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Thermal Properties of the Inhomogeneous Electron Gas*
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A variational property of the ground-state energy of an electron gas in an external potential v(r), de-
rived by Hohenberg and Kohn, is extended to nonzero temperatures. It is first shown that in the grand
canonical ensemble at a given temperature and chemical potential, no two e(r) lead to the same equilibrium
density. This fact enables one to define a functional of the density FLn(r)) independent of v(r), such that
the quantity 0=J'v(r)n(r)dr+F(n(r)) is at a minimum and equal to the grand potential when n(r) is the
equilibrium density in the grand ensemble in the presence of v (r).

ECENTLY, Hohenberg and Kohn' have proposed
a new approach to the ground-state properties of

an electron gas in an external potential v(r). Underlying
their method is a proof that there exists a functional of
the density Fgst(r)] independent of v(r), such that

Z=— v(r)rt(r)dr+F)rt(r) j
is minimum and equal to the ground-state energy
associated with v(r), when n(r) is the ground-state
density in the presence of v(r) In thi.s article we prove
an analogous theorem which provides a basis for extend-
ing their analysis to the problem of the inhomogeneous
electron gas in thermal equilibrium at a temperature
T'Q 0

We shall work in the grand canonical ensemble at
Axed temperature and chemical potentiaP and shall

prove that there exists a functional F[rt(r) j, independ. —

ent of v(r), such that

Q=— v(r)st(r)dr+F/rt(r)$

where
H=T+V+U,

&4't (r)&4'(r)dr

V= v (r)li t(r)li (r)dr,

The functional (1) satis6es

QEP3&QLpsl P+Po (4)

for all density matrices p, i.e., for all positive definite p
with unit trace. The classical version of this inequality
was proved by Gibbs, ' and it is easy to show quantum
mechanically that ps is a local minimum of Q)p]. In the
Appendix we prove that Q[y] is in fact bounded below

by Q[ysf for general quantum systems.
Given this property of Qgf, the generalization of the

argument in Ref. i is straightforward. Consider a grand
canonical ensemble of electrons in an external potential
v(r). The Hamiltonian is

is given by QLpo] where po is the grand canonical density
matrix,

Po= V
—tt(N oN)/Tre tt(H oN—)——(3)
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is minimum and equal to the grand potential associated
with v(r') when rt(r) is the equilibrium density in the
presence of v(r).

To show this we first record a minimum property of
the grand potential analogous to that of the ground-
state energy. If

Qkpj T~p(B ps+ 1~p), =—-
then the grand potential,

i
0=——lnTre —& &~—I"~&,

The equilibrium electronic density,

st (r) =Trpsiil t (r)li (r)

is evidently a functional of v(r), but we can also show
that v(r) is uniquely determined by rt(r) For suppose.
there were another potential v'(r) giving rise to the
same density rt(r). Denote the Hamiltonian, grand
canonical density matrix, and grand potential associated
with v'(r) by H', ps', and Q'. Since v'(r)4v(r), ps'&p, ,

'
J.Willard Gibbs, Elementary Erincip/csin Statistical Mechanics,

Dover Publications, Inc. , New York (1960). See Theorem III,
p. 131;I. von Neumann fMathematica/ Fogndations of Qnantnm
Mechanics, Princeton University Press, Princeton (1955),Chap. 7,
Sec. 3j reduces the quantum case to a point where Gibbs' argu-
ment can be applied. A short direct proof of the quantum in-
equality is given below in the Appendix.

4 Note that in the canonical ensemble v(r) and v'(r) must differ
by more than a constant for po to differ from po'. Since in the grand
ensemble the density matrices at fixed temperature and chemical
potential differ even when the e's differ only by a constant. , we are
in effect proving that any given equilibrium n(r) can be produced
by only one v(r) and only for one value of p, . This is a generaliza-
tion of the familiar property of systems in the absence of external
potentials, that the (uniform) density n is a single-valued function
of p, .

i44i



A 1442 N. DAVI D MERMIN

and we have from the minimal property (4), In the case of a gas of almost constant density,

Q =Trpo~ & —/l]/+-»po
~

1

p i
n (r) =np+n(r), n(r)/np&(1, drn(r) =0,

so that

(Trpp~ H plV+ —liipp
~

p

=Q+ Trpp (V' —V),

(5)
Hohenberg and Kohn define a functional G[n] by

e' n (r)n. (r')
F[n]=— drdr' +G[n],

2
f
r—r'[

and show that to second order in n 6 has the expansion

Q'&Q+ dr(v'(r) —v(r))n(r) . (6)
G[n]= G[n()]+ drdr'n(r)n (r')K(r r'), —(11)

But the reasoning of Eq. (5) remains valid when primed
and unprimed quantities are interchanged, giving where E(r) is given in terms of (2, the electronic polar-

izability by

Q(Q'+ dr(v(r) —v'(r))n(r). (7)
v' -~(v)

27M
E(r) = Pe*2'—

0
(12)

Adding (6) and (7) leads to the contradiction

Q+Q' &Q+Q',

and therefore only one v(r) can result in a given n(r).
Since n(r) uniquely determines v(r) which in turn

determines po, the entire equilibrium density matrix pp

is a functional of n(r). In particular,

F[n(r)]=Trpo( T+ U+ lnpp—

('U, the volume). It is a routine application of tempera-
ture-dependent perturbation theory to reach the same
conclusion when T/0, except that n is now the tem-
perature-dependent polarizability, so that Eq. (32) of
Ref. 1 must be generalized to

47re2 1 zv„—z„'
(nl pqln'&(n'I p—qln),

q2 'U nn& g„'—g„
pq=P Ct)r—qeq,

k

= e //(en Ir/q~)/Tre —//(H —/rN)— —
(13)can be taken to be a functional of the density alone with

a universal form valid for all v(r). For a given potential
v(r), we define the functional

Q„[n]= v(r)n(r)dr+F[n].

As a second example, if we neglect exchange and
correlation eGects and approximate the contribution of
the Helmholtz free energy to 6 by a form which is

(9) locally the free-particle expression, we find

Q„[n']&Q„[n]. (10)

When n(r) is the correct equilibrium density in the G[n]=
potential v, then Q„[n] equals the grand potential Q. If
n'(r) is the equilibrium density associated with any
other potential v'(r), then

dl'dp 1
ln(1+e—e(v2/2m —p(r)))

(2~)' P

/ (r) —
/2 drn(r) . (14)

ee[P2/2m p(r) ]+1—
(15)

Under these assumptions,

1
n(r') —/2, (16)

fr —r')

Here i((r) is a functional of the density defined im-

ian T+U+ J'dr)/[t'(r))/[(r)v(r), since the right side of
(10) is the grand potential Q[pp], while the left side is n(r) =
Q[pp']. Thus, the correct density minimizes (9) over all (2~)2 ee[yr /2m —JL(r)]+1
density functions that can be associated with some
potential v(r).

This completes the generalization of the basic
theorems of Ref. 1 to the case of an electron gas in ()Q„[n]= (fr()n(r) /r(r)+v(r)+e2
thermal equilibrium. The corresponding generalizations
of the subsequent discussion in that paper can be
carried out in a straightforward way. By way of illustra- X
tion, we mention two typical extensions.
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8 8—Q[pg)= —X Trh—p), . (A6)(P'
exp P~ +i)(r)+e'

(2)r)' i 2m
m(r) =

We can find Bpz/BX by using the operator identity

which leads to the temperature-dependent Thomas- (A5) yields simply
Fermi equation for the equilibrium density:

&( dr' I(r') —)i +1 '. (17) 8 P

e
—P(H )pN+)5) —— e—P(H )pN+xlk—) dPPQ (P ) (A7)

H 0

APPENDIX f f?~') gp)' (H—IJ,N+xdi, )gg—pf (H—pN+M ) (AS)

%e wish to show that

Q[pj&QLpoj, popo,

[To prove (A7), note that both sides satisfy the same
first order differential equation in P, and both vanish

(A1) when P=O.j From (A7) and (A2)

for all positive de6nite p with unit trace, where the
density matrix functional Q[p7 is given by (1) and po is
the grand canonical density matrix (3). We de6ne

(A9)

p) =—e P(H+)rA —)pN) /Tr—e P&H+)rA —)pN)— (A2) where

(X)),= Trp), X.

8 P—Q[p j=& dP'((~~ (P')) —(~) ') (A1o)
N 0

(A3)pi= po) ~=0 j =p) A=1.

where 6= —(1/P) lnp —H+ pX. Since p is positive Therefore,
definite, 6 is Hermitian. Now

Hence

1

Q[pj —Q[poj = —Q[p),]dpi.
0 N.

To evaluate the derivative write

By cyclically permuting operators within the trace, one
can verify that

(A4)
(hq(P') )),= (6)), for any P',

(~~ (P')) =(~ (lP')'~ (lP')) (A11)

1
Q[prj=Trpb(FI+Xk —pal'+ —lrrpr

~

—XTrkp„. (A5)

With these identities, we can rewrite (A10):

The first trace is just the grand potential for a Hamil-
tonian H+XA, and is therefore stationary for variations
of p& about the corresponding grand canonical density
matrix (A2). We need therefore differentiate only with
respect to the explicit occurrence of X in this term, so

X (&),(-,'P') —(6) )) . (A12)

The right side of (A12) is non-negative and can be zero
only if 6 is a multiple of the unit operator, i.e., if po= p.
Thus, (A12) and (A4) establish (A1).


