, but not
for the basis points.
For hep
Saxx=Sayy¢Sazz )

Sa:ca:= %[Sa_Sazz:l )
Sazzxz= Sam!yll¢sazzzz s
Sazzze=Sayysa Sazayy
Savse:=3[Saze—Sazzez ],
Sazzyy= %I:Sa_' ZSaz;‘I"Sm.zzz] )
S

azrzr— SSaz:cuy .

Thus it is only necessary to know Sa, Sa.z, and Saezze
in order to calculate all the other sums defined above
for hep. There is one more nonvanishing sum for hcp
with up to four Cartesian indices, namely Sazzy
= —Sayyy- Again the contribution to this sum vanishes
for primitive points but not for basis points. An analo-
gous set of relations hold, for each lattice, for the
Ry, Rimyas €tc.

The results in Tables V and VI are more accurate
than previous tabulations. The previous work includes
values of S, for primitive cubic lattices,”? values of S,
and Sazsz. for primitive cubic lattices,? some values of
Say Sazz, and Sas... for hep,® some values of S, for fcc
and hcp,"1% accurate differences between S, for hcp
and fcc,'® and some exponential-type sums for fcc and
beelt?
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