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A new method is proposed for the calculation from erst principles of the formation and migration energy
of a vacancy or interstitial in covalent crystals. The formation energy of a point imperfection is given by
the change in the electrostatic energy of the system of ions arising from the point defect plus the change in
energy of the system of valence electrons due to their redistribution associated with the point defect. The
redistribution of the valence electrons is determined from a pseudocrystal potential which results from
orthogonalizing the valence-electron wave functions to the crystal wave functions of the closed-shell core
electrons. The scattering of the valence electrons by the pseudocrystal potential is determined by using
the t-matrix approximation. The formation energy of an interstitial in diamond, silicon, and germanium
turns out to be 1.76, 1.09, and 0.93 eV, respectively; the migration energy of an interstitial is 0.85, 0.51,
and 0.44 eV; the formation energy of a vacancy is 3.68, 2.13, and 1.91 eV; and the migration energy of a
vacancy turns out to be 1.85, 1.09, and 0.98 eV. The general method presented for treating point defects in
covalent crystals can be readily applied to determine the spectrum of localized states at point defects,
which is of interest for optical investigations of point defects. Further, the derived expression for the energy
of the system of valence electrons can readily be evaluated to show explicitly its dependence on the displace-
ments of the lattice ions resulting from a point defect. Such an expression is needed, for example, for a self-
consistent determination of the lattice distortion due to point defects, and furthermore can be used for cal-
culating the elastic constants or lattice force constants from erst principles. An approximate expression
for the equation of state of the system of valence electrons is given.

I. INTRODUCTION

' "N order to analyze in terms of point defects experi-
~ - ments on diamond, silicon, and germanium involving
diffusion, quenching, and radiation damage, it is neces-
sary to calculate the formation and migration energy of
an interstitial or a vacancy in these semiconductors. For
example, it is interesting to check whether self-diffusion
in these semiconductors is due to vacancies or inter-
stitials. ' ' Furthermore, from annealing studies in
p-type silicon the activation energy 0.33 eV is assigned
to the migration of a positively charged vacancy iden-
ti6ed by using electron paramagnetic resonance. ' Tha
dependence of the vacancy mobility on the charge state
has been investigated by some annealing experiments in
n-type silicon showing that the change in the mobility
is small. The energy of migration for a vacancy in ger-
manium, which also does not seem to depend much on
the charge the vacancy carries, is found from quenching
experiments to be 0.9 eV for a neutral vacancy. ' Thus,
it is of considerable interest to check theoretically these
surprisingly diferent experimental results for the
mobility of a vacancy in silicon and germanium.

So far, interstitials have not been identified experi-
menta11y in diamond, silicon, and germanium. The
reason might be that interstitials are mobile at very low
temperatures. A calculation of the migration energy of
an interstitial will tell us then at which temperatures the
interstitial might be detected. If interstitials have a
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' H. Letaw, Vf. M. Portnoy, and L. Shfkin, Phys. Rev. 102, 636
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migration energy of about 0.3 eV in silicon, for example,
it might suggest that the observed point defect in p-type
silicon having a migration energy of 0.33 eV is an inter-
stitial identiied wrongly as a vacancy. Such a mis-

interpretation of the observed point defect as a vacancy
cannot be ruled out on the basis of present experimental
data.

Previous calculations of the formation and migration
energy of a vacancy in covalent crystals use a Morse
potential' or a combination of Born's lattice potential
within the harmonic approximation and a Morse
potential for describing the interactions among the
lattice atoms. This ansatz for the lattice potential is not
based on 6rm theoretical grounds, even in the case of a
perfect crystal. The empirically determined parameters
involved in the potential describing covalent bonds are
assumed to be unchanged in the presence of point
defects. Since the interactions among the 1attice atoms
depend strongly on the distribution of the valence
electrons this assumption is valid, if at all, only in
lattice regions where the valence-electron distribution is

slightly disturbed. If the redistribution of the valence
electrons due to a point defect is large, then the potential
derived for covalent bonds in the case of a perfect
crystal might be totally wrong. For example, this might
be the case for the saddle-point con6guration of a
vacancy and particularly for an interstitial. Therefore,
it is not possible to extend the above-mentioned. calcula-
tions to the case of interstitials, whose properties have
not been calculated at all so far. It seems, therefore,
desirable to develop a new method treating point defects
in covalent crystals from first principles. This is the aim
of the present paper and is done as brieAy described in

R. A. Swalin, J. Phys. Chem. Solids 18, 290 (1960).
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Fxo. 1. Illustration of the considered
point defect con6gurations. The atoms a
and c, and b and d, respectively, are near-
est neighbors aiong a (001) axis in the
diamond lattice. The atoms c and d, and
a and b, respectively, are nearest neigh-
bors along a (t11) axis. T and H denote
the tetrahedral and, respectively, hexago-
nal interstitial position. s denotes the
saddle point position of the atom a when
exchanging places with the vacant lattice
site b.

the following. The crystal is represented by a system of
ions, e.g. , nuclei plus tightly bound core electrons,
arranged in a static lattice, and valence electrons
moving in a potential field produced by the valence
electrons themselves and the ions. The ions interact via
a Coulomb potential. The tightly bound core electrons
are assumed to be dynamically decoupled from the
system of valence electrons and treated within the
Hartree-Pock approximation. Since we are dealing with
a very open lattice, interactions due to overlapping of
tightly bound core electrons usually described by a
Born-Mayer potential and van der Waals interactions
among the ions are negligible. The distribution of the
valence electrons in the imperfect crystal resulting from
the scattering of the valence electrons by the lattice
ions is determined by using the t-matrix approximation. '

The crystal potential is strong only within the core
region of each ion. The eRects of the strong, short-range
core parts of the crystal potential are removed as
follows. ' The valence-electron wave functions are
orthogonalized to the crystal wave functions of the
closed-shell core electrons. One derives then for the
eRective valence-electron wave function, e.g., original
valence-electron wave function minus orthogonalization
terms, an effective Hamiltonian representing the crystal
potential by a pseudopotential which is usually weak
and smooth. " To obtain a self-consistent crystal po-
tential the response of the valence electrons to the
pseudocrystal potential is determined. The i-matrix
approximation takes into account a nonlinear response
of the valence electrons to the pseudocrystal potential
and thus is able to reAect the fine structure of the
valence-electron distribution as was shown earlier by
the author in claculating Pourier coeKcients of the
valence electron charge density in diamond. ' By ex-
plicitly taking into account the atomic configuration of

' K. H. Bennemann, Phys. Rev. 133, A1045 (1964).
J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)."M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).

the lattice in determining the scattering of the valence
electrons, the lattice configuration of the imperfect
crystal is clearly rejected in the expression for the
energy of the system of valence electrons. Thus it will
be readily possible to derive an expression for the energy
of the system of valence electrons as a function of the
displacements of the ions. It appears that such an ex-
pression is required for many problems. For example, in
this way a self-consistent calculation of the lattice dis-
tortion associated with point defects can be performed.

The formation energy of an interstitial or a vacancy
is given by the difference between the ground-state
energy of the crystal containing the point defect and the
ground-state energy of the perfect crystal. Thus, it is
assumed that the localized states introduced by the
point defect within the forbidden energy gap between
the valence and conduction band are unoccupied. The
diamond-type crystal represents a very open lattice.
Therefore, the contribution to the formation energy of
an interstitial or a vacancy arising from the lattice dis-
tortion is presumably small. v ""Thus we can neglect
in our calculations the displacements of the lattice ions.
However, it may be noted that in determining the
change of the crystal volume associated with a point
defect, it is necessary to determine the lattice distortion
around the point defect. ""

The diffusion paths for a vacancy or an interstitial
are shown in Fig. 1. Two interstitial configurations,
chosen according to the lattice symmetry in such a way
that the interstitial is farthest away from the surround-
ing regular lattice ions, are considered. The interstitial
position halfway between two next neighboring ions
along a (001) lattice axis, called the tetrahedral position,
is characterized by four-nearest neighbors at a distance
0.433u, and six next-nearest neighbors at a distance
0.500a, where a denotes the lattice constant. The path
for interstitial diffusion consists of elements connecting
two next-neighboring tetrahedral interstitial positions
as indicated in Pig. 1. The interstitial position halfway
between two next-neighboring tetrahedral interstitial
positions is called the hexagonal-interstitial configura-
tion and is characterized by six nearest neighbors at a
distance 0.415a, and eight next-n arest neighbors at a
0.648a. It is assumed that these two interstitial positions
represent the equilibrium and the saddle-point inter-
stitial configurations. "Then the migration energy for
an interstitial is calculated by the absolute difference in
the formation energy associated with these two inter-
stitial positions. If there is between these two interstitial
positions an interstitial position involving a higher
formation energy, then the calculation so performed
yields at least a lower limit for the migration energy.
The diffusion path of a vacancy consists of path ele-
ments connecting two next neighboring ions in the

"A. Scholz and A. Seeger, Phys. Status Solidi 3, 1480 (1963)."K. dreiser, Phys. Rev. 126, 1427 (1962).' K. H. Bennemann and L. Tewordt, Z. Naturforsch. 15a, 772
(1960).
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perfect crystal. The migration energy for a vacancy is
calculated by the absolute difference between the
formation energies associated with a vacant regular-
lattice site and with the saddle-point configuration of
the vacancy in which one of the lattice ions located next
to the vacancy moved halfway towards the vacancy.

In Sec. II the general method for determining the
formation. energy of point defects in covalent crystals is
outlined. Section III discusses the determination of a
self-consistent crystal potential. In Sec. IV the general
method described in Secs. II and III is applied to calcu-
late the formation and migration energy of a single
interstitial or vacancy in diamond, silicon, and ger-
manium. In Sec. V the limitations of the proposed
method are discussed and the numerical results obtained
are compared with experimental results. In Appendix A
the bound-electron states associated with point defects
are briefly discussed. Appendix 8 treats higher multiple
scattering of the valence electrons. In Appendix C an
approximate equation of state for the system of valence
el,ectrons is derived.

EI. GENERAL METHOD

The energy of the static crystal is given by

E=-' 2 (~' '/ )+E.

so that Pk(r) is orthogonal to the closed-shell crystal
core-electron eigenfunctions &p& z, Eq. (II.2) is trans-
formed into

H'C s(r) =E(k)C s(r) : (II,5)

where the effective Hamiltonian H' iN given by

H'= H+ V~.—

V~ denotes the repulsive potential which cancels most of
V;(r). Vii is in general a nonlocal potential and given by"

Vn(r, E) ik)= —P(po, ,s [V;+A;„+C+A ik)p g, s (r).

for transforming the Hamiltonian H into an effective
Hamiltonian JI' arises from the recognition that due to
the Pauli exlucsion principle the wave functions ps need
be orthogonal to the closed=shell crystal core=. electron
eigenfunctions. Therefore, the wave functions fs(r).
oscillate rapidly inside the core region of an ion. Con-
sequently the valence electrons possess a large positive
kinetic energy in the core regions of the ions which
represented as a repulsive potential cancels most of the
strong negative core part of the potential V;(r). By
expanding Ps as

A(r) =Cs(r) —Z(p i,~ IC~)v, s (r), (II 4)

where the 6rst term gives the electrostatic energy of the
system of ions with charge Ze, and E,~ denotes the
energy of the system of valence electrons including the
energy resulting from the interaction between the
valence electrons and the lattice ions. The explicit ex-
pression for E,~ is obtained as follows. The wave func-
tions for the valence electrons are determined by

Hit s(r) =E(k)A(r), (II.2)

where the Hamiltonian B is given by

II= —(k'/2m) V'+ U—;(r)+A;„(r)+C(r)+A(r,E) . (II.3)

V; is the Coulomb potential due to the lattice ions, e.g.,
atomic nuclei plus tightly bound core electrons. 2;,
describes the exchange and correlation interaction be-
tween the tightly bound core electrons and the valence
electrons. C is the Coulomb potential due to the
valence electrons. The operator A(r, E) represents the
exchange and residual interaction among the valence
electrons. V;(r) represents a strong negative potential
inside the core regions of the ions, thus preventing
solution of the wave equation (II.2) by perturbation
theory. However, as shown by Phillips and Kleinman'i4
and others, " the energy spectrum E(k) of the valence
electrons can be determined from an effective Hamil-
tonian JI' with eigenfunctions C~, where in H' the po-
tential V; is replaced by a pseudocrystal potential
which is in general weak and smooth. The motivation

"Q. Kleinnian and J. C. Phillips, Phys. Rev. 118, 1153 (1960).

and boundary conditions which are later explicitly
imposed on its Fourier transform, then the energy E&,~ of
the system of valence electrons is given by

dko
E~)= —2$1lQ1

+0 2xr'-+r

gimp 11

XTr{(H'(r,ko) ,'C(r) ,'A(r, —k—)p) G(r—,r'—,k )o). (II.9)

Fourier transforming G'(r, r', kp) this expression can be
rewritten as:

—2z
P lim

Q2 Z g&~0

dko
e"p"LH'(q, k k,)

2x

—sC(q, k) sA(q, k; ko) jG'(k, q, ko) ~ (II 10)

H'(q, k; kp) is defined by

H' k k, = H'l . (II.11)(q , ) (ql I )

C(q,k) and A (q,k; ko) are defined analogously. 0 denotes
the volume of the crystal. To exhibit explicitly the de-
pendence of. E,~ on the lattice conhguration, H' is

'5 B.J. Austin, V. Heine, and I.. J. Sham, Phys. Rev. 127, 2'76
(1962).

Introducing the Green's function G'(r, r', kp) defined by

$kp H (i' kp)]G'(r, r', kp) = 8(r—r'),
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split into
H'—=Hp'+Q AHi',

»

(II.12)
with

T(k,q; ko) —= &kI T lq&, (II.19)

vrhere / is summed over all lattice ions. Ho' has plane
waves as eigenfunctions and is defined as

Ho'= —(&—'/2~)V'+ Voi&'(0 ko)+(C)+~o(r, ko) (II 13)

V.jfo(0,ko) is given by

1
V,ii'(O, ko) =— d'r( V;(r)+A;.(r)+ LVii(r, kp) 7i.„i}.

0

Gp'(k, ko) = 1/Lko —Eo'(k)+ ip sgn(k —kr) 7, p) 0, (II.20)

where kr is the Fermi wave vector and Eo'(k) the eigen-
value of Hp'. Defining the t operator Ti (describing the
scattering of the valence electrons due to AII» including
multiple scattering arising from the AH» associated
with all the other lattice ions) by

(II.14)
Ti(r, ri; ko) =~Pi'(Ri; ko)

(C) denotes the space average of C. Ap results from 2
for Pi 8 Hi' =—0, and Vii(r, ko) —=0. hP( is the contribu-
tion to hH'= H' H—p' du—e to the ion /. Using Eq. (II.12)
the equation of motion for the Green's function
G'(r, r', kp) can be converted into an integral equation as with

G'(r, r', kp) =Gp'(r, r', kp)

+g d'r'DHi '(Ri ',kp)G, '(r, r'; kp)

)& Ti(r', r~, kp), (II.21)

(II.22)

where r» is the position vector of the ion / in the lattice,
+P d'r"Gp'(r, r",kp)AHi'(r", kp)G'(r", r', kp) . (II.15) then T(r,kp) can be written as

The Green's function Go'(r, r', k p) is defined by Eq. (II.8)
replacing H' by Ho', Introducing the T operator by

T(r,ko) =2 Ti(r, ri; ko)
»

(II.23)

T(r,k,) = AH'(r, ko)

+ d'r'AH'(r', kp)Gp'(r, r', kp)T(r', ko), (II.16)

Eq. (II.15) can be rewritten as

G'(r, r'kp)=Gp (r,r kp)

+ d'r"Go'(r, r",kp) T(r",ko)Gp'(r", r', kp) . (II.17)

I'"ourier transforming the Green's functions in Eq.
(II.17) yields

Introducing further the t operator describing the single
scattering of the propagator Gp (r,r', kp) by one hH&',

which results from T» if all multiple scattering due to
diferent lattice ions is neglected, by the operator
equation

ti(Ri, ko) =&Pi'(Ri, ko)

+ d'8)'aPi'(Ri', ko)Gp'(Ri, Ri', ko)ti(Ri', kp), (II.24)

then Ti(k,q, ko) is expressed in terms of

ti(k, q; kp) = d're '"'"'ti(Ri, kp)e—*" ' (II.25)

G'(k, q; ko) =Go'(k, ko)(2m)P&(q —k)
+Go'(k, kp)T(k, q; kp)Go'(q, kp), (II.18) after some operator algebra by

Tt(k, q; ko) = e'« "& «{t&(k,q; ko)+(1/0) p p el&& &&'«&'t&(k, y; ko)Go'(y, ko)ti, (y,q; ko)+ ~ ~ ~ },
l' P

(l»)

(II.26)

where successive indices are always diferent. The higher terms in the expansion result from multiple scattering
of the valence electrons by the crystal potential. Under certain conditions the expansion given in Eq. (II.26) can
be summed up approximately as shown in detail in Appendix B.Using Eq. (II.26), E,& can be rewritten as

&.i=&.io+ 2 (~&.i)ii+
l, l'

(l ~l')

(~~.i)« i"+
l, l', l"

(l'Wl", l' Wl, l Wl")

(II.27)
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E,iP= —2ig lim
g m+Q

E,P is independent of the lattice configuration and is given by
" dkp -h'k' (C) A p(k, k; kp)

e'~'p G'(k, k; kp) +V,rr'(O, kp)+ +——
2K 2m

'
2 2

+(1/0') Q Q Gp'(k, kp)t QBI„,+Gp'(q, kp)ti(q, k; kp)j(AV. rr'(k, q; kp)+-', ACi(k, q)+-,'DA((k, q; kp)) . (II.28)

(AE,~)ii. is given by

2i " dko
(AE,~)«. ——Q——lim e'PP-&G-p'(q, kp)Gp'(k, kp){e'« "&'«'t~ (q,k; kp)

02 &.0 'f~o 2m

+(1jQ)Q Gp (X kp)Lc'~"—"&'«'t((q, X; kp)t(. (X,k; kp)+s'« —"&'«'tp(q, X; kp)tg(X, k) kp)j+ }

X(5 V«'(k, q; kp)+ 2bC&(k, q)+AA&(k, q; kp)). (II.29)
(AE,i)«.i" is given by

2i
(AE,)),(.;. ——P——lim

Q3 Q q ) rI +p

" dko
e'"pGp'(q, kp)Gp (k,kp)Gp (X,kp)

2~

X{expfp(k r~"&+q'r«+& ri ~ ))tv(qP; kp)tv (&,k;kp)+ ~ ~ ~ }
X(A V fi'(k, q; kp)+-,'AC&(k, q)+-,'AA &(k,q; kp)) . (II.30)

Ap(r, kp)
~
k) = dPr'Zp(r, r', kp)e'~'", (II.32)

where Pp(r, r'; kp) denotes the self-energy of a valence
electron with energy kp in a uniform electron gas.
Approximating the self-energy by"

Zo(r, r'; ko) =i dip
V8'(r, r'; kp —gp)Gp(r, r'; qp), (II.33)

2'

where V8 denotes the screened electron-electron inter-
action in a uniform electron gas and Go is obtained from
Eq. (II.8) replacing H' by H thpe Anp(k, k; k,) is
given by

Ap(k, k; kp) =i dgo

(2~)' 2pr

X VsP( [k—q (, kp —qp)Gp(q, qp) . (II.34)

The matrix element hV, «'(q, k; k,) is defined by

av. '(q, k k,)=8'«-"&'&(q~hV. '~k),
(II.35)

AV ff'(r, kp):—V «'(r, kp) —(V.«(O,kp))'.

"L.P. Kadano8 and G. Baym, Qgantgns Statistical Mechanics
(W. A. Benjamin, Inc. , New York, 1962).

(C) is determined by

(V )+(C)= 'Ep—-(II.31)

where Eg denotes the Fermi energy of the valence
electrons. Ap(r, kp) is in general defined by

(V ff '(O, kp))P is the contribution to V,irP (O,kp) due to
ion /. V,«'(r, kp) results from (Ve«(r, kp))' replacing
(Vz')i i by Vz'. V.« is given by the sum of the terms
appearing in the bracket of Eq. (II.14) replacing
(Vz)»«& by Vz. &G(q, k) and bA&(q, k; kp) are defined

analogously. The matrix elements thus defined are
approximately independent of the position vector r&.

+V ff AC~, and AA ~ are the contributions to AV, ff,
AC, and AA, respectively, due to the ion /. A self-con-
sistent determination of hCg and AA~ is performed in
the next section.

The fo'rmation energy of an interstitial or a vacancy
is defined as

(II.36)

where E denotes the energy of the crystal containing
the point defect and Eo denotes the energy of the perfect
crystal. An interstitial is created by bringing an atom
from the surface into the interior of the crystal. A
vacancy is produced by removing an atom from a
regular lattice site in the interior of the crystal to the
surface. It follows from Eq. (II.1), which is rearranged
in order to pair oS indnite terms, that EI is given by

Ep =&Jii+AEp+BEp+BE4+AEp. (11.37)

AE~ results from the Coulomb interaction of an ion with
the uniform gas of valence electrons and with all the
other lattice ions neglecting lattice distortion. hE~ is
determined by the Ewald method. " One gets for a
vacancy

(1138)
"K.F«chp, Proc Roy. Soc. (Lond. on) A151, 585 (1955).
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and for an interstitial

»L= V (»)—
op (0) (II.39)

(Ze) r@ v;; v,'v;
~ 3 ..32 ~$2 r'j

x~ denotes the position of the interstitial. The lattice
potential q is given by

G(i x —xl )/(4rt)'")
v'(x )=(«)'

with
V~( =—Vg—Vg . (II.44)

(v' r")(vt'*'t)
+3— + . , (II.43)

re..5

e ~dy. (II.41)

The structure factor S(K) is given by

S(K)—=P e '"'" (II.42)

where p is summed over al1. ions within a unit lattice cell
of vohime Qo. p denotes an arbitrary parameter chosen
so as to obtain a rapid convergence of the sums occurring
in Eq. (II.40).

2 E2 gives the change in the electrostatic energy of the
ions due to the lattice distortion associated with the
point defects. It is

lpga Xa X)

4n exp(iK x.—E'rt)
S(K)

Qo +go E'
kg

S(0)— ——8,.„, . (II.40)
Qp (xrt)'"

This expression yields et (0) for x =xl, ——0. xl denotes a
lattice vector. K is a reciprocal lattice vector. xl, is any
lattice vector. The function G is given by

v; denotes the displacement of the ion i with respect to
the position r;. The first term in Eq. (II.43) results from
ion-dipole interactions, the next two terms from dipole-
dipole interactions, and the higher omitted terms result
from interactions involving higher multipoles.

AE3 results from the change AQ in the volume of the
crystal associated with the lattice point defect. It is

»p—=E(Q+~Q) —E(Q) . (II.45)

To determine this contribution the volume dependence
of E,& must be evaluated explicitly as in Appendix C.
One gets then

AEo ———(AQ/Q) {(1.964/r e') —(0.916/re)
—0.031+8(re)+ P glr(re) ) . (II.46)

z~o

r8 is the radius of the sphere which contains 1 electron
in the uniform gas of valence electrons. The functions
8(re) and g&(rz) are explicitly given in Appendix C.
Note that Eq. (II.46) yields an extension of the equation
of state of a uniform electron gas by taking into account
the interactions between the electrons and the static
lattice.

EE4 and EE5 result from that part of E,~ which
depends on the lattice configuration. It is

{[(»eL)DLL' (»sL )DLL'g+[(»eL)lDl' (»eL )LDL'j+[(»eL)LL'D (teEeL )LL'Dj)+ ' ' '
e (II 4t)

l, l,'
(l gl', l AD, l'HD)

l'
(l'Wl, l'WD)

where D denotes the ion whose removal produced the point defect (»,L').ll and (»sL') ll l ~ refer to the perfect
crystal, e.g. , no vacancy is present and the interstitial is removed to the surface of the crystal. In lowest order
approximation, 8 H~ is independent of the lattice configuration. Then 2 E4 simplifies as

+E4 2 Q {[(»sL)DL (4EsL )DLj+2' Q [(»sL)DLL' (»eL )DLV]j+ ' ' '
~ (II.48)

l&D

Finally, AE5 is given by

aEo=— p {[(&E.L) LL (&E.L')«j+— [(».)« -—(» ")« -j) (1149)
l, l'

(l Wl,', l WD, l' WD)
l"

(D Wl, l', l"; l" Wl', L" Wl)

To simplify the determinaton of AE4 and»o, L4 V,«and AAL are approximated by local potentials. (»,L)ll

is then given by

(AE, L) ll ——2
d'll: d'q fL,(1 f,)-e'Lo-»'« tL. (q k)

(2~)' (27')' Eo'(k) —Eo'(q)

d'p f.(1—f~)(1—f.)—f~f.(1—f.)+3P e' &-" '«'tl (y,k) tL(q, p)+c.c.+
(2~)' (Eo'(q) —Eo'(k))(Eo'(q) —Eo'(p))

X [AV.LL'(k, q)+-'(ACL(k, q))+-', (AA L(k,q))$, (II.50)
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h Fermi distribution function.taken. I, denotes t e erm
~ ~ at the rincipa par o g

to ko is denoted by tl(q, k). Expa
'

gx andin the t matrices, ', th) g '"" p
exponential functions in terms o eg n

(~E.l)ii = dkdqk'q' j.(prll )jv (krlv)I. II
gs g ~ g

CX) Pp 8$ v Slf CF

0 0

LACl(k, q)g LhA l(k, q)j
Bp,o8,o8, ,0X~ Ld V.«'(k, q)g +p

'" "" '"',",', (P „),( „)(,(P, )),-
1—f,)

&«q )j (L~V. '(k, q)3-+lL~C(k, q)j-+-.Llq) p

"m" nm", Pm",00) is obtained fromThe coefficient D(gO, g'O, g"m",nm, m,
16 $(2g+1)(2g'+1) (2o+1)j'"= 'u—g'+0

D(gm)g m )
(2 "+&)(2~+&)(2P+ )

m v' "m")A(g'm', g"m",nv)A()TO, nv, Pv'), I .

, ', " " =— d».---*(0,~) V,.(e,.)V~"(0,.),A(gm, Pv', g"m" —=

m t 3 is further evaluated asv=z'=m", 0=0. The coe cienfol ss=pk =0, p=p =m, 0'=

-(2q+I)(2P+~)- "
1f I/

A(gm, pv'. g"m I = CLg g", mv'(m+v') jC(gpg", 000)b„-, +„. (II.54)

a s herical Bessel func-
~E~' k). If AH, '(R,O) i 1o 1ed that the energ E '(k)=E0

with res ect to k, q, an, rin E . (II.51) can be average wi
otb h l fo'

te ral. The remaining integra s con ri u

y, ,
' '

k k, averaged with respect to o anp
'

k ko) by tl(q), which is tl(k+q, ; o av
' t to o anApproximating tl(k+q, ; o y

for (BE,l)ll the expression

(~E.i)ii =2 (&.(,0)—&)«( )+
(2m)' See'

——o'v'"'F (p,q) tl (q—p) tl (y) +c.c.
(2')'

&&(~V.«'(q)+k~Cl(q)+2~~ l(q)),1 (II.55)

on of a uniform gas 0 vaf lence electrons and whereOq is the dielectric function owhere 80qq, z is e
' '

on o

0+g
F(y,q) —=3P

(2~)' (Eo'(k+q) —Eo'(k))(Eo (k+q) — o'—Eo'(k+y))

.55' be further evaluated approximately asEquation (II.SSg can e

(II.56)

(~Eel)ll~ =-
& ~ZZI 0

with

1
( ),(b (q 0)-0«(q)+ «(q)qq' sin qrzz 0

27r2Sme2
E (Pq)t'(P) ' (P «)+ .+

X(AV.&l'(q)+-,'ACi(q)+-, 6, l(q)), (II 57)

dQ
E'(P,q)

= —E(y,q) «(q ——p)
4m

ew York, 1957).ohn%Iley R Sons, Inc. , ewTheory of Angglar cVomentgm ( o n"M. K. Rose, Elementary 2 heory o

(II.SS)
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in derivi g q

3&f0(1 f—o) (1 f—o) f—of.(1 f—,)j
ex l'(k ri. l+q rl, .+p r, ,„)$

(2&r)'

d'k d'q——I'
(2ur)' (2&r)'

X pL
(Eo (q) (

(&V,«'(k, q)+-'ECl(k&q)+ioh'. l(k, q)) . (II.59X{«(q,p)«-(p, k)+ ~ .«,q

(ZE,l) l l.l- = 2P

min the angular integrations one obtains'(k)~E '(k) etc., and performing e anAssuming F.o q j—0

d
' ' 'n . (11.50) (AE, l)ll l- can be rewritten asUnder the same conditions as used.
' ' 'n

"m", n(m" m—), P(mm" —), o0
((2a+ 1)(2a'+ ))'"

00 00

)I'*u'~'(e«r, &ll &q&&ll&ll"),X V u»&(erl l ~ '&l!'&,0 &&~V',ull' dkdqdp(kqp)'

i 0( « l-)i"(k«l-)i (q«l )(«(q p))i(&l-(p, k '
'(q) —Eo'(k))(Eo'(q) —Eo'(p))

X &V. '(k, q)$ +-,'LAC (k,q)$ +-', LAA (k,q)j ). II.60

d the potentials can be averaged witht to E~ then the t matrices anH ' varies slowly with respect to
ulled out of the integrals in Eq.to k q, a p prespect o

ations as in d.eriving q.Using the same a roxima ions

(AE.i)« l"=2 II.61)P(, ) ' ' ' ' " — ( )+" }(~V.«'(q)+-,'~C, (q)+-', ~Z, (q)).P( ) &('(' ll +&0 l'l'"&) {'ti,(q p)] „pEp,q e'
(2ur)' (2&r)'

h an ular integrations one g ppe ets a roximatelyPerforming t e angu

(~E,()ll l"= 0)~«'0 o g0)~(g0 g"0,g'o)
2 1)(2 '+1)

-(~+ }~'(q )i-(p -)(~V„qX{(«(p,q)),.t," p

dpdqp'q'(E(p'q)).

DETERMINATION OF XC&(q, ) ~Ir AND AA, (q, Ir; k,)III. SELF-CONSISTENT D

ko and AHi'(q, k; ko). It follows from Eq.needs a detailed determination of «(q, k; ko) and &Hi q,A f ther calculur
( k ko is determine y(II.24) that the matrix «iq, ; o

«(q, k; ko) = &Hi'(q, k; ko)+ ——&Hi'(q, p; ko)Go'(p, ko) «(p, k; ko) .
(2&r)'

(III.1)

nction of Rl, then Eq. (III.1) is solved byiltonian AB& varies slowly as a function 0 ~, enIf the perturbing Hamiltonian ~ v

«(q, k; k()) = AHl'(q, k; ko)+ ——po'(p, ko)~Hi'(q, p; ko)~Hi'(p, k; ko)
(2ur)'

&»)W(&4)4&&r(X&i &g)l&&t (p,&,;t&,&)) (lll &0 P& 0

2&r 0 27r)0( )(
k ko) self-consistently, 5Hi (q, must be deter-

h tth 1 d-hll o -1
E. III. ta in 0

ron ei enfunctions q &,~ are
which is defined as the

' g

to th
d t the self-consistent determ'

t th
'

l, where AH is given byconri u'
,k k g on AHl(q, k; k,) must be evaluate ex

~)-C ) and (A —Ao, respeccontributions to (C-
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dH& AC& is approximately given by't' then to 6rst order in d g,Assuming momentum conservation,

ACg(q, k) =—2iQV, (q —k, 0)(g„lp .

ioll Grr 0( ) )P

( ' )=r.~,()~,*( )G-.(p,p.n n* '
o) (III 4G~ i) f)l ) i)

P

i . 2. V, q —k, 0)hicall demonstrated m Fig.
to o thened static interac io

hich is iven in e ai aence electrons wh g
trix elements are averasection. The matrix

where p~ is ethe Fermi wavevalues of p with p pp,
( po) of the Green'svector. e.Th Fourier transform G~ g p, 0

rr' 0) given byfunct

(clip„)..Go(p+q —k, po)

XG. .(,,p.).a,(,+,-k, .. . ,e 0), (III.3)

FIG. 2. Graphical representation
of &C).

1
rom E . (II.20) replacing Eo (p y, b E(p) as

II.4) with
II.2 .The Green's function GII i

fth G ' f cti G. This the Hartree-Fock approximation o e

—Go'(q po(y)) T(q p' po(p)) I q ..()= ip+ (III.5)

16r of the valence electrons yApproximating the self-energy o e

P(r, r'; ko) =i V, (r,r'Po) G(r, r', ko —Po), (I11.6)

one gets for» i(q,k; ko) the expression

»i(q, k; ko)= iQ— 0 P

, o k —
0 . 111.7)X el, ')(p„ lk —y)aHi(q —p, o; ko —po .

V.(p, o)Go(q —p, k —o)G —(p', ko —po
(2ir)' (2ir)' (2n.)' 2ir

be rewritten asets =k=y+y'. Then Eq. . c. (111.7) can approximately beturn conservation, one gets q=Assuming rg.omen um

» qk ko)=iQ(2ir)'8(q —k)Q, „lq—p).„lq) ) 0

d 0dp dp 0'
Q—p gv

(2n-)' (2ir)' 2x

e ko —po), (111.8)k —0)Gyp 0(q—p, ko —po)AHi(q —p, e; 0—0,X V,(y,poo Go(q p, o p

l in wit in
' . in that hA& is slowlyl in within the Fermi sea. Assuming t aed over all values of p lying wit inwhere the matrix elements are average ov

roximately solved by
'

h R then Eq. (III.S is approx'varying wit

'Q(2-) ~(~-k)(~, ,l&-p)..
»i(q, k; ko) =— (~ I &.—.)-

(2~)' (2ir)' 2n.

with
a), (III.9), ko —po)(EV (q—y, e" —,~)+»'.'(q —y, ~)+~Ci(q —p, ~ },X V.(. .)G.(.-p, k.—p.)G- .(q-y, .—.

E(q,k,)=—1—iQQ, „lq—y).„ —p, ko —po) . (III.10)—~ V( p)G.(q-y k.-p.)G. ,(q-p .—... , p, o o-
2m. '(2n-)' 2n.( )

I 9) then Eq. (III.3) is solved byusing Eq. II .Assuming t ah t hC varies slowly in R&, g

1-h(q —k, 0)
aC, (q,k) = — V, i q, (III.11)
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@(q— 1+,f1',(q —k, 0)~(q—» 0)

h —k, 0) is g've" bywhere dielectric function (q

(III.12)

—k 0) determined byo arization propagator s (q-with the irreducible polariza

——~I „),P,(q —k, o){iyP(q—k, 0)).m(q —k, 0)=Q, I«)., ——o „. , q—, (III.13)

—k 0) arises from AAi and
' g'd is iven byThe term P(q—, ari

Id&o(0~, o-;Iy+q ——y .....(«+q —k
I 0.)-'" ""-='"~'.

i(2-) (-I~.)..
d'o d'p' dpo'

(2s.)' (2s)' 27r2n. (E(«+q—,ko

X ~,+, i. . . ' o' Go(y+q —k—y', &o—Po'). (Ga i (y+q ——y', &o—oX(~lk,+o ~ .).-~.(y', Po')(Go y q——y', o
—o', ——y', &o—o .,

( )

XGrr &(q,qo)G& F(q+y, q,+p, .o . (111.17)

4~e2
1+i

4xe2

I 8,+.Is*"I@,)-I'P(y, po)I'.(y po) =

~.-o-' I y+q —k—«)-,- ls with
d ' within the Fermivalues of p an p wi

P(y, po =—
3

h b en assumed thace electrons. It as e
f f hvaries slowly as a unc

'
. e

en's unc-
Af th I io ofP

th a simple

d ith respect to a}} ur
a v

6 F al e average wl
is chosen for t e crys

tioils Go aiid m~ F

me gv 20

E . (III
can be approximated bv0 ) 2

for example, by approximating

Po(q —k, 0)=

ted that the approximations use iTlllis, it. ma b ted, t a, e use
d ''gzqreen's function G y, ,

ar s
'

G( p) then Po(q —k,
t I' obtalne derlvlng qE (III 11 are equiv

par

}l

re uces

iven by Lind screening 0

t era

take onlv a lnear resIII 9 or. ) x Ac the expression these authors a
as a function electrons to the ps

. This comp1et s, wi

dielectric func io
4'n o

en
' '

the formulas for 6 ~ an
d by the wave functions P„

nts involved m

I,)+
f r the die1ectric

Q—

(111.18) gives for 5A, =—0

functlOn 8 the static dielectric cons an

he 6rst term in q.
as obtalne wi

then the screened result or
ree

conservation,
0

a roximatlon or sdo -h
pp In

among the va ence e

ation
k ko

ximately given byapproxlma

——I
of the non ocal repulsive poten ia

(111.16)

19 J. in, . nske Videnskab. Selskab, Mat. -I"ys.I' J. Lindhard, Kgl. Dans e i e
Medd. 28, 8 (1954).

. Rev. 128, 2093 (1962).

"H EhrenreichandM H Cohen Phys ev
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evaluated in more detail. It follows from Eq. (II.7) that one gets

drrPf~" (r)j f(Pr) . (III.25)

Writing y&, ~ in the form

~V, (q,l; k,)= —P(«, , ~~Hf~k)(q( «.). (III.19)
t, k' 0

In order to evaluate further 3,Vlf f(q,k; kp), it is assumed
that »f(q, k; ko) can be approximated by»f(k) and
p(q —k, 0) by p( ~ q —k ~, 0.) Then, AHf(y, k; kp) can be

o f f:(r)=P Uf&'(, ) P l'(R, ) ~ (III.20 expanded in Legendre polynomials as
8

Using

g Ll .*(r )P „,(r, ) („,
~

„.) (III 21) aHf(y, k; ko) = P (aHf(P, k; ko)),P, (costt, ,,). (III.26)
g~p

This yields
and assuming that q~' and q~", and AH, and hH, for
s/s' are not appreciably overlapping, then one gets

with

b, vflf(q, k; ko) =—Q af'(q)bff(k, ko), (III.27)

Avflf(q, k; kp)

with

d p—&Hf(y, k; kp)af'(y)aff*(q), (III.22)
(2fr)'

a '(y)—= (v 'ly). (III.23)

Expanding
~ y) in spherical harmonics and writing pf as

sf'(Rf) =Z(Pf-'(Rf)/~f) Vf-(~af, v Rf), (III.24)

1
&ff(k,ko) =-

2%2
dpp'(~Hf(p ki kp)) oaff(y) (11128)

It follows that BIJOU' can be expanded in the same way
as AHf. Therefore, tf(q, k; kp) can be expanded in
Legendre polynomials in the same way as AHf'(q, k; ko).

Finally, it may be noted, that if AHf'(Rf, kp) varies
slowly with R~ and if the angular dependence of
«(k,y; kp) can be expressed by the angles ef„, and yf, ,„
then expanding t~ in terms of Legendre polynomials it
follows from Eq. (III.1) that (1f(k,p; kp)), is given by

("l(k p kp))o (~Hf (k p kp)) + dye G, '(g,k,)(AHf'(k, q; kp)), (d Hf (q,p; k,)),
2n' 2g+1 p

—1

dqdk(qX)'Go'(q, ko)Gp (X,ko)(BHf'(X, q; ko))g(AHf (I7,X; ko))g ~
~ (III.29)

IV. NUMERICAL RESULTS FOR THE ENERGY OF FORMATION AND MIGRATION OF
AN INTERSTITIAL AND A VACANCY

The general method outlined in Secs. II and III is used to calculate the formation and migration energy of an
interstitial and a vacancy in diamond, silicon, and germanium. The calculations are carried out for the point-defect
configurations indicated in I'ig. 1, e.g., for the tetrahedral and hexagonal interstitial position, for a vacancy at the
lattice site "b," and for two vacancies at the sides "a" and "b ' and a lattice atom at the position "s."Lattice
distortion associated with the point defect is neglected. Then the formation energy is calculated from

Eff =DEi+AEp AE4. —— (IV.1)

AEz is determined by Eqs. (II.38) and (II.39). AEo is approximately determined from Eq. (II.45) approximating
the volume change of the crystal B,Q by Qp in the case of a vacancy and by (—Qo) in the case of an interstitial.
Thus we neglect the contribution to DQ resulting from the lattice relaxation associated with the point defect. "
AE4 is determined from Eqs. (II.48), (II.55), and (II.62) as follows. tf is assumed to be independent of /. Defining

jr ~c«(q)»«(q))
aE,(q) =—4 (h(g, o)—1)«.,(q) ~

aV,««(q)+ —'

8~e'
'

5 2 2 )

and

d'p ~c«(y) ~A lo(y)+ ——(&(y,q)«, (q)&«(y —q)+c.c.) &V.ff"(y)+—— + —+ . , (IV.2)
(2~)' 2

DEo(yfq) =6F(y)q) (/Vo(q y)fl"o(y)+ ' ' j(kveff (q)+ o AClo(q)+ o» lo(q)) ) (IV.3)
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with
(IV.4)»,=»,(»+»4"',

It is
(IV.5) Qr(q) =ep '"S(K)bp,K)», (» =p 1V(q)»i(q)

I,, l,', lo" refer to any lattice ion, then Eq. (II.48)

~(p,q) =~{[Q(q —p)Q(p) —Q«)]
——;[-',Qp(q —y) Q'(y) —Q'(q)))

(IV.12)

alld
gp, (»=p jg(y, q)»p(p, q) (IV.6) Qv(q) =Q'(q)

Qp(q) ~(x rl&pg(K) Ii

Q
(IV.13)

lV(q) and ~(p q) are defined as

and

X(q)=—~(1/0) P (~'4" —~ 4'" ),
l'QD

rg) g —= ra —rt',0

(IV.7)

M(p, q) =—+(1/0')

x
l', l"

(l'&l", (l, ', l,")WD)

(expi[(q —y) r&l +y. r&i ]

expi[(q —p) rill, Pyy rnl" P]). (IV.8)

r~ reers o ef t the position of the ion D in the interior of
t l d r ' refers to the position of the ion a

the surface of the crystal. The minus signs in fron o
1/0 and 1/Q' refer to a vacancy. De6ning

here K, is a reciprocal lattice vector and I and V refer
to the interstitial and vacancy, respectively.

In determining»4, EH((q, k; kp) is approximately
given by Eq. (III.18) replacing the dielectric constant
by b~' representing the dielectric function of a uniform
electron gas in the Hartree approximation and wit
led((q, k; 0) determined by using the Thomas-Fermi-
Slater approximation"" III' is obtained from Eq.
(III.12) by replacing the electron-electron interaction
potential V, by V,', which refers to a uniform electron
gas, and by approximating in the polarization propa-
gator ir all wave functions fk by plane waves and putting
P=—0. Using the Thomas-Fermi-Slater approximation
one gets for AA~ the approximate expression

EAl(q, k; 0) = —(0.92e'/3r, )Apl(q, k) . (IV.14)

Q(q)=—(1/fl) 2 ~""',
&'wa

(IV.9) Apl(q, k) is defined as

~pl(q») —= (p~te ""'~pl(Rl)elk'"' (IV.15)mmed over all lattice ions beside the ion ~,wherel issu
one gets

IV I) where Apl(R() is the change in the density of valence
electrons associa«d with hapl(R(, 0). It follows from Secs.

b E . (IV.9) replacing rD by II and III that Dpi(q, ) can be written aswhere Q'(q) is given y q.

~pi(q, k) =Z
tP0 d3'y

f (1 f )&4(y—rr+k—p) rl

(27r)' (24r)' -~(li) —&p(~)+in ~(~)—~p(li) —in

&&~&( v'0)(vl4'&(4. I~+k—q). (IV.16)

Then a self-consistent expression for Ap~~q, ~~ pp( k) is a roximately obtained by

with

1—~(q,k) ~V,l(q, k)+~a,.l(q, )
pi(q, )=— (IV.17)

lp(q, k) —=1-g

. hit. )Q, I + -q). (IV.18
-F(p) —& ( )+'~ E( )—&.(I)—'~

(p(q, k) is approximately given by replacing the energies
b E d b averaging the matrix elements with

to . For the numerical calculation the wave
a normal-function f~ is approximated in Eq. (IV.18) by a norma—

ized p»ne wave, and in Eq. (IV.17) h~ is approximated
by 8&'.

EVll'(q, k; 0) is determined from Eq. (III.27). The
closed-shell core electron wave functions q ~' are deter-
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V. DISCUSSION

A general method is presented for determining from
first principles properties of point defects in covalent
crystals. The scattering of the valence electrons by the
effective crystal potential is treated by taking into
account the atomic configuration of the lattice. In this

way the response of the valence electrons to the effective
crystal potential can be determined taking into account
nonlinear screening, e.g., local field corrections. The
redistribution of the valence electrons reQects strongly
the atomic con6guration of the imperfect lattice. Thus,
the energy of the system of valence electrons is obtained
as a function of the positions of the ions. This will be
used in a continuing paper to express the energy of the

TABLE I. Ey and E~' denote the energy of formation and
migration, respectively, of a vacancy. ED'=—Ez'+E~' denotes
the activation energy for vacancy diffusion. Ez and E denote
the energy of formation and migration, respectively, of an inter-
stitial. EDI=—Ezr+E~ denotes the activation energy for inter-
stitial diffusion.

Sub- Ey'
stance (eV)

C 3.68
Si 2.13
Ge 1 91

(eV)

1.85
1.09
0.98

ED
(eV)

5.53
3.22
2.89

Egl
(eV)

1.76
1.09
0.93

(eV)

0.85
0.51
0.44

EDI
(eV)

2.61
1.60
1.37

"F.Herman, Phys. Rev. 88, 1210 (1952).
'6 W. Hartree, D. R. Hartree, and M. F. Manning, Phys. Rev.

59, 306 (1941).

mined using earlier results given by Herman" for
diamond, by Kleinman and Phillips'4 for silicon, and
by Hartree et a/."for germanium.

The numerical results obtained for the energy of
formation and migration of a single interstitial and of a
single vacancy in diamond, silicon, and germanium are
listed in Table I and discussed in the following section.
The following tables contain the results obtained in the
Hartree and Hartree-Fock approximation and display
the importance of the t-matrix approximation, and
particularly the importance of multiple scattering. The
interpretation of the results in physical terms becomes
obvious from the fact that multiple scattering is re-
sponsible for covalent bonding and that exchange in-
creases the formation of covalent bonds. The formation
energies of the interstitial refer to the tetrahedral inter-
stitial position, which turns out to be the equilibrium
position. (See Table II to Table VIII.) In order to dern-

onstrate the potential associated, with a single lattice ion,
which is the basic quantity in the outlined method, Fig.
3 shows for d,iamond, silicon, and germanium

I' (q) = I ''(q)+A*. '(q)+ I/ '(q)

+L~(q)/~]+t A(q)» j (».»)
Figure 3 shows that irt all three cases Vt(q) decreases
rapidly with increasing q indicating a smooth pseudo-
crystal potential as assumed.

qfA ']
4 5

-0.
,5

-I,S

«2

FIG. 3. Plots of the potential Ug (q), which is de6ned as the sum of
U (q), A;„'(q), Uz'(q), C(g)/X, and A (q)/Ã, for C, Si, and Ge.

system of valence electrons in terms of the ionic dis-
placements arising from the point defect. Such an ex-
pression is required for many problems, for example, for
a self-consistent determination of the equilibrium con-
figuration of an imperfect crystal. '~

The t-matrix approximation is valid even if the crystal
potential is strong and represents, therefore, an exten-
sion of orthogonal-plane-wave method and is very useful
if the pseudocrystal potential is not weak and for treat-
ing those valence electron states for which the repulsive
potential vanishes for symmetry reasons. For example,
in diamond, valence electrons in s states see no repulsive
potential. Another advantage of the 3-matrix approach
is its ease of physical interpretation, which is very useful
for finding good approximations. Further, the t-matrix
approximation is very convenient for treating multiple
scattering of the valence electrons by the lattice which
is essential in covalent crystals. Multiple scattering is
important for determining the fine structure of the
valence-electron distribution reAecting, for example, the
sizes of the lattice ions. Multiple electron scattering will

in general become more and more important with de-
creasing distance among neighboring lattice ions.

The orthogonalization of the valence-electron wave
functions to the closed-shell core-electron wave func-
tions yields two main advantages. First, the crystal
potential is transformed into an effective crystal po-
tential, which is usually weak and smooth. Second, the
electronic structure of the ion cores is taken into account,
guaranteeing that the valence electrons will not occupy
closed-shell core-electron states. The cancellation of the
crystal potential by the repulsive potential is discussed
in detail by Cohen and Heine" and by others. "How-
ever, it may be noted that if the closed-shell core-

s' K. H. Bennemann, Phys. Rev. 130, 1757 (1963).
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TABLE II.The contributions hE~, AE3, and AE4 for a
vacancy. The energies are in rydbergs.

E,v
gE v

b,E4v
Egv

6.458
—1.801
—4.387

0.270

Si

4.223
—1.156
—2.911

0.156

4.069
—1.088
—2.841

0.140

TABLE III. The contributions hE~, AE3, and AE4 for the saddle-
point coniguration of the vacancy. All energies are in rydbergs.

electron states are distributed over the strongest inner
core part of the potential and if no strong admixture of
core levels into valence levels occurs, then the pseudo-
crystal potential is weak. In general the cancellation of
the crystal potential is less complete for higher valence-
electron states. However, valence electrons in higher
states also interact more weakly with the crystal
potential.

The general method studies the determination of a
self-consistent crystal potential taking into account
correlation among the valence electrons, ""thus pre-

correlation between core and valence electrons is valid
if electron transitions between tightly bound core-
electron states and valence-electron states are negligible
and if the excitation energies of tightly bound core
electrons are large compared to excitation energies of the
valence electrons, for example, the plasma energy.
Under these two conditions the core-valence electron
interactions are essentially unscreened and thus can be
treated within th, e Hartree-I"ock approximation. This

Approximation
for T)

aH)

tt+ Z ttGott
l'8 l

aII)

t)+ Z tiGotI,
l'Y l

gv
E~v
Epv

0.64
0.92
3.68

1.27
0.91
1.85

Si

0.47
0.64
2.13

0.86
0.60
1.09

0.43
0.59
1.91

0.78
0.52
0.98

TABLE V. VacanCy formation and migration energy as resulting
from various approximations for the scattering matrix Tq. All
energies are in eV.

gE v'

gE v

DE4v
E&v

5.076
—1.801
—2.869

0.406

Si

3.320
—1.156
—1.928

0.236

Ge

3.197
—1.088
—1.898

0.211

TABLE IV. The contributions BED, AE3, and AE4 for the
interstitial. All energies are in rydbergs.

Interstitial
site

gE I
gE I

gE I
E&1

gE~I
gE I

E
E~I

1.965
1.801

—3.637
0.129

2.401
1.801

—4.031
0.171

Si

1.289
1.156

—2.367
0.078

1.572
1.156

—2.628
0.100

1.239
1.088

—2.258
0.069

1.513
1.088

—2.511
0.090

"F.Bassani, J. Robinson, B. Goodman, and J. R. Schrieffer,
Phys. Rev. 127, 1969 (1,962).

senting an extension of usual band theory. The valence
electrons interact with a static lattice. However, the
proposed method can be extend. ed. to take into account
the dynamics of the lattice by adding the polarization
propagator of the lattice to the polarization propagator
of the valence electrons in the dielectric function. The
application of the proposed general method to other
crystal types is mainly limited. by the fact that the
tightly bound core electrons are treated as dynamically
independent of the valence electrons. The neglect of

is the case, for example, for small ion cores. However,
in noble metals and transition metals the interaction
between conduction electrons and core electrons —for
example, s-d electron interactions —is remarkably strong,
and. then the above assumption will fail. Then the
coupled wave equations for the core electrons and the
valence electrons must be solved self-consistently.

If the closed-shell core-electron wave functions y~'
belonging to diferent ions overlap, then the resulting

TABLE VI.Vacancy formation and migration energy in the Hartree
and Hartree-Fock approximation. The energies are in eV.

Approximation

Hartree
Hartree-Fock
Hartree
Hartree-Fock

2.52
3.68
1.45
1.85

Si

1.62
2.13
0.87
1.09

1.47
1.91
0.80
0.97

repulsive interaction can approximately be described by
a Born-Mayer potential. It needs to be investigated
from case to case whether the exchange-correlation
potential can be approximated by a local potential. As
has been discussed by Phillips and Kleinman" a local
exchange potential represents a fairly good approxima-
tion in the three semiconductors considered in this
paper.

The general method was concerned with determining
the nonlocalized valence-electron states resulting from
the electron scattering by the imperfect crystal. How-
ever, there will in general also be bound states associated
with point defects. In the text, the sum over the wave
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TABLE VII. Interstitial formation and migration energy as
resulting from various approximations for the scattering matrix
Tl. The formation energy refers to the T site, the equilibrium
con6guration. All energies are in eV.

Approximations
for rl

aIIl

~i+ ~ ~lop~i
l'A l

A,Hl
$l

k)+ Z PlGp/l
l'8 l

Epr
Egr
Epr

EMr

EM
L'M

C

0.49
0.71
1.76

1.75
2.15
0.85

Si

0.33
0.48
1.09

0.84
1.06
0.51

Ge

0.30
0.42
0.93

0.75
0.97
0.44

TABLE VIII. Interstitial formation and migration energy in the
Hartree and Hartree-Fock approximation. The formation energy
refers to the T site, the equilibrium configuration. All energies
are in eV.

Approximation

Hartree
Har tree-Fock
Hartree
Hartree-Fock

Eyr
E~r
EM'

C

1.30
1.76
0.68
0.85

Si

0.83
1.09
0.40
0.51

0.71
0.93
0.35
0.44

vector of a valence electron has always been converted
into an integral in a way implying that the bound states
lying in the energy gap between the valence and con-
duction band are unoccupied. This will in general be
the case if the crystal is in its ground state, but not at
high temperatures and in strongly doped I or p-typ-e
crystals. The existence of bound states might complicate
the kinetics of point defects. However, it is observed
that the migration of a vacancy does not depend much
on its charged state' resulting from trapping valence
electrons in bound states. A brief mathematical formu-
lation of bound states is given in Appendix A.

The proposed method can readily be used to deter-
mine correlations among point defects, for example, to
calculate the interaction among two interstitials, two
vacancies, an impurity and a vacancy, etc. Such corre-
lations play a role in diffusion and quenching experi-
ments.

The further main approximations used in the applica-
tion of the general method to diamond, silicon, and
germanium are that the dielectric function 8 is approxi-
mated by III', that the renormalization of the valence-
electron wave functions is neglected, that the exchange
potential is determined using a Thomas-Fermi-Slater
approximation, and that the lattice distortion and re-
sulting volume change of the crystal is neglected. The
error resulting from these approximations in determin-

ing formation energies is roughly estimated as about
20%. However, the error involved in determining the
migration energies will in general be less.

It follows from Table I that the migration energy of
an interstitial is much smaller than the migration energy
of a vacancy. Since the atoms in the diamond-type
lattice are strongly bound by covalent bonds to each
other and the vacancy migration involves the successive
rupture and reformation of three covalent bonds, it is
expected that the presumably loosely bound interstitial
is much more mobile than the vacancy.

In the following, the results given in Table I are com-
pared to results found by experiments and earlier calcu-
lations. By using a Morse potential in which parameters
are determined phenomenologically from force constant
data, Swalin' calculated for the energy of formation of a
vacancy in diamond, silicon, and germanium 4.16, 2.32,
and 2.01 eV, respectively. Swalin obtains further for the
vacancy migration energy in diamond, silicon, and ger-
manium 2.02, 1.06, and 0.95 eV, respectively. By de-
scribing the covalent bonds by a Morse potential and
determining the lattice distortion due to the vacancy
from Born's lattice energy within the harmonic approxi-
mation, Scholz~ calculates the formation energy of a
vacancy in germanium. Depending on the potential used
Scholz obtains results between 1.62 and 2.52 eV.

The following experimental results are available.
From quenching in e- or p-type germanium it is found
that the energy of formation of the involved point
defect, believed to be a vacancy, is 2.0&0.3 eV.' Also,
the data can be fitted using 0.9&0.07 eV for the energy
of motion. The activation energy for self-diffusion in
pure germanium was measured to be 2.96&0.05 eV.'
The energy of formation and migration is found to be
the same irrespective of whether the vacancy is in n- or
p-type material, thus in.dicating that the energies of
formation and migration do not depend much on the
charged state of the vacancy. %'atkins4 obtained from
annealing studies in p-type silicon an energy of motion
of 0.33+0.03 eV for the vacancy identified by means of
electron paramagnetic resonance (EPR). This result is
inconsistent with others. It may be noted that some
experiments performed in e-type silicon demonstrate
that the dependence of the vacancy mobility on the
charge state is small. Also, Fig. 3 suggests that diffusion
in silicon and germanium should be rather similar.
Judging from impurity measurements the activation
energy of diffusion in silicon is about 3.5 eV. Assigning
it to vacancy motion, Watkin's results would imply a
formation energy for the vacancy of about 3 eV, which
is remarkably diferent from germanium. Probably
further KPR studies are necessary before point defects
can be firmly identi6ed.

Hasiguti' estimated from measurements that the
migration energy of an interstitial in p-type germanium
is about 0.5—0.6 eV and the migration energy of a
vacancy in e-type germanium about 1.2—1.3 eV.

Accurate experimental results about formation and

migration energies of point defects in diamond are not

yet given in the literature.
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APPENNDIX A: BOUND STATES

s sections, the valence-electron states
f th le 1 t

due to the pertur ing Hamiltonian
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d t t s associated with pointdeterm»ation e boun s a es
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localize states u
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T i(q, k;ko) = [Ti(q, k;ko) j,P, (cosa', o).

One gets then from q.E . (A.1)

x ande in e ed L ndre polynomials a,sT~ is approximately exp

(A.4)

1 1
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APPENDIX B: MULTIPLE SCATTERING

d3——e'" ~ 'i"' ikai'( pqk, )G, '(pk, )kkki, '(p)q )k),
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APPENDIX C: EQUATION OF STATE OF
VALENCE ELECTRONS with

h(q, 0)

To determine AE3 the dependence of E,& on the crystal
t be evaluated explicitly. Approximating

Vg and A by local potentials one ge s appr
from Eqs. (II.10) and (II.31)

Co 0.982 0.916
~el

2 r.2 rs

+~--(')+(V.("))+Z, f.(") (C1

C f Q AHi' =0 and Vs—=0. e is the-
total number of valence electrons. r, is given y

(C2)
32ws)

qaist e a iceth l ttice constant. The correlation energy E,.„is
31approximately given by

E„„=(—0.115+0.031 lnr, ) . C.3

A Course o, Modern Analysts' E. Whittaker and G. Watson, A Course o
rid e En land, 1946).(University Press, Ca bri g, g"D. Pines, The Many-Body Problem

New York, 1961).

V(tI, P) —=2 «) (tl) «s*(P)

«((q) —= d'r pks*(r) e"',
(C.S)

d q =——(0.916/r )-'(q'/8qre') L1—h(qpo)) k (C.6)

where

h(q, 0)= 1+0.165r,Lu(x)/x'), g=—

1—xs ) 1+x
ln

1
N(x) —=— 1+

2 2$

(C 8)
2k'

(C.9)

V.ri =—U +A;„+Vir, V —= V,+C'+A'. (C.7

u 2' denote the contributions to C and A, respec-

wave function o t e
. ~&C.4, Uz might be approximated y e e p

E . &C.4 by replacing the expression
b V +A;.). ~(tl, p) anb y

oximately independent o r, . e ie

h(q, 0) is given approximately by
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The Fermi wave vector k~ is related to r, as

)9~ '" 1
kp ——i—

One gets then

(C 10)
C 1.964 0.916

QjV, —
3 f8 f8

—0.031

The function fz(r, ) is given by +e(r.)+ Z gK(r.) ~, (C 14)
E'Qo 1+A(K)

y,(r,) =S(K)S~(K)—
16me'Z 8(EO)

with

0(r,)=— ~(aO)&(V) V.«(V), (C.15)
(2m)'1+A(E)+8(E,O)

X- V.«2(E) . (C.11)
8(E,O) 1 0.165r, 2x'-1 f 1+x,

H In

0.916 & ~
~+~(q), (C.16)

3r, 8~e')

1+A(E) 1+A(E) q O~rr(r, )
(C.17)

8(E,D) 8(E,O) 2 V.«(E)H(E)
(C.1.2)r, '= (1+C)'"r, ,

with
where Hir is obtained from Kq. (C.15) replacing y(q, 0)

C= AQ/0=n—(Z/«), AQ=—n00, 00= a'/g. (C.13) by y(g, E).

(q)
The above formulas yield an approximate expression 8(q,O) 8(q,0) 2x' 1—x

for the equation of state of the system of valence elec-
trons taking into account within the Born approxirna-
tion the interaction between the pseudocrystal potential
and the valence electrons. The exact treatment of the
electron-lattice interaction replaces D1/8+3/8)V, «j
in Eq. (C.11) by the corresponding t matrix and m all

( ) S(K)S~(K)
o 8(E)V,(X) 2 +1

~ ~ E'00 1+A(E)
formulas 8 by the exact dielectric function. 16ire'Z 8(E,O)

AE3 is now determined as follows. r, ' which refers to
the crystal with volume 0+6' is related to r„which
refers to the crystal with volume 0 as


