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A new method is proposed for the calculation from first principles of the formation and migration energy
of a vacancy or interstitial in covalent crystals. The formation energy of a point imperfection is given by
the change in the electrostatic energy of the system of ions arising from the point defect plus the change in
energy of the system of valence electrons due to their redistribution associated with the point defect. The
redistribution of the valence electrons is determined from a pseudocrystal potential which results from
orthogonalizing the valence-electron wave functions to the crystal wave functions of the closed-shell core
electrons. The scattering of the valence electrons by the pseudocrystal potential is determined by using
the #-matrix approximation. The formation energy of an interstitial in diamond, silicon, and germanium
turns out to be 1.76, 1.09, and 0.93 eV, respectively; the migration energy of an interstitial is 0.85, 0.51,
and 0.44 eV; the formation energy of a vacancy is 3.68, 2.13, and 1.91 e¢V; and the migration energy of a
vacancy turns out to be 1.85, 1.09, and 0.98 ¢V. The general method presented for treating point defects in
covalent crystals can be readily applied to determine the spectrum of localized states at point defects,
which is of interest for optical investigations of point defects. Further, the derived expression for the energy
of the system of valence electrons can readily be evaluated to show explicitly its dependence on the displace-
ments of the lattice ions resulting from a point defect. Such an expression is needed, for example, for a self-
consistent determination of the lattice distortion due to point defects, and furthermore can be used for cal-
culating the elastic constants or lattice force constants from first principles. An approximate expression
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for the equation of state of the system of valence electrons is given.

I. INTRODUCTION

IN order to analyze in terms of point defects experi-

ments on diamond, silicon, and germanium involving
diffusion, quenching, and radiation damage,! it is neces-
sary to calculate the formation and migration energy of
an interstitial or a vacancy in these semiconductors. For
example, it is interesting to check whether self-diffusion
in these semiconductors is due to vacancies or inter-
stitials.?* Furthermore, from annealing studies in
p-type silicon the activation energy 0.33 eV is assigned
to the migration of a positively charged vacancy iden-
tified by using electron paramagnetic resonance.! The
dependence of the vacancy mobility on the charge state
has been investigated by some annealing experiments in
n-type silicon showing that the change in the mobility
is small. The energy of migration for a vacancy in ger-
manium, which also does not seem to depend much on
the charge the vacancy carries, is found from quenching
experiments to be 0.9 eV for a neutral vacancy.® Thus,
it is of considerable interest to check theoretically these
surprisingly different experimental results for the
mobility of a vacancy in silicon and germanium.

So far, interstitials have not been identified experi-
mentally in diamond, silicon, and germanium. The
reason might be that interstitials are mobile at very low
temperatures. A calculation of the migration energy of
an interstitial will tell us then at which temperatures the
interstitial might be detected. If interstitials have a

* Supported in part by the U. S. Atomic Energy Commission.
1D. S. Billington and J. H. Crawford, Radiation Damage in
Solids (Princeton University Press, Princeton, New Jersey, 1961).
2 M. W. Valenta and C. Ramasastry, Phys. Rev. 106, 73 (1957).
(1;?6) Letaw, W. M. Portnoy, and L. Slifkin, Phys. Rev. 102, 636
¢ G. D. Watkins, J. Phys. Soc. Japan 18, Suppl. II, 22 (1963).
8R. A. Logan, Phys. Rev. 101, 1455 (1956).

migration energy of about 0.3 €V in silicon, for example,
it might suggest that the observed point defect in p-type
silicon having a migration energy of 0.33 eV is an inter-
stitial identified wrongly as a vacancy. Such a mis-
interpretation of the observed point defect as a vacancy
cannot be ruled out on the basis of present experimental
data.

Previous calculations of the formation and migration
energy of a vacancy in covalent crystals use a Morse
potential® or a combination of Born’s lattice potential
within the harmonic approximation and a Morse
potential” for describing the interactions among the
lattice atoms. This ansatz for the lattice potential is not
based on firm theoretical grounds, even in the case of a
perfect crystal. The empirically determined parameters
involved in the potential describing covalent bonds are
assumed to be unchanged in the presence of point
defects. Since the interactions among the lattice atoms
depend strongly on the distribution of the valence
electrons this assumption is valid, if at all, only in
lattice regions where the valence-electron distribution is
slightly disturbed. If the redistribution of the valence
electrons due to a point defect is large, then the potential
derived for covalent bonds in the case of a perfect
crystal might be totally wrong. For example, this might
be the case for the saddle-point configuration of a
vacancy and particularly for an interstitial. Therefore,
it is not possible to extend the above-mentioned calcula-
tions to the case of interstitials, whose properties have
not been calculated at all so far. It seems, therefore,
desirable to develop a new method treating point defects
in covalent crystals from first principles. This is the aim
of the present paper and is done as briefly described in

6 R. A. Swalin, J. Phys. Chem. Solids 18, 290 (1960).
7 A. Scholz, Phys. Status Solidi 3, 43 (1963).
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c Fic. 1. Illustration of the considered
point defect configurations. The atoms a

and ¢, and b and d, respectively, are near-

s(T est neighbors along a (001) axis in the

1 diamond lattice. The atoms ¢ and d, and
a and b, respectively, are nearest neigh-
bors along a (111) axis. T and H denote
the tetrahedral and, respectively, hexago-
nal interstitial position. s denotes the
saddle point position of the atom a when

b exchanging places with the vacant lattice
site b,
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the following. The crystal is represented by a system of
ions, e.g., nuclei plus tightly bound core electrons,
arranged in a static lattice, and valence electrons
moving in a potential field produced by the valence
electrons themselves and the ions. The ions interact via
a Coulomb potential. The tightly bound core electrons
are assumed to be dynamically decoupled from the
system of valence electrons and treated within the
Hartree-Fock approximation. Since we are dealing with
a very open lattice, interactions due to overlapping of
tightly bound core electrons usually described by a
Born-Mayer potential and van der Waals interactions
among the ions are negligible. The distribution of the
valence electrons in the imperfect crystal resulting from
the scattering of the valence electrons by the lattice
ions is determined by using the -matrix approximation.®

The crystal potential is strong only within the core
region of each ion. The effects of the strong, short-range
core parts of the crystal potential are removed as
follows.? The wvalence-electron wave functions are
orthogonalized to the crystal wave functions of the
closed-shell core electrons. One derives then for the
effective valence-electron wave function, e.g., original
valence-electron wave function minus orthogonalization
terms, an effective Hamiltonian representing the crystal
potential by a pseudopotential which is usually weak
and smooth.’® To obtain a self-consistent crystal po-
tential the response of the valence electrons to the
pseudocrystal potential is determined. The f{-matrix
approximation takes into account a nonlinear response
of the valence electrons to the pseudocrystal potential
and thus is able to reflect the fine structure of the
valence-electron distribution as was shown earlier by
the author in claculating Fourier coefficients of the
valence electron charge density in diamond.® By ex-
plicitly taking into account the atomic configuration of

8 K. H. Bennemann, Phys. Rev. 133, A1045 (1964).
9 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
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the lattice in determining the scattering of the valence
electrons, the lattice configuration of the imperfect
crystal is clearly reflected in the expression for the
energy of the system of valence electrons. Thus it will
be readily possible to derive an expression for the energy
of the system of valence electrons as a function of the
displacements of the ions. It appears that such an ex-
pression is required for many problems. For example, in
this way a self-consistent calculation of the lattice dis-
tortion associated with point defects can be performed.
The formation energy of an interstitial or a vacancy
is given by the difference between the ground-state
energy of the crystal containing the point defect and the
ground-state energy of the perfect crystal. Thus, it is
assumed that the localized states introduced by the
point defect within the forbidden energy gap between
the valence and conduction band are unoccupied. The
diamond-type crystal represents a very open lattice.
Therefore, the contribution to the formation energy of
an interstitial or a vacancy arising from the lattice dis-
tortion is presumably small.”'*'2 Thus we can neglect
in our calculations the displacements of the lattice ions.
However, it may be noted that in determining the
change of the crystal volume associated with a point
defect, it is necessary to determine the lattice distortion
around the point defect.!1:13
The diffusion paths for a vacancy or an interstitial
are shown in Fig. 1. Two interstitial configurations,
chosen according to the lattice symmetry in such a way
that the interstitial is farthest away from the surround-
ing regular lattice ions, are considered. The interstitial
position halfway between two next neighboring ions
along a (001) lattice axis, called the tetrahedral position,
is characterized by four-nearest neighbors at a distance
0.433a, and six next-nearest neighbors at a distance
0.500¢, where @ denotes the lattice constant. The path
for interstitial diffusion consists of elements connecting
two next-neighboring tetrahedral interstitial positions
as indicated in Fig. 1. The interstitial position halfway
between two next-neighboring tetrahedral interstitial
positions is called the hexagonal-interstitial configura-
tion and is characterized by six nearest neighbors at a
distance 0.415¢, and eight next-nearest neighbors at a
0.648a. It is assumed that these two interstitial positions
represent the equilibrium and the saddle-point inter-
stitial configurations.!? Then the migration energy for
an interstitial is calculated by the absolute difference in
the formation energy associated with these two inter-
stitial positions. If there is between these two interstitial
positions an interstitial position involving a higher
formation energy, then the calculation so performed
vields at least a lower limit for the migration energy.
The diffusion path of a vacancy consists of path ele-
ments connecting two next neighboring ions in the
11 A, Scholz and A. Seeger, Phys. Status Solidi 3, 1480 (1963).
12 K. Weiser, Phys. Rev. 126, 1427 (1962).

( 13 K) H. Bennemann and L. Tewordt, Z. Naturforsch. 15a, 772
1960).
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perfect crystal. The migration energy for a vacancy is
calculated by the absolute difference between the
formation energies associated with a vacant regular-
lattice site and with the saddle-point configuration of
the vacancy in which one of the lattice ions located next
to the vacancy moved halfway towards the vacancy.

In Sec. II the general method for determining the
formation energy of point defects in covalent crystals is
outlined. Section III discusses the determination of a
self-consistent crystal potential. In Sec. IV the general
method described in Secs. IT and 11T is applied to calcu-
late the formation and migration energy of a single
interstitial or vacancy in diamond, silicon, and ger-
manium. In Sec. V the limitations of the proposed
method are discussed and the numerical results obtained
are compared with experimental results. In Appendix A
the bound-electron states associated with point defects
are briefly discussed. Appendix B treats higher multiple
scattering of the valence electrons. In Appendix C an
approximate equation of state for the system of valence
electrons is derived.

II. GENERAL METHOD
The energy of the static crystal is given by
3 2 (Z%¢/ry)+Ea,

i, j
()]

(I1.1)

where the first term gives the electrostatic energy of the
system of ions with charge Ze, and E, denotes the
energy of the system of valence electrons including the
energy resulting from the interaction between the
valence electrons and the lattice ions. The explicit ex-
pression for E,; is obtained as follows. The wave func-
tions for the valence electrons are determined by

Hy(r)=E(k)Yi(r)
where the Hamiltonian H is given by
H=—(*/2m)V*+V(1)+ 4:(0)+C(1)+A(r,E) . (I1.3)

V;is the Coulomb potential due to the lattice ions, e.g.,
atomic nuclei plus tightly bound core electrons. 4,
describes the exchange and correlation interaction be-
tween the tightly bound core electrons and the valence
electrons. C is the Coulomb potential due to the
valence electrons. The operator 4(r,E) represents the
exchange and residual interaction among' the valence
electrons. V,(r) represents a strong negative potential
inside the core regions of the ions, thus preventing
solution of the wave equation (I1.2) by perturbation
theory. However, as shown by Phillips and Kleinman?®14
and others,'® the energy spectrum E(k) of the valence
electrons can be determined from an effective Hamil-
tonian H’ with eigenfunctions ®;, where in H’ the po-
tential V; is replaced by a pseudocrystal potential

(IL.2)

which is in general weak and smooth. The motivation

1# L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).
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for transforming the Hamiltonian H into an effective
Hamiltonian H’ arises from the recognition that due to
the Pauli exlucsion principle the wave functions ¢ need
be orthogonal to the closed-shell crystal core-electron
eigenfunctions. Therefore, the wave functions y(r)
oscillate rapidly inside the core region of an ion. Con-
sequently the valence electrons possess a 1arge posmve
kinetic energy in the core regions of the ions which
represented as a repulsive potential cancels most of the
strong negative core part of the potential Vi(r). By
expanding ¥ as

Yi(r) = By(r) — §,<W'kl | @) oe, (1), (I1.4)

so that yx(r) is orthogonal to the closed-shell crystal
core-electron eigenfunctions ¢, Eq. (I1.2) is trans-
formed into

H'®(r)=E(k)®i(r) , : : (II.S)
where the effective Hamiltonian H’ is given by .
=H+Vz. (IL.6)

V g denotes the repulsive pdtential which cancels most of
Vi(x). Vg isin general a nonlocal potential and given by?!s

Vr(t,E)| k)y=— Z’<<Pt,k' [VitAuwt+C+A k) p,p(r) .
" (IL7)
Introducing -the Green’s function G’(;,r’,ko) defined by
[ko—H'(x,ko) G (x,t o) =8(x—1'), (IL.8)

and boundary conditions which are later explicitly
imposed on its Fourier transform, then the energy E.; of
the system of valence electrons is given by

0

XTr{(H (x,k0) —3C(1) = 3A (5, k)G (5, ko)} . (11.9)

Fourier transforming G'(r,r’,ko) this expression can be
rewritten as .

Ec,_;:kqﬁo / ——e”‘O"[:H (ak; ko)
—3C(q,k)—34(q,k; k0)]G'(k,q,k0) .  (I1.10)
H'(qk; ko) is defined by |
Hiakk)=(l@ (k). (Li1)

C(q,k) and A(q,k; ko) are defined analogously. & denotes
the volume of the crystal. To exhibit explicitly the de-
pendence of. E.; on the lattice configuration, H’ is

15 B, J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276
(1962).
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split into

H'=H/+Y AHY, (11.12)
l

where [ is summed over all lattice ions. Hy' has plane
waves as eigenfunctions and is defined as

Hy'=—(12/2m) V4V ets®(0,k0)+(C)+ Ao(r,k0) . (11.13)
Veii®(0,ko) is given by

1
Vetr(0,k0) = 5 f Br{V(0)+ 4:(@)+[Vr(r,ko) Jiccar} -
(IL.14)

(C) denotes the space average of C. 4, results from 4
for >°; AH,/=0, and V(r,ko)=0. AH/ is the contribu-
tion to AH'=H'— H| due to the ion /. Using Eq. (I1.12)
the equation of motion for the Green’s function
G'(x,r',ko) can be converted into an integral equation as

Gl(r,rl,ko) = Gol(l',r,,ko)
+3 / B Gy (1, ko) A (¢ ) G/ (' ko) . (IL15)
l

The Green’s function Gy'(r,t’,ko) is defined by Eq. (11.8)
replacing H' by Hy'. Introducing the T operator by

T(r,ko) = AH'(x,k0)
+ f a3 AH' (Y ko) Gy (1,0 ko) T (X ko), (I1.16)

Eq. (I1.15) can be rewritten as
G'(t,x ko) =Gy (1,1 ko)

+ / ar"'Gy' (e, k) T(x" ko) Go' (v X ko). (11.17)

Fourier transforming the Green’s functions in Eq.
(I1.17) yields
G'(k,q; ko) =Go'(k,ko) (27)*8(q— k)

+Go'(kko) T (k,q; ko)Go'(q,k0), (I1.18)

Tu(k,q; ko) = ef @0 r{ty(k,q; ko) +(1/Q) 30 3 0 rgy(k,p; ko)Go' (p,ko)t (p,q; o)+ -+ },
14 ?

1)
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with
T(k,q; ko)=(k|T|q), (I1.19)

and
Gy (k,ko) =1/[ko— Ey (k) +iesgn(k—kr)],e>0, (I1.20)

where kp is the Fermi wave vector and Ey'(k) the eigen-
value of Hy'. Defining the ¢ operator T (describing the
scattering of the valence electrons due to AH; including
multiple scattering arising from the AH; associated
with all the other lattice ions) by

Ty(x,x1; ko) = AH/ (Ry; ko)

+Z d37/AH1"(Rz'/,ko)Gol(l‘,l‘,; ko)
Iz

X Tl(r,)rl; kO) ) (II-ZI)
with

RzEl'—I'l, l’El"—rl, (1122)
where r; is the position vector of the ion / in the lattice,
then T'(r,k,) can be written as

T<r7k0) = Z Tl(r’rl; k()) . (1123)

Introducing further the ¢ operator describing the single
scattering of the propagator Go'(r,t’; ko) by one AH/,
which results from 77 if all multiple scattering due to
different lattice ions is neglected, by the operator
equation

t(Ry ko) = AHY (Ry,ko)
+/d3R1'AHz'(Rz',ko)G0’(Rz,Rz',ko)tz(R;',ko), (I1.24)
then T'y(k,q,ko) is expressed in terms of
ti(k,q; ko) = / e~ Ry (R ko)eia Rt (11.25)

after some operator algebra by

(11.26)

where successive indices are always different. The higher terms in the expansion result from multiple scattering
of the valence electrons by the crystal potential. Under certain conditions the expansion given in Eq. (I1.26) can
be summed up approximately as shown in detail in Appendix B. Using Eq. (I1.26), E.; can be rewritten as

Eeleelo+ Z (AEel)ll’+
B

z (AE)wpt---. (11.27)

v g

W, 1 54, 1)
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E,° is independent of the lattice configuration and is given by

. . * dko k2 (C) Ao(k,k; ko)
Ey'=—2i 3 lim [ ¢ton lG'(k»k; ko)l: + Vetr(0,%20) ]
P 7 5
F(U) T G L0 G (@A) B0 KAV (s 1)-H3ACID+HA Ll B | . (129
q
(AEa)w is given by
2
(AEa)uw= —Ek . ”1_12:0/ _—_e’tkﬂﬂGo/(q’ 0)Go' (K, ko) {ei @R rurgy, (q k; ko)
+(1/ DT G OO0 1 (q3; ol (ks Bo)+o 801 (g5 ka)ladks Bo) T}
A
i X (AVete'(k,q; ko) +3AC:(k,q)+A4(k,q; ko). (I1.29)
(AE.)uw .y is given by
2 © dko
(AEpwy=—— 3 lim “"‘e'k"”Go (a,k0)Go' (k,k0)Go' (O, ko)
Qrarn>t0 /2
X {expli(krri+q-ru+2de1w) Jo (q,2; ko)t (3K ko) +- -+ }
X (AV ets'(k,q; ko) +3ACo(k,0)+3A4:(k,q; ko). (I1.30)

(C) is determined by
(Vo+(C)=—3Er, (IL31)

where Erp denotes the Fermi energy of the valence
electrons. A(r,ko) is in general defined by

Ao(r,ko)[k)=/d3r’20(r,r’;kg)e"k"', (I1.32)

where X_o(r,r’; ko) denotes the self-energy of a valence
electron with energy ko in a uniform electron gas.
Approximating the self-energy by?*®

qu
Zo(r,r’; ko)=i/ -2-Vs°(l'y1'/; ko—q0)Go(r,Y’; go), (11.33)
T

where Vg° denotes the screened electron-electron inter-
action in a uniform electron gas and G, is obtained from
Eq. (I1.8) replacing H' by H, ,then Ao(kk;ko) is
given by

d3q dqo
Ag(k,k;ko)=i// -—
(27)3 27

XVs°(|k—a[, ko—q0)Go(q,q0) -
The matrix element AV .:%(q,k; ko) is defined by
AV o' (gk; ko) =00 g AV st | k) ,
AV et (t,k0) = Veti (t,k0) — (V et (0,k0))°.

16 1,. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc., New York, 1962).

(I1.34)

(11.35)

(Vets'(0,k0))° is the contribution to Ve°(0,ks) due to
ion I. Vel(r,ky) results from (Veg!(r,ko))° replacing
(V&Y 10cal by VR Vst is given by the sum of the terms
appearing in the bracket of Eq. (IL.14) replacing
(Ve)1ocat by V. ACi(g,k) and A4i(q,k; ko) are defined
analogously. The matrix elements thus defined are
approximately independent of the position vector r;.
AV, AC;, and AA; are the contributions to AV,
AC, and AA, respectively, due to the ion /. A self-con-
sistent determination of AC; and A4, is performed in
the next section.

The formation energy of an interstitial or a vacancy

is defined as
Ep=E—E,, (11.36)

where E denotes the energy of the crystal containing
the point defect and E, denotes the energy of the perfect
crystal. An interstitial is created by bringing an atom
from the surface into the interior of the crystal. A
vacancy is produced by removing an atom from a
regular lattice site in the interior of the crystal to the
surface. It follows from Eq. (I1.1), which is rearranged
in order to pair off infinite terms, that Er is given by

Er=AE+AE;+AEs+AEA+AE;.  (11.37)

AE; results from the Coulomb interaction of an ion with
the uniform gas of valence electrons and with all the
other lattice ions neglecting lattice distortion. AE; is
determined by the Ewald method.}” One gets for a

vacancy
AE = —%¢(0), (11.38)

17 K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).



A 1502

and for an interstitial
AE;= o(x1)—%¢(0). (I1.39)

xr denotes the position of the interstitial. The lattice
potential ¢ is given by

G(| xa—x:|/(4m)'7%)

o(Xa)=(Ze)*{ 22

l#a lxa—-xll

dr _ exp(iK-x,— K?29)

— S

Qg K50
T S(0) -5 } (I1.40)
0 R

This expression yields ¢(0) for xo=x;,=0. x; denotes a
lattice vector. K is a reciprocal lattice vector. x;, is any
lattice vector. The function G is given by

2 00
G(z)E———/ evdy. (I1.41)
\/7"_ 2
The structure factor S(K) is given by
SK)=Y ek, (11.42)

where » is summed over all ions within a unit lattice cell
of volume Q. 7 denotes an arbitrary parameter chosen
so as to obtain a rapid convergence of the sums occurring
in Eq. (I1.40).

AE, gives the change in the electrostatic energy of the
ions due to the lattice distortion associated with the
point defects. It is

AEs= Y {[(AE.)p1i— (AE.") pi ]+ [(AE ) ip—(AE4") i ]}
{L(AE.)pir—(AE.")puw ]+ [(AE0)ipr — (AE.) ipr 1+ [ (AE) wp— (AE)wp 3+ -+,

1D
+ 2

L1
@#l', 1#D, I #D)
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AR (Ze)? {ri, Vii VirVj
: ) h‘js 1’,']'3
(Virr35) (Vjo1s5)
MMM ATIRY SIS § 7K)
7’,‘]'5
with
Vii=Vi—V,. (1144:)

v; denotes the displacement of the ion ¢ with respect to
the position r;. The first term in Eq. (I1.43) results from
ion-dipole interactions, the next two terms from dipole-
dipole interactions, and the higher omitted terms result
from interactions involving higher multipoles.

AEj; results from the change AQ in the volume of the
crystal associated with the lattice point defect. It is

AE;=E(Q+AQ)—E(2). (11.45)

To determine this contribution the volume dependence
of E, must be evaluated explicitly as in Appendix C.
One gets then

AEs=—(AQ/Q){(1.964/r5%)— (0.916/r5)

—0.031460(rs)+ X gr(rs)}. (11.46)
K0

75 is the radius of the sphere which contains 1 electron
in the uniform gas of valence electrons. The functions
0(rs) and gx(rs) are explicitly given in Appendix C.
Note that Eq. (I1.46) yields an extension of the equation
of state of a uniform electron gas by taking into account
the interactions between the electrons and the static
lattice.

AE, and AEjs result from that part of E, which
depends on the lattice configuration. It is

(11.47)

where D denotes the ion whose removal produced the point defect. (AE.%)r and (AE.%) ;- refer to the perfect
crystal, e.g., no vacancy is present and the interstitial is removed to the surface of the crystal. In lowest order
approximation, AH, is independent of the lattice configuration. Then AE, simplifies as

AE4=2 z#ZD{ LAED)pi— (AE. ) pi]+3

Finally, AE5 is given by
AEs= 2

’

(#V', 17D, I' D)

{[l(AE2)uw—(AE)u ]+

Z L(AEd)piwy—(AE ) pw 3+ (I1.48)

l
@' #1, V' #D)

; LAED)uwi—(AEq)we-]y.  (I1.49)

DLV, V517V V7 %)

To simplify the determinaton of AE; and AEs, AVe? and A4, are approximated by local potentials. (AE.;)y-

is then given by

fk(lhfq)

A ) &dr diq [ e )
( Ea)ur= // (—2—70—3(*2;)3 4 ‘tr(q,k m

@p fo(l=f)(1—=fo)= fefp(1—fa)

(2m)* (Eq' (@) — Eo' (k))(Ey (@) — Ed'(p))

el gy (pk) - ti(qp)+cct - }

XAV et (k,q) +3(ACHk,q)) +3(A4:(k,q)) ],  (I1.50)
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where P indicates that the principal part of the integral must be taken. fy denotes the Fermi distribution function.
ti(q; k; ko) averaged with respect to %, is denoted by #(q,k). Expanding the ¢ matrices, the potentials, and the
exponential functions in terms of Legendre polynomials and performing the angular integrations one obtains

(AEpw= 2 D(g0,8'0,¢" " m" ,am’ ,Bm,a0) / / dkd9k292{]’v(ﬁ?’zzf)jw(knz')
0 0

g g, 8"
a, B, m",m, o

fe(1—fo) [AC(k,9) e [Adi(kyq) e
v ;k g _08,00m,00q,0 Veffl k, a+ }

XU Rl St x(CaV et -0
3 Ja(1=f) (A= fo) = fefpo(1— £2)

+—P[ dpp?
83 /o 27 LEJ(9)—Ed (k) JLES (9 — Ed'(p)]
><Dz(q,ﬁ)]ﬂ([AVeff’(k,q)]a+%EACz(k,q)]a-f-%[AAz(k,q)]a)aa,o5m,m"+C-C-}- (I1.51)

The coefficient D(g0,g'0,¢""m” am’’ ,Bm” ,00) is obtained from

16 [(2g+1)(2¢'+1)(20+1)]"2
D(gm,g’m',g"m",au,ﬁy',oo) =q0—0' o

w32 (2¢"+1)(2a+1)(28+1)
X A(gm,8v',g"'m'")A(g'm’,g"'m" av) A (c0,aw,8"), (I1.52)

Jo(pru)jo (kru )t (p,k)) g

A(gm:ﬁ’/,g”m")E/dQYa”m"*(g; g&)ng(o, ¢)Yﬁp'(0, (P) ) (1153)
for m=m'=0, v=»"=m'", s=0. The coefficient 4 is further evaluated as
 dgmar [(2”1)(25 il ]mc[ 88", my/(m-++/) 1C(g8g,000)8 (IL54)
mBv'.g'm") = ———— g8g”, mv' (m~+-v g’ it b - .
gm,Bv'.g PRI g +

Y ,m denotes a spherical harmonic. C(gB¢”’,0mm) is a Clebsch-Gordan coefficient,'® and 7, a spherical Bessel func-
tion. In deriving Eq. (I1.51) it has been assumed that the energy E'(k)=~E,'(k). If AH,'(R;,0) varies slowly with
R;, then the ¢ matrices and potentials in Eq. (IL.51) can be averaged with respect to %, ¢, and p, respectively, and
be pulled out of the integral. The remaining integrals contribute then mainly for k, q, and p close to the Fermi
wave vector.

Approximating #(k-+q, k; ko) by (q), which is #(k+q, k; ko) averaged with respect to k¢ and k, one obtains
for (AE.;)w the expression '

| &g g &p |
@Eu= [ e (560~ D+ [ —erwrpana-p e toct- |
(27)3 8me? (2m)3

X (AVe(@)+3AC () +344:(q), (IL5S)
where &)(g,0) is the dielectric function of a uniform gas of valence electrons and where
P firal= (U= furn) = fifirs(1= fira)
(20)* (B (kt-0)— B (0)E (k+-0)— Ed (k+p))

Equation (IL.55) can be further evaluated approximately as

F(p,q)=3P (11.56)

1 I ) Ve : 1 v w’ . .
(AEw=-— | dgq [ sin(gru)——(80(¢,0) — Dt (9)+—t:(g) / dppF' (p,Q)t (p) sin(pru)+c.c.4- - }
8mre? 2m? 0

T Jo

X(AV e (q)+3AC(g)+5A4:(g)), (11.57)
with

e ' ,
F(pg)= / —Fpaia—p). (IL.58)

18 M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957).
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Under the same conditions as used in deriving Eq. (I1.50) (AE.)ur+ can be rewritten as

3Lfoll= f) A= f) = fefall—£2)]
(Ed'(@)— Eo' (k))(Eo' (@) — Ed'(p))

X {h’(q’p)tl”(p7k)+ T }(AVeffl(k)q)+%Acl(k:q)+%AAl(k7q)) . (1159)

) =2P : P i i (k )
AEe =2 Xexp 1 D 74 +q'r '-I-p'r»u
( 1) ( )3 ( )3/ ( )3 v u vir)

Assuming E¢'(k)=2E,'(k), etc., and performing the angular integrations one obtains

3 1
AE )y =— 2 D(gm, g'(—m), g’'m", a(m' —m), Blmm' —), o0
(AEa)un 22 6 870 B ((2g41)(2¢'+ 1))V (e, ¢ 4 ( ) 0‘)

XY*am<6rl'1~,rzz':S"rz'z".ru')Y*a’m’(oru".ru's%n',ru")/ / / dkdqdp(kqp)*
0o Jo Jo

fell= (A= fo) = fif (1= fo)
(£ (@) —Eo' (k))(Ed' (@) — Ed'(p))

{To(prvw) Jo(krue) jo(grur) e (g,p)) sl (p:8))er+ - - - }

X ([A Veffl(k7q)]a+%[Acl(k:q)]a'*'%[AA l(k)Q)]u) . (1160)

Again, if AH; varies slowly with respect to R;, then the ¢ matrices and the potentials can be averaged with
respect to k, q, and p and be pulled out of the integrals in Eq. (IL.60).
Using the same approximations as in deriving Eq. (IL.55) one obtains for (AE.;)y the expression

&’p d'q .

(AE)wir= 2/[ ————— —F(p,q)ei @ e, (q—p)iy (p)+- - - YAV (Q)+3AC(q)+1A4,(q)).  (IL61)
(2m)* (2m)?

Performing the angular integrations one gets approximately

AE )y = Z g0tV (01, RN ,al, N d N 0 dpdgpq*(F p’
( Dt ot d e (2 1)(2g' 1 NS I TR $71 4 4 8V,8 V.8 )]0 /0 paqgp 9( ( 9))a

XLt (5, ot (P)+ -+ - YT (qrue) Ju(prvw )(AV e (9) +3ACHg)+3A4:(g)).  (11.62)

III. SELF-CONSISTENT DETERMINATION OF AC:(q,k) AND AA;(q,k; ko)

A further calculation of E,; needs a detailed determination of #:(q,k; ko) and AH/'(q,k; %o). It follows from Eq.
(11.24) that the matrix #(q,k; ko) is determined by the integral equation

da3p
t(g,k; ko)=AH/(q,k; ko)+ / (—2“)—3AH 1 (@,p; k)Go' (ko) ta(p,k; ko) . (I11.1)
™
If the perturbing Hamiltonian AHy varies slowly as a function of R;, then Eq. (III.1) is solved by

d*p
ti(q,k; ko) = {AH /' (q,k; ko)+ / (—2~~)—sGo’(p,ko)AH /(q,p; ko) AH/ (p.k; ko)}
Yy

dép d\
X<1—// ““““ '—Go'(P,ko)Gol(%ko)AHz'(l,p;ko)AHl'(p,Q,;ko)) . (IIL.2)
(2m)3 (27)3

1t is obvious from Eq. (II1.1) that in order to determine #,(q,k; o) self-consistently, AH(q,k; £,) must be deter-
mined self-consistently. Assuming that the closed-shell core-electron eigenfunctions ¢, are self-consistent, determi-
nation of AH/'(q,k; ko) is reduced to the self-consistent determination of AH(q,k;%,) which is defined as the
contribution to AH due to the ion /, where AH is given by H—H,. To determine AH,(q,k; ko) self-consistently,
the dependence of ACi(q,k) and A4:(q,k; ko) on AH,(q,k; ko) must be evaluated explicitly. AC; and A4, are the
contributions to (C—Cj) and (4 — 4,), respectively, due to the ion .
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Assuming momentum conservation, then to first order in AH;, AC; is approximately given by?®

dic d*p dpo
ACak)= =22V (a=k OWslwder [ [ [ = o alynGalotah, 20
(27)® (2m)? 27
XGa-r(p,p) AH:(p+q—k, 05 o), (IIL3)
which is graphically demonstrated in Fig. 2. V(q—k, 0) x
denotes the screened static interaction among the va-
lence electrons which is given in detail later on in this Go Vs

section. The matrix elements are averaged over all
values of p with p<pr, where pr is the Fermi wave
vector. The Fourier transform Gg_r(p,po) of the Green’s  F1c. 2. Graphical representation

function GH—-F‘(r,r/,PO) given by of AC;. i G
’ ’ 1]
Grr(t,x'; p5) =L Yo, * ¥ )Gr_r(p,p0) (IIL4) AHy |
’ |
is obtained from Eq. (II.20) replacing E¢'(p) by E(p) as ?

determined from Eq. (I1.2). The Green’s function Gg_r
is the Hartree-Fock approximation of the Green‘s function G. The wave function ¥, is given by Eq. (I1.4) with

d3
®,(r)=[p)+ / ZZ—%Go’(q,;bo(p))T(q,p; po(0))|a). (I11.5)

Approximating the self-energy of the valence electrons by?!®

d
2 (x5 ko) =1 / {—OV.,(r,r’po)G(r, v, ko—po) (I11.6)
T

one gets for A4;(q,k; ko) the expression

. Bo &Y dp dpo ,
AAi(q,k; ko)=1Q / / / / Z2_10—3(_.2—71-)—3(_2;;5;113(1),?0)6;0((1_!)’ ko—p0)Gu_r(0, ko— po)
X{o|¥y Y¥p | k—p)AH(q—D, 0; ko—po). (IIL.7)

Assuming momentum conservation, one gets g=k=p+p’. Then Eq. (II1.7) can approximately be rewritten as

. . o d*p dp,
siaks k=i9Grysta—0Wesla— [ [ [ [ i g e
XV o(D,£0)Go(@—p, ko— p0)Gr—r(q—D, ko— po) AH:(q—p, 0; ko—p0), (II1.8)
where the matrix elements are averaged over all values of p lying within the Fermi sea. Assuming that A4, is slowly

varying with R;, then Eq. (II1.8) is approximately solved by

A4y(q,k; ko)=

z9(27r)36(Q'"k) <‘l’q—p I q_P>av d3o d;gp dPO
K(q,ko) /V[/ PEYEY _———<0’ I ‘pq—p)e.v

(2m)? (27)% 27
XV o(0,00)Go(q—Dp, ko— p0)Gr—_r(q—D, ko— po){ AV (q—p, 0)+ A4} (q—p, 0)+ACi(q—p, o)}, (II1.9)
with

) e d%p dpo ‘
K(q,ko)= 1_1Q<¢q—p[q—p>aV/// LT ——<0'l\bq—p)avVS(PaPO)GO(q—p, ko— po)Gr—_r(q—p, ko—ﬁo) . (I1I1.10)
(2w)3 (27)3 2
Assuming that AC; varies slowly in R;, using Eq. (I11.9), then Eq. (IIL.3) is solved by

AC(q,k)= m{ Vigk)+4:'(q,k)}, (I11.11)



A 1506

where the dielectric function §(q—k, 0) is given by

8(q—k, 0)=1+1QV.(q—k, 0)r(q—k, 0),

K. H. BENNEMANN

(I11.12)

with the irreducible polarization propagator w(q—k, 0) determined by

d3

T(q—k7 0) = (‘ppl p)avf E‘ig;(ol‘l/lo)avpo(q—ks 0){1+ﬁ(q_ ka 0)} .

The term 3(q—k, 0) arises from AA4; and is given by

(pt+a—k[¥s)ar

(II1.13)

ﬁ(q_k’ O)Elg

2

fd3o'/(27r)3<0' [ ‘/’p>av

dko <¢p+q——k-p’ |p+q_k_p/>av.av [// ddo d3p/ dﬁ(,’
<K(p+q—ka kO))av

(27)3 (27)® 27

X{o|¥prat—p)ar Va0, 00 NGo(@+a—k—1’, Bo— 90 )ar(Gr_r(p+a—k—', Bo— po))ay. (IIL.14)

The matrix element (Ypygrp |PFa—Kk—Dlay,ov is
averaged over all values of p and p’ within the Fermi
sea of the valence electrons. It has been assumed that
K(p+q—Kk, ko) varies slowly as a function of p over the
range of integration. (K (p4-q—k, &) ).y is averaged over
all values of p within the Fermi sea. The Green’s func-
tions Gy and Gr_r are averaged with respect to all
p<pr. Pi(q—k, 0) is defined as

k, 0)=2 / / 72 %
o\Yy—Hhn, 0 = -
Pola ) (27)3 27

X Go(p+aq—k, po)Gr_r(p,po) .

Replacing the Green’s function Gu_r(p,po) by the free-
particle Green’s function Go(p,po) then Po(q—Kk, 0)
reduces to the polarization propagator Py obtained in
the random-phase approximation for a uniform electron
gas!® for which an explicit expression is given by Lind-
hard.’® Substituting in Eq. (I11.9) for AC; the expression
given by Eq. (IT1.11), then A4, is given as a function
of V.t and 4;,* only. This completes, within the approxi-
mation used, the self-consistent determination of AC;
and A4;. The wave functions ¢, occurring in the matrix
elements involved in the formulas for AC; and A4, can
be approximated by the wave functions y, which result
from Egs. (I1.4) and (II1.5) approximating 7°(q,p; po(p))
by 31 et r1y(q,p; po(p)), where #; is determined from
AH) with AC; as obtained by using for the dielectric
function & the static dielectric constant &, for a uniform
electron gas.

Assuming momentum conservation, then the screened
interaction V(p,po) among the valence electrons is
approximately given by?®

(I11.15)

47re? Are? ) -1

Vs(P;P0)=—_|:1+7:_| <1,bp+qle’l’"lz,l/q>“]2P(p,p0) :I ’
?? ?’

(II1.16)

1 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 28, 8 (1954).

with

Pl E/ / (:rq)a iiz%

XGu-r(4,90)Gu-r(a+p, got+po). (II1.17)

A further evaluation of P(p,pq) is only feasible if a model
is chosen for the crystal electron bands with a simple
energy spectrum E(q).2°

In deriving Eq. (ITI1.11) it has been assumed that AH;
can be approximated by a local potential. This can be
achieved, for example, by approximating A4; by the ap-
propriate Thomas-Fermi-Slater exchange potential.2!:22
Thus, it may be noted, that the approximations used in
deriving Eq. (III.11) are less restrictive if one neglects
A4, e.g., for f=0. The approximations involved in
deriving Eq. (II1.11) are equivalent to those used by
Cohen and Phillips?® in determining self-consistently the
screening of AV by the valence electrons. However,
these authors take only a linear response of the valence
electrons to the pseudocrystal potential into account,
thus neglecting local field effects in determining the
dielectric function &, while the dielectric function deter-
mined by Eq. (III.12) includes local-field corrections.
Finally, it follows that AH; can be written as

AHl(q’k; ko)
A V;’(q,k) +44 ivl(q>k)
B 8(q—k, 0)

The first term in Eq. (II1.18) gives for A4,=0
the same result for AH; as obtained within the
random-phase approximation or self-consistent Hartree
approximation.2*

For the following the matrix element AVz!(qk; ko)
of the nonlocal repulsive potential AVz! must be

FAA(q,k; ko). (TI1.18)

2 D. R. Penn, Phys. Rev. 128, 2093 (1962).

2 T, C. Slater, Phys. Rev. 81, 385 (1951).

2 1. C. Phillips and L. Kleinman, Phys. Rev. 128, 2098 (1962).
% M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961).
# H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
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evaluated in more detail. It follows from Eq. (IL.7) that one gets

00

AV ak; k)= — 3 {oew | AH | k)a| oew).  (ITL19) a.(p)= (4m)'2(2t+ 1)”21"/; drrPet(r) jo(pr) . (111.25)
t Kk
. . In order to evaluate further AVz!(q,k; ko), it is assumed
Writing ¢¢,i in the form that A4,(q,k; ko) can be approximated by A4,(k) and
s s B(q—k) 0) by 6(lq_k| ’ 0) Then AHl(pyk: kO) can be
e.x(1) =zs: Uu(ts) o' (Rs) , (111.20) expanded in Legendre polynomial’s as

using o
> Un* @) Un () ={e*| o*'), (II1.21) AH(p,k; ko)= > {AH(p,k; ko)} yPy(cosByp,c). (II1.26)
k g=0
This yields
and assuming that ¢.* and ¢:*, and AH, and AH, for Yol Y (VA L
s#s’ are not appreciably overlapping, then one gets AV (ak; ko) = Z‘ o (@b (kko),  (I11.27)
with
AV rHaq,k; ko) 1 >
beid=— [ dppHAHpE; RYuade). (IIL29
ap 2w J
—_ . l 1*
- Z, / (271_)3AHl(p oK; ko)ad(p)ad(a),  (111.22) It follows that AH;' can be expanded in the same way
with as AH;. Therefore, #(qk;k)) can be expanded in
ad(p)={0d|D). (111.23)  Legendre polynomials in the same way as AH/'(q,k; &o).

Finally, it may be noted, that if AH;'(R;,ko) varies
slowly with R; and if the angular dependence of
ti(k,p; ko) can be expressed by the angles 6y, and ¢k,

YR — ! then expanding # in terms of Legendre polynomials it
o (Ry) %(P"" (R)/R)Y in(Orrpmy),  (T11.24) follows from Eq. (IT1.1) that (t;(k,p; ko)), is given by

Expanding |p) in spherical harmonics and writing ¢;* as

11 e
(ks ko)) o= {(AHz’(k,P;/eo))a+——-—— / dqq?Go’(q,ko)(AHz’(k,q;ko))g(AHz'(q,?;ko))o}
272 2g+1J

1 1 = e —
><<1‘“—“/ / dquqx)mo'(q,ko)Go'(x,koxAH/(x,q;ko»a(AHl'@’“k“””) - (L29)
271'2 2g+1 0 0

IV. NUMERICAL RESULTS FOR THE ENERGY OF FORMATION AND MIGRATION OF
AN INTERSTITIAL AND A VACANCY

The general method outlined in Secs. IT and III is used to calculate the formation and migration energy of an
interstitial and a vacancy in diamond, silicon, and germanium. The calculations are carried out for the point-defect
configurations indicated in Fig. 1, e.g., for the tetrahedral and hexagonal interstitial position, for a vacancy at the
lattice site ““d,” and for two vacancies at the sides “e” and “b” and a lattice atom at the position “s.” Lattice
distortion associated with the point defect is neglected. Then the formation energy is calculated from

Ep=AE;+AE;=AL,. (IV.1)

AE, is determined by Eqs. (I1.38) and (I1.39). AE; is approximately determined from Eq. (I1.45) approximating
the volume change of the crystal AQ by @ in the case of a vacancy and by (—Q,) in the case of an interstitial.
Thus we neglect the contribution to AQ resulting from the lattice relaxation associated with the point defect.!
AE, is determined from Egs. (I1.48), (I1.55), and (I1.62) as follows. {; is assumed to be independent of /. Defining

2 ACln( ) AAlo( )
A&(q)sft{f;(s(q,m—1)m<q>(Aleo<q>+——2 v, : q)

ACy(p) A4 zu(p))

d3
+ [ L@ wan@no-o+ee)sVarm+ o, ava)
(27)? 2

and

AEy(p,Q)=6F (p,q){trs(q—p)try(p)+ - - - J(AV est"(@) +3AC (@) + 344, (q)) , (Iv.3)
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where lo, 1, I’’ refer to any lattice ion, then Eq. (11.48)
is rewritten as

AE,=AEM4-AE,®, (IV.4)
with
E®M =3 N(QAE(q), (IV.5)
q
and
AE®=3 M(p,@) AE:(p,q)- (IV.6)
q,p
N(q) and M (p,q) are defined as
N@=£(1/2) ¥ (ewrr—gwm?),
1'=D (Iv.7)
l’DllOE rDO-—rlz ,
and
M(p,g)==£(1/2?)
X 2 (expi[(q—p) - ror+p-rprr]
W =1, (AT
—expil (q—p) - tor®+p-1pr?]). (IV.8)

rp refers to the position of the ion D in the interior of
the crystal and rp° refers to the position of the ion D at
the surface of the crystal. The minus signs in front of
1/ and 1/Q? refer to a vacancy. Defining

Qa)=(1/Q) X eivmor, (IV.9)
1D

where I is summed over all lattice ions beside the ion D,

one gets
N(@)=={Q(0)—30"(®)},

where Q%q) is given by Eq. (IV.9) replacing rp by

(1v.10)

K. H. BENNEMANN

1% and

M(p,q)==%={[Q(a—p)Q(p)—Q(a)]

” 3[30%a—p)Q°(P)—Q°()]}. (IV.11)
tis
Qr(q) =X 0S5 (K)dq,x, (IV.12)
and
Qv(@)=0Q%q),
(IV.13)

0%(q)=e™r2°S (K)%:K_g"z ,

where K is a reciprocal lattice vector and I and V refer
to the interstitial and vacancy, respectively.

In determining AE,, AH(q,k; ko) is approximately
given by Eq. (IIL.18) replacing the dielectric constant
by &x° representmg the dielectric function of a uniform
electron gas in the Hartree approximation and with
AA4,(q,k; 0) determined by using the Thomas-Fermi-
Slater approximation.?!?? 8x° is obtained from Eq.
(IIL.12) by replacing the electron-electron interaction
potential V, by V%, which refers to a uniform electron
gas, and by approximating in the polarization propa-
gator 7 all wave functions y; by plane waves and putting
B=0. Using the Thomas-Fermi-Slater approximation
one gets for A4, the approximate expression

A4 (q,k; 0)=—(0.92¢2/3r,) Api(q,k) .
Api(g,k) is defined as

(IV.14)

Api(g k)= f d*RieRiApy(Ry)eRe, (IV.15)

where Api(R;) is the change in the density of valence
electrons associated with Ap;(R;,0). It follows from Secs.
IT and ITI that Ap;(q,k) can be written as

1 1
A ,k _____ —fp(1— i(y—otk—q)e rzl: — :I
o) =2 / / (2m)? (27r)3f s E(p)—Eo(0)+in E(e)—Eo(p)—in
XAH(o,; 0y [¥0)(¥p|o+k—q). (IV.16)
Then a self-consistent expression for Ap;(q,k) is approximately obtained by
l—w( )k) AVil(q:k)—l'AAivl(qu)
Bpu(ah) =~ , (av.17)
w(qyk) gH(q—ky 0)
with
1— ——— ———f,(1— f,
oap=1-x [ [ 22 o (wf (-1

1

X ei(y—v—H{—q) . rz[

w(q,k) is approximately given by replacing the energies
E by E, and by averaging the matrix elements with
respect to p. For the numerical calculation the wave
function ¥, is approximated in Eq. (IV.18) by a normal-

E(p)—Eo(0)+in E(o)—Ey(p)—in

]<wp><¢plu+k 0. (IV.18)

ized plane wave, and in Eq. (IV.17) 8y is approximated
by gHO'

AVrYq,k; 0) is determined from Eq. (II1.27). The
closed-shell core electron wave functions ¢, are deter-
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mined using earlier results given by Herman?® for
diamond, by Kleinman and Phillips!* for silicon, and
by Hartree et al.2® for germanium.

The numerical results obtained for the energy of
formation and migration of a single interstitial and of a
single vacancy in diamond, silicon, and germanium are
listed in Table I and discussed in the following section.
The following tables contain the results obtained in the
Hartree and Hartree-Fock approximation and display
the importance of the {-matrix approximation, and
particularly the importance of multiple scattering. The
interpretation of the results in physical terms becomes
obvious from the fact that multiple scattering is re-
sponsible for covalent bonding and that exchange in-
creases the formation of covalent bonds. The formation
energies of the interstitial refer to the tetrahedral inter-
stitial position, which turns out to be the equilibrium
position. (See Table II to Table VIIIL.) In order to dem-
onstrate the potential associated with a single lattice ion,
which is the basic quantity in the outlined method, Fig.
3 shows for diamond, silicon, and germanium

Vilg)=VH9+A:u 9+ Vr'g)
+[C(q)/NI+[A(g)/N]. (IV.19)

Figure 3 shows that in all three cases Vi(q) decreases
rapidly with increasing ¢ indicating a smooth pseudo-
crystal potential as assumed.

V. DISCUSSION

A general method is presented for determining from
first principles properties of point defects in covalent
crystals. The scattering of the valence electrons by the
effective crystal potential is treated by taking into
account the atomic configuration of the lattice. In this
way the response of the valence electrons to the effective
crystal potential can be determined taking into account
nonlinear screening, e.g., local field corrections. The
redistribution of the valence electrons reflects strongly
the atomic configuration of the imperfect lattice. Thus,
the energy of the system of valence electrons is obtained
as a function of the positions of the ions. This will be
used in a continuing paper to express the energy of the

TaBiE I. Ep® and Ep? denote the energy of formation and
migration, respectively, of a vacancy. Ep*=Er*+Ey® denotes
the activation energy for vacancy diffusion. Er? and Ey’ denote
the energy of formation and migration, respectively, of an inter-
stitial. Epf=Er!+ E! denotes the activation energy for inter-
stitial diffusion.

Sub- Eg? Ep? Ep? Ezt Ex? Ep?
stance  (eV) (eV) (eV) (eV) (eV) (eV)
C 3.68 1.85 5.53 1.76 0.85 2.61
Si 2.13 1.09 3.22 1.09 0.51 1.60
Ge 1.91 0.98 2.89 0.93 0.44 1.37

25 F, Herman, Phys. Rev. 88, 1210 (1952).
26 W. Hartree, D. R. Hartree, and M. F. Manning, Phys. Rev.
59, 306 (1941).
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v, (a) [Ry]

-2.5-

Fi1c. 3. Plots of the potential V;(q), which is defined as the sum of
Vit(a), 4:44(q), V&' (q), C(g)/N,and 4 (q)/N, for C, Si, and Ge.

system of valence electrons in terms of the ionic dis-
placements arising from the point defect. Such an ex-
pression is required for many problems, for example, for
a self-consistent determination of the equilibrium con-
figuration of an imperfect crystal.?”

The {-matrix approximation is valid even if the crystal
potential is strong and represents, therefore, an exten-
sion of orthogonal-plane-wave method and is very useful
if the pseudocrystal potential is not weak and for treat-
ing those valence electron states for which the repulsive
potential vanishes for symmetry reasons. For example,
in diamond, valence electrons in s states see no repulsive
potential. Another advantage of the -matrix approach
is its ease of physical interpretation, which is very useful
for finding good approximations. Further, the #-matrix
approximation is very convenient for treating multiple
scattering of the valence electrons by the lattice which
is essential in covalent crystals. Multiple scattering is
important for determining the fine structure of the
valence-electron distribution reflecting, for example, the
sizes of the lattice ions. Multiple electron scattering will
in general become more and more important with de-
creasing distance among neighboring lattice ions.

The orthogonalization of the valence-electron wave
functions to the closed-shell core-electron wave func-
tions yields two main advantages. First, the crystal
potential is transformed into an effective crystal po-
tential, which is usually weak and smooth. Second, the
electronic structure of the ion cores is taken into account,
guaranteeing that the valence electrons will not occupy
closed-shell core-electron states. The cancellation of the
crystal potential by the repulsive potential is discussed
in detail by Cohen and Heine!? and by others.!* How-

ever, it may be noted that if the closed-shell core-

27 K. H. Bennemann, Phys. Rev. 130, 1757 (1963).
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TaBLE IL The contributions AE;, AE3;, and AE4 for a
vacancy. The energies are in rydbergs.

C Si Ge
AE,” 6.458 4.223 4.069
AEY —1.801 —1.156 —1.088
AEY —4.387 —2911 —2.841
ErV 0.270 0.156 0.140

electron states are distributed over the strongest inner
core part of the potential and if no strong admixture of
core levels into valence levels occurs, then the pseudo-
crystal potential is weak. In general the cancellation of
the crystal potential is less complete for higher valence-
electron states. However, valence electrons in higher
states also interact more weakly with the crystal
potential.

The general method studies the determination of a
self-consistent crystal potential taking into account
correlation among the valence electrons,??:28 thus pre-

TasLE IIL. The contributions AE;, AE;, and AE, fqr the saddle-
point configuration of the vacancy. All energies are in rydbergs.

C Si Ge
AE)" 5.076 3.320 3.197
AE5V —1.801 —1.156 —1.088
AEY —2.869 —1.928 —1.898
EF¥ 0.406 0.236 0.211

senting an extension of usual band theory. The valence
electrons interact with a static lattice. However, the
proposed method can be extended to take into account
the dynamics of the lattice by adding the polarization
propagator of the lattice to the polarization propagator
of the valence electrons in the dielectric function. The
application of the proposed general method to other
crystal types is mainly limited by the fact that the
tightly bound core electrons are treated as dynamically
independent of the valence electrons. The neglect of

TasLE IV. The contributions AE;, AE3, and AE, for the
interstitial. All energies are in rydbergs.

Interstitial
site C Si Ge
T AEf 1.965 1.289 1.239
AE,! 1.801 1.156 1.088
AEJ —3.637 —2.367 —2.258
Er! 0.129 0.078 0.069
H AE,] 2.401 1.572 1.513
AES! 1.801 1.156 1.088
AEI —4.031 —2.628 —2.511
Ep! 0.171 0.100 0.090

28 ¥, Bassani, J. Robinson, B. Goodman, and J. R. Schrieffer,
Phys. Rev. 127, 1969 (1962).
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correlation between core and valence electrons is valid
if electron transitions between tightly bound core-
electron states and valence-electron states are negligible
and if the excitation energies of tightly bound core
electrons are large compared to excitation energies of the
valence electrons, for example, the plasma energy.
Under these two conditions the core-valence electron
interactions are essentially unscreened and thus can be
treated within the Hartree-Fock approximation. This

TABLE V. Vacancy formation and migration energy as resulting
from various approximations for the scattering matrix T;. All
energies are in eV.

Approximation

for T C Si Ge
AH, Ep¥ 0.64 0.47 0.43
17 Eg¥ 0.92 0.64 0.59
t;—i—l’élt;Goh’ Eg¥ 3.68 2.13 191
AH, Eyn¥ 1.27 0.86 0.78
t Ey" 091 0.60 0.52
Ex” 1.85 1.09 0.98

ti+ 2 6Goty
14231

is the case, for example, for small ion cores. However,
in noble metals and transition metals the interaction
between conduction electrons and core electrons—for
example, s-d electron interactions—is remarkably strong,
and then the above assumption will fail. Then the
coupled wave equations for the core electrons and the
valence electrons must be solved self-consistently.

If the closed-shell core-electron wave functions ¢
belonging to different ions overlap, then the resulting

TaBLE VI. Vacancy formation and migration energy in the Hartree
and Hartree-Fock approximation. The energies are in eV.

Approximation C Si Ge
Hartree Ep¥ 2.52 1.62 1.47
Hartree-Fock Eg¥ 3.68 2.13 1.91
Hartree Ep¥ 1.45 0.87 0.80

Hartree-Fock ExV 1.85 1.09 0.97

repulsive interaction can approximately be described by
a Born-Mayer potential. It needs to be investigated
from case to case whether the exchange-correlation
potential can be approximated by a local potential. As
has been discussed by Phillips and Kleinman?? a local
exchange potential represents a fairly good approxima-
tion in the three semiconductors considered in this
paper.

The general method was concerned with determining
the nonlocalized valence-electron states resulting from
the electron scattering by the imperfect crystal. How-
ever, there will in general also be bound states associated
with point defects. In the text, the sum over the wave
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TaBLE VII. Interstitial formation and migration energy as
resulting from various approximations for the scattering matrix
T;. The formation energy refers to the T site, the equilibrium
configuration. All energies are in eV.

Approximations
for T C Si Ge
AH,; Ep! 0.49 0.33 0.30
t Eg! 0.71 0.48 0.42
t;—l—lEl Gty Ep! 1.76 1.09 0.93
5%
AH,; Eyu! 1.75 0.84 0.75
17 Eu? 2.15 1.06 0.97
t;+121t160t;: Eun? 0.85 0.51 0.44
15

vector of a valence electron has always been converted
into an integral in a way implying that the bound states
lying in the energy gap between the valence and con-
duction band are unoccupied. This will in general be
the case if the crystal is in its ground state, but not at
high temperatures and in strongly doped #- or p-type
crystals. The existence of bound states might complicate
the kinetics of point defects. However, it is observed
that the migration of a vacancy does not depend much
on its charged state® resulting from trapping valence
electrons in bound states. A brief mathematical formu-
lation of bound states is given in Appendix A.

The proposed method can readily be used to deter-
mine correlations among point defects, for example, to
calculate the interaction among two interstitials, two
vacancies, an impurity and a vacancy, etc. Such corre-
lations play a role in diffusion and quenching experi-
ments.

The further main approximations used in the applica-
tion of the general method to diamond, silicon, and
germanium are that the dielectric function & is approxi-
mated by 84 that the renormalization of the valence-
electron wave functions is neglected, that the exchange
potential is determined using a Thomas-Fermi-Slater
approximation, and that the lattice distortion and re-
sulting volume change of the crystal is neglected. The
error resulting from these approximations in determin-
ing formation energies is roughly estimated as about
209,. However, the error involved in determining the
migration energies will in general be less.

TasLE VIIL Interstitial formation and migration energy in the
Hartree and Hartree-Fock approximation. The formation energy
refers to the T site, the equilibrium configuration. All energies
are ineV.

Approximation C Si Ge
Hartree Ep! 1.30 0.83 0.71
Hartree-Fock Epl 1.76 1.09 0.93
Hartree EpT 0.68 0.40 0.35
Hartree-Fock Eu? 0.85 0.51 0.44
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It follows from Table I that the migration energy of
an interstitial is much smaller than the migration energy
of a vacancy. Since the atoms in the diamond-type
lattice are strongly bound by covalent bonds to each
other and the vacancy migration involves the successive
rupture and reformation of three covalent bonds, it is
expected that the presumably loosely bound interstitial
is much more mobile than the vacancy.

In the following, the results given in Table I are com-
pared to results found by experiments and earlier calcu-
lations. By using a Morse potential in which parameters
are determined phenomenologically from force constant
data, Swalin® calculated for the energy of formation of a
vacancy in diamond, silicon, and germanium 4.16, 2.32,
and 2.07 eV, respectively. Swalin obtains further for the
vacancy migration energy in diamond, silicon, and ger-
manium 2.02, 1.06, and 0.95 eV, respectively. By de-
scribing the covalent bonds by a Morse potential and
determining the lattice distortion due to the vacancy
from Born’s lattice energy within the harmonic approxi-
mation, Scholz? calculates the formation energy of a
vacancy in germanium. Depending on the potential used
Scholz obtains results between 1.62 and 2.52 eV.

The following experimental results are available.
From quenching in #- or p-type germanium it is found
that the energy of formation of the involved point
defect, believed to be a vacancy, is 2.04-0.3 V. Also,
the data can be fitted using 0.94:0.07 eV for the energy
of motion. The activation energy for self-diffusion in
pure germanium was measured to be 2.9640.05 eV.3
The energy of formation and migration is found to be
the same irrespective of whether the vacancy is in #- or
p-type material, thus indicating that the energies of
formation and migration do not depend much on the
charged state of the vacancy. Watkins? obtained from
annealing studies in p-type silicon an energy of motion
of 0.33+0.03 eV for the vacancy identified by means of
electron paramagnetic resonance (EPR). This result is
inconsistent with others. It may be noted that some
experiments performed in n-type silicon demonstrate
that the dependence of the vacancy mobility on the
charge state is small. Also, Fig. 3 suggests that diffusion
in silicon and germanium should be rather similar.
Judging from impurity measurements the activation
energy of diffusion in silicon is about 3.5 eV.# Assigning
it to vacancy motion, Watkin’s results would imply a
formation energy for the vacancy of about 3 eV, which
is remarkably different from germanium. Probably
further EPR studies are necessary before point defects
can be firmly identified.

Hasiguti* estimated from measurements that the
migration energy of an interstitial in p-type germanium
is about 0.5-0.6 eV and the migration energy of a
vacancy in #-type germanium about 1.2-1.3 eV.

Accurate experimental results about formation and
migration energies of point defects in diamond are not
yet given in the literature.
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APPENDIX A: BOUND STATES

In the previous sections, the valence-electron states
resulting from the scattering of the valence electrons
due to the perturbing Hamiltonian AH have been

Ti(q,k; ko) = /~—~Vl(q,p ko)Go(p,ko) Tu(p,k; ko)+ Z /——*e’(‘”’) 1V 1.(q,p; ko)Go(p,ko) T1(p,K; ko)

W ?sz)

with

Vi(q,p; ko) = Vet (q,p; ko) +Co(q,p)/N+A4o(q,p; o)/ N+ AC:i(q,p)+ A4 :(q,p; ko)

N being the total number of lattice atoms, and with
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determined. In the following we outline briefly the
determination of the bound states associated with point
defects. The shallow localized states due to imperfections
in semiconductors can be adequately determined in
terms of the effective mass theory developed by Kohn.?®
However, this theory is not valid for deep localized
states at point defects. The shallow as well as deep
bound states resulting from point defects are determined
by the poles of the ¢ matrix 7' associated with an inter-
stitial, impurity, or displaced lattice ion. Thus the
localized states are determined by the homogeneous
integral equation

(A1)

(A2)

0.

GO(P:kO) =

T, is approximately expanded in Legendre polynomials as

Tq.k;ko)= 22, [T i(gk;ko) JoPo(cOsBq k).

One gets then from Eq. (A.1)

1 1
[Tu(g,k; ko) Jg=———
2n% 2g+1

Eo— (B2/2m) p*+-ie sgn(p—pr)

(A3)

(A4)

dpp*Go(p ko)L Vi(q,p; ko) J.LT:(p.k; koo
0

+ 2 / = e Go( ko) Vi (Q,0; ko) [ Ti(prk; o) Jo(P o(c0s8p.k)/ Pocosdq ). (A.5)

(2m)?

(04 #l)

Assuming that V; varies slowly in space, then Eq. (A.5) can approximately be rewritten as

1 1
(Tugk; ko)]a——“—
272 2g+1

(1
+ X X “——X / dpp*Go(p,ko)

voog w2
@ #0

dszzGo(P,ko)[Vz(q,P; ko) Jo[ T4(p,k; ko) Jo

singry, sinpryy

pru

[Vi(g,p; ko) 1o [Tu(p,k; ko)) 1,. (A.6)

qru

It follows from Eq. (A.6) that the poles of [T:(q,k; ko) ], respectively, the energies ko of the bound states are

approximately determined by

1
o
4r*\2g+1

) / / Apdp BBV Go B Gt oV i(pst' ) o

{;g‘*[Vl(P 25 ko) 1ot Z ZP (1)[sz(p 05 ko) Jor(sing’ru/ p'rue) (sinpras/pruv)  =0. (A7)

(¢4 #l)

2 W. Kohn, Solid Stale Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957).
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APPENDIX B: MULTIPLE SCATTERING

The ¢ matrix {; describes the scattering of the electrons due to the single perturbing Hamiltonian AH;” when
separated from the toal ensemble of scatterers representing the crystal. The {-matrix 7% describes the scattering
arising from AH; in the presence of the crystal. The effect of the crystal on the valence electron scattering due to
AH/ is given by the multiple scattering occurring among AH," and the surrounding crystal. All multiple scattering
contributions to 7 are summed up in the integral equation derived for 7%. This integral equation can be solved
by using Fredholm’s general theory.® If AH/(o,k; ko) is sharply peaked at q=~k, e.g., AH/(R,ko) a smoothly

varying function in R;, then the integral equation for T(q,k; %) is approximately solved by

Tl(q7k kﬁ) (AHll(qyk k0)+z / _______ez(q—p) b AHI’/(q)p) O)GO,(p) O)AHll(pyk ko))

adp ds

-1
X(l— 2 // ————— —eie P rwgie=s) A (q,p; ko)Go'(p,ko) AH ' (D,8; Eo)Go (s, ko)) . (B.1)
l’ l//

(2m)3 2(m)?

A further approximation replaces AH,'(q,p; ko) in the second bracket by AH,'(s,p; ko). If AH,' is independent
of I, which is the case for a perfect, monoatomic crystal or for a monoatomic crystal in general, and if AH, is
approximated by the expression resulting for a regular lattice ion /, then Eq. (B.1) can be rewritten as

a3p
Tl(q1k; k0)= <AHlnl(q1k; k0)+f Ez——);AHlo,(qyp; kO)GO,(p;kO)AHlo,(p)k; kO)Cl(p)q))
™

X(l“/ / z%f:a

Cup,g=2 eitamrm, (B.3)
l/

If AH/(q,k; ko) is only sharply peaked at g=~Fk, then

the integral equation resulting for [7:(q,k; ko)], is ap-
proximately solved in a way as outlined in Appendix A.

APPENDIX C: EQUATION OF STATE OF
VALENCE ELECTRONS

To determine AE; the dependence of E,; on the crystal
volume must be evaluated explicitly. Approximating
Vr and 4 by local potentials one gets approximately
from Eqgs. (I1.10) and (I1.31)

Co 0.982 0.916
Ea—n ) —n{

752 7s

+Ecorr(rs) + <VIB(78)>+ KZ#O fK(rs)} . (C'l)

Cy results from C for 3_; AH/=0 and V=0. » is the
total number of valence electrons. 7, is given by

3 \1/3
()
32nZ

a is the lattice constant. The correlation energy oo is
approximately given by3!

oorr ( 0. 115+0 031 1117'3) (CS)

30 E. Whittaker and G. Watson, 4 Course of Modern Analysis
(University Press, Cambridge, England, 1946).

31 D. Pines, The Many-Body Problem (W. A. Benjamin, Inc.,
New York, 1961).

(C.2)

(@03 Ba)Gy (b ko)A (0,85 £)G (s, kO)Cl(D,Q)Cz(S,D)> , (B2)

The repulsive potential Vg is given as a function of 7, by

Ve(p)=— [ ﬁ;y(q p)

x| A9, ()——V()} (C.4)
' { é’(g,O) off g rR\Q)( » .
with
v(g,p)=2 au(@)an*(p),
bk (C.5)
aun()= / dirgu*(r)eins,
A(q)=—(0.916/r,)3(¢*/8me*)[1— 8(¢,0)], (C.6)
and
Vear=V/+ A4+ Ve, =V +C+4'. (C7)

C’ and A’ denote the contributions to C and 4, respec-
tively, resulting from the part (Yx—®;) of the total
wave function of the valence electrons. On the right side
in Eq. (C.4) Vg might be approximated by the expres-
sion obtained from Eq. (C.4) by replacing the expression
in brackets by (Vi/+4.,). v(q,p) and (V/+4,,) are
approximately independent of 7,. The dielectric function
&(q,0) is given approximately by

8(0,0) = 14-0.1657[u(x) /2], xEE% . (C8)
where !
1 1—x? |14«
u(x)E—{H- In|— } . (C.9)
2 x 1—x
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The Fermil wave vector kg is related to 7, as

97‘. 1/3 1
kp=(—) ~
4 7s
The function fx(7;) is given by
K2 14+A(K)
Fx(r) = S(R)S*(K)——
16we2Z 8(K,0)
1+A(K)+ 6(K,0)

8(K,0)

(C.10)

Va(K). (C.11)

The above formulas yield an approximate expression
for the equation of state of the system of valence elec-
trons taking into account within the Born approxima-
tion the interaction between the pseudocrystal potential
and the valence electrons. The exact treatment of the
electron-lattice interaction replaces [(1/8+A/8) Vst ]
in Eq. (C.11) by the corresponding ¢ matrix and in all
formulas & by the exact dielectric function.

AE; is now determined as follows. 7, which refers to
the crystal with volume Q4-AQ is related to 7., which
refers to the crystal with volume @ as

7' =(14C) ', (C.12)

with

C=AQ/Q=a(Z/n), AQ= Q=a3/8. (C.13)

0[90 5
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One gets then

C (1964 0.916
AE3=——{ - —0.031
3L 72 7s
+0(ra)+ Z gK(rs)}n; (C14)
K0
with
o) = — / (—7;)—7(9,0>H<q>vm<g), (C.15)
1 (0.1657, 2x2—1 {14«
=
0.916 ¢
X(l_ 37, 8we? )—l—A(q)] (C16)
and
20, +
gx(r:)=S(K) 2(K){2——(—~)+
8(K,0)
1 s
21+A(K)/ +A(K)! 1\ Ox(7s) } 1
IV K)H(K)

8(K,0) \ 8(K0)

where 0k is obtained from Eq. (C.15) replacing v(g,0)
by v(g,K).



