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A variational property of the ground-state energy of an electron gas in an external potential »(r), de-
rived by Hohenberg and Kohn, is extended to nonzero temperatures. It is first shown that in the grand
canonical ensemble at a given temperature and chemical potential, no two »(r) lead to the same equilibrium
density. This fact enables one to define a functional of the density F[#(r)] independent of »(r), such that
the quantity @= S (r)n (r)dr+F[»(r)] is at a minimum and equal to the grand potential when #(r) is the
equilibrium density in the grand ensemble in the presence of v (r).

ECENTLY, Hohenberg and Kohn! have proposed

a new approach to the ground-state properties of

an electron gas in an external potential v(r). Underlying

their method is a proof that there exists a functional of
the density F[#z(r)] independent of »(r), such that

E= /'u ®)n(t)dr+F[n(r)]

is minimum and equal to the ground-state energy
associated with »(r), when #(r) is the ground-state
density in the presence of v(r). In this article we prove
an analogous theorem which provides a basis for extend-
ing their analysis to the problem of the inhomogeneous
electron gas in thermal equilibrium at a temperature
T+#0.

We shall work in the grand canonical ensemble at
fixed temperature and chemical potential? and shall
prove that there exists a functional F[#(r)], independ-
ent of (r), such that

Q= /v @®)n(x)dr+F[n(r)]

is minimum and equal to the grand potential associated
with »(r) when #(r) is the equilibrium density in the
presence of (r).

To show this we first record a minimum property of
the grand potential analogous to that of the ground-
state energy. If

1
Qp]= Trp<H —pN+4- lnp) ) 1)
B
then the grand potential,
1
Q= ——InTre#HE=#N 2)

is given by Q[ po ] where po is the grand canonical density
matrix,
po=¢BE=4N) /Trg—8H-pN) 3)
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2 The argument to follow can be adapted to the canonical
ensemble with a few minor changes.
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The functional (1) satisfies
Lp1>pol, pH=po, @

for all density matrices p, i.e., for all positive definite p
with unit trace. The classical version of this inequality
was proved by Gibbs? and it is easy to show quantum
mechanically that p, is a local minimum of Q[ p]. In the
Appendix we prove that 2[p ] is in fact bounded below
by Q[po] for general quantum systems.

Given this property of Q[p], the generalization of the
argument in Ref. 1 is straightforward. Consider a grand
canonical ensemble of electrons in an external potential
9(r). The Hamiltonian is

H=T+V+U,
where

h2

r=—_ f Ve @)ir,
2m

V= / V@),

U= [ MWW e
=7

The equilibrium electronic density,
n(r)="TrpahT (£)¥ (1)

is evidently a functional of v(r), but we can also show
that »(r) is uniquely determined by #(r). For suppose
there were another potential o’(r) giving rise to the
same density #(r). Denote the Hamiltonian, grand
canonical density matrix, and grand potential associated
with o/ (r) by H', po/, and €'. Since o' (r)#v(r), po'5=po,*

8 J. Willard Gibbs, Elementary Principlesin Statistical M echanics,
Dover Publications, Inc., New York (1960). See Theorem III,
p- 131; J. von Neumann [Mathematical Foundations of Quantum
Mechanics, Princeton University Press, Princeton (1955), Chap. V,
Sec. 3] reduces the quantum case to a point where Gibbs’ argu-
ment can be applied. A short direct proof of the quantum in-
equality is given below in the Appendix.

4 Note that in the canonical ensemble v(r) and »’ (r) must differ
by more than a constant for po to differ from po'. Since in the grand
ensemble the density matrices at fixed temperature and chemical
potential differ even when the ’s differ only by a constant, we are
in effect proving that any given equilibrium % (r) can be produced
by only one v(r) and only for one value of u. This is a generaliza-
tion of the familiar property of systems in the absence of external
potentials, that the (uniform) density # is a single-valued function
of M.
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and we have from the minimal property (4),

1
Q= Tl‘pol(Hl—‘MN-I-L; h’lp()l>

1
<T1‘P0<H '—uN +5 lnpo) (5)

=Q4+Trp(V'—7V),
so that

<+ / dr(¥' (r)—v(x))n(r). (6)

But the reasoning of Eq. (5) remains valid when primed
and unprimed quantities are interchanged, giving

Q<Q’+/dr(v(r)—v’(r))n(r) . @)

Adding (6) and (7) leads to the contradiction
Q4+ <+,

and therefore only one v(r) can result in a given #(r).

Since n(r) uniquely determines v(r) which in turn
determines po, the entire equilibrium density matrix pg
is a functional of #(r). In particular,

1
F[n (l'):l = TI‘po(T"}" U+B lnpo) (8)

can be taken to be a functional of the density alone with
a universal form valid for all »(r). For a given potential
2(r), we define the functional

Q[n]= f v(t)n(r)dr+F[n]. )

When #(r) is the correct equilibrium density in the
potential v, then ©,[#] equals the grand potential Q. If
#'(r) is the equilibrium density associated with any
other potential ¢/ (r), then

Q[n' 1>Q[n].

This follows from Egs. (4) and (1), with the Hamilton-
ian T+ U+ Sdryt ()¢ (r)v(r), since the right side of
(10) is the grand potential Q[ po], while the left side is
Q[ po’]. Thus, the correct density minimizes (9) over all
density functions that can be associated with some
potential v(r).

This completes the generalization of the basic
theorems of Ref. 1 to the case of an electron gas in
thermal equilibrium. The corresponding generalizations
of the subsequent discussion in that paper can be
carried out in a straightforward way. By way of illustra-
tion, we mention two typical extensions.
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In the case of a gas of almost constant density,
n(t)=ne+7(r), #()/n<Kl, /drﬁ(r)=0,
Hohenberg and Kohn define a functional G[#] by

Fln]= < /drdr’%(i)l—ft%)-}—G[n] ,

2 r—r

and show that to second order in 7% G has the expansion
G[n]=G[n ]+ / drdv'w ()i (0 )K (r—r'), (11)
where K (r) is given in terms of a, the electronic polar-
izability by
2me? 1
o]
¢ La(g)

(0, the volume). It is a routine application of tempera-
ture-dependent perturbation theory to reach the same
conclusion when 7'#0, except that « is now the tem-
perature-dependent polarizability, so that Eq. (32) of
Ref. 1 must be generalized to

1
K@)=—1 eirr (12)
D 4

47e® 1

al@=—=—2
¢ U w»w E,)/’—E,

Wo— W,

(nlpa|n')(n' | p-q|n),

pa=2_ cTr—qCq,
k

W, =B EnNn) /Tre—BH-uN) (13)

As a second example, if we neglect exchange and
correlation effects and approximate the contribution of
the Helmholtz free energy to G by a form which is
locally the free-particle expression, we find

G[n] /drdp[ 11 (14 g8 2m—u(n)
= - —— —B(p2/2m—pu(r
n (27r)3 IB n e )
u(r) ; \
+m}‘“/ m(r). (14)

Here u(r) is a functional of the density defined im-
plicitly by
1

dp
n(r)= / .
(2n)? eBIP?2m—u(n] |

Under these assumptions,

(15)

Q[ n]= / drén (r)[u (®)+o(r)+e

% / dr'lﬂa')—u], (16)

lr—r'|
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which leads to the temperature-dependent Thomas-
Fermi equation for the equilibrium density :

n(e)= / %leXP[B<—£-+v(r)+e“’

1
X/dr’—————n(r')—p.)]—l—l}“. a7
[r—r'|
APPENDIX
We wish to show that
QLp1>0Lpo], p#po,

for all positive definite p with unit trace, where the
density matrix functional Q[ p]] is given by (1) and p, is
the grand canonical density matrix (3). We define

(A1)

pr= e BEN—RN) /Tpg—BHAN—N) (A2)

where A=—(1/8)lnp—H-+uN. Since p is positive
definite, A is Hermitian. Now
PA=P0;)\=0§ =p A=1. (As)

Hence

19
ALp]—9p]= / 0o (A%)

To evaluate the derivative write
1

Ao ]= Trpx(H—I-)\A— uN+4— lnpx) —A\TrApr. (AS)
B

The first trace is just the grand potential for a Hamil-
tonian H-+\A, and is therefore stationary for variations
of p\» about the corresponding grand canonical density
matrix (A2). We need therefore differentiate only with
respect to the explicit occurrence of \ in this term, so

(AS) yields simply

d d
—Q[or]=—\ TrA—p. (A6)
)N )N

We can find dp)/d\ by using the operator identity

9 B
e BH—pNAN) = _ p—B(H—pN-+AA) / a8, (A7)
[ 0

AN(B) = ef H-uN+A8) A g8/ (H—uN-N8) (A8)

[To prove (A7), note that both sides satisfy the same
first order differential equation in 3, and both vanish
when 8=0.] From (A7) and (A2)

9 B
= / WolmB)— a1,  (A9)
oA 0

where
(X h=TrpX.
Therefore,

P 8
2 omI=x / 48 (MM (B h—(AND).  (A10)
oA 0

By cyclically permuting operators within the trace, one
can verify that

(M@ In=(An for anyg’,

(AM(B)h= (M (38)"M(38))- (A11)
With these identities, we can rewrite (A10):
9 8
—ap]= [ d8(ana)— (Wh
[N 0
X(AGB)— (A . (A12)

The right side of (A12) is non-negative and can be zero
only if A is a multiple of the unit operator, i.e., if po=p.
Thus, (A12) and (A4) establish (A1).



