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A theory is presented to explain the difference in elastic shear constants between normal and super-
conducting metals as a function of temperature. The development is based upon the BCS theory of super-
conductivity in the weak-coupling limit and the quantum mechanical theory of elasticity discussed in the
first article of this series. Expressions are presented for the first and second derivatives of the energy gap and
critical field with respect to shear strains in terms of parameters for the normal state. Representative calcu-
lations are performed to show that the model chosen is capable of giving the correct order of magnitude and
sign for the difference in elastic shear constants at absolute zero. It is also found that although the second
derivative of the free-energy difference, with respect to shear strains, disappears at the superconducting
critical temperature, the corresponding second derivative of the entropy diBerence is finite at the super-
conducting critical temperature and is proportional to the diGerence in elastic shear constants at absolute
zero.

l. INTRODUCTION The elastic constants of metals may be obtained by a
direct calculation of the total energy as a function of
strain. The total energy of a normal metal is expressed
as a sum of separate terms and by calculation of how
these terms change as the metal is stra, ined, one can
obtain the elastic constants as a sum of separate con-
tributions. ' ' The theory of superconductivity de-
veloped by Sardeen, Cooper, and SchrieRer, 4 referred
to as the BCS theory, enables one to obtain the differ-
ence in total energy between the normal and super-
conducting sta, tes from absolute zero to the supercon-
ducting critical temperature. This energy difference,
known as the condensation energy, is used in this work
to obtain the difference between the elastic shear con-
stants in the normal and superconducting states.

In Sec. 2 the condensation energy is differentiated
with respect to shear strains and it is shown that the
difference in elastic shear constants may be represented
by the square of the hrst derivatives of the energy gap
with respect to strain. The results of Sec. 2 are used in
Sec. 3 to evaluate the change of condensation energy as
a function of shear strain for vanadium and niobium.
Finally, in Sec. 4 the results of the calculations are
summarized and discussed.

" 'N the preceding article of this work, ' it was shown
~ - that the electrons in a normal metal contribute a
term in T' to the temperature dependence of the elastic
constants at low temperatures. This term in T' arises
from the temperature dependence of the electron en-
ergies and distributions due to the Fermi-Dirac dis-
tribution function. The temperature dependence of the
elastic shear constants due to the electrons was shown
to be directly related to the second derivative of the
total density of states at the Fermi level with respect
to strain. The magnitude and algebraic sign of the tem-
perature dependence were then shown to depend on the
energies of symmetry points in the Srillouin zone and
the hrst and second derivatives of the electron density
distribution with respect to energy. On the basis of
semiquantitative calculations, it was concluded that
the effect is most pronounced for transition elements,
exhibiting a high density of states at the Fermi level,
in agreement with experiment. ' '

Since the elastic constants are second derivatives of
the thermodynamic free energy with respect to strain,
it is to be expected that the free energy difference be-
tween the normal and superconducting states will be
reQected by a difference in the elastic constants. Such
differences have been experimentally observed by Alers
and Waldorf' for vanadium and niobium. It is the pur-
pose of this article to examine the eRect of the super-
conducting transition upon the electron contribution to
the elastic shear constants, with respect to the theory of
superconductivity proposed by Bardeen, Cooper, and
Schrieffer. 4 As a result of these calculations, such para, m-
eters as the strain dependence of the critical held and
critical temperature of a superconductor a,re obtaina

2. STRAIN DEPENDENCE OF THE
CONDENSATION ENERGY

A. Abso1ute Zero

The energy difference, AW(0), between the normal
and superconducting states at absolute zero is obtained
from the BCS theory as

AW(0) = W„(0)—W, (0) =-,'n, A(0), (1)

' B.T. Bernstein, Phys. Rev. 132, 50 (1963).' G. A. Alers and D. L. Waldorf, Phys. Rev. Letters 6,
(1961).

s G. A. Alers (private communication).
4 J.Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev.

1175 (1957).

where W„(0) and W, (0) are the total energies per unit
volume in the normal and superconducting states at
absolute zero, respectively, n, is the number of electrons

677
'K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1936).
6 R. S. Leigh, Phil. Mag. 42, 139 (1951).

108, r J. R. Reitz and C. S. Smith, Phys. Rev. 104, 1253 (1956).
s B.T. Bernstein, J. Appl. Phys. 33, 142 (1962).
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in pairs, per unit volume, virtually excited above the
Fermi surface at absolute zero and 6(0) is the super-
conducting energy gap at absolute zero. Since the super-
conducting energy gap is actually anisotropic, and since
the number of electrons virtually excited above the
Fermi surface is the sum of separate contributions from
electron overlap between symmetry points of the
Brillouin zone and the Fermi surface, Eq. (1) can be
written as

DW(0) =Q; hW;(0) =Q; —,'m, ,A;(0) .

We. de6ne here the elastic shear constants as those
elastic constants which relate to homogeneous strain
without change of volume. For cubic metals we consider
the two elastic shear constants'

C=C44 and C'=-', (Cii —Ci2) .

to obtain to first order

(6)

Differentiation of Eq. (4), with respect to X gives the
relation

(—') =v.(~.)(

dd, de;
~',(0)+~, —

I I (&)
Edxi, d~ i„=oi

Retaining only the first term in parenthesis in Eqs. (6)
and (7), and using the relation

If we let AM(0) represent either AC(0) or dC'(0) and
X an arbitrary strain parameter, corresponding to p we obtain
for C and $ for C' (see Ref. 1), we obtain

d'AW, (0))BM(0) =EQ,
dx' ), '

where the subscript zero indicates the derivative is
evaluated at zero strain and the constant E is 3 when
X= g and ~o when X=$.

We now make the assumption, ' that during shear the
energy surfaces at each overlap or hole symmetry point
in the Brillouin zone move rigidly with the Brillouin
zone boundary and that the electron and hole effective
masses are not functions of strain. We define by E; the
contribution to the total density of states at the Fermi
level, fo, from those electron overlap or hole states with
energy at the origin of the overlap or hole of E;, where i
refers to the symmetry point of the zone. We now assume
that the total number of overlap electrons below the
Fermi surface minus the total number of holes is a
constant independent of the state of shear of the crystal.
In effect, we are assuming that shear strain does not
excite electrons across the superconducting energy gap
but redistributes them in phase space above and below
the Fermi surface.

The number of electrons excited above the Fermi sur-
face is given by

iV &(Q)~)dM» (4)

where oo;= o; t o Since th—e su.perconducting energy gap
is of the order of thousandths of an eV, we expand the
density of states in a Taylor's series about co;=0 by the
relation

t'd'DW, ~ (dh; '
t d'6;~

t
d'n;

+2~., I

'
I
y-, ~,l

'
. (1o)

E dX' io kdX o EdX'io EdX' o

Thus Eq. (3) becomes, to first order

dd, ) ' d'd, )
~~(0)=x p, x;

~
+',~., ~, (11)

dXi o dX'i o

where we h, ave used the assumption that

l=o.
kdX %dX'i

(12)

In addition, we have from Eqs. (9) and (12),

(dd, W;

&dx o

which satisfies the equilibrium condition for shear
strains. 7 It now remains to evaluate the derivatives of
the energy gap as a function of strain in order to evalu-
ate Eq. (11).

The excitation of electrons above the Fermi level in
the superconducting state causes the number of overlap
electrons and holes and the Fermi level itself to be dif-
ferent from the values in the normal state at absolute
zero. Thus, we may write

de; (d'cV;
A', (o)) =X;(0)+oi; — — +-', ceja + (5)

~=o ~ doo (o=o
+Cj

)on—Es

cV'(N )dM

fp'—Jl s

iV, (co') des', (14)
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Fn. 1. Brillouin zone
for the body-centered
cubic lattice with points
of symmetry shown.

FIG. 2. Brillouin zone for
the face-centered cubic lat-
tice with points of sym-
metry shown.

Eq. (19)

A dp)dN;~'PdE;~ '
2'N' = —2' I II I

. (21)
dX' p N'E dp) k' EdXI p

where p)'=p E;, and —ip, and t'p' are the respective
Fermi levels in the normal and superconducting states
at absolute zero. In Eq. (14) we have assumed that the

E; are unaffected by the superconducting transition. Finally, we obtain for AM(0), to first order

Differentiating Eq. (14) with respect to strain gives the
result that

dn„/dX= 1.),) (fp E)[d—(fp E )/(dX)]'p
N'0-" E-,) L&(f o-E;)/(dX-) j' (1')

As shown in the preceding work'

1 5;/dkV,
—

X 1——
I

— . (22)
2 Nd( dM

(dip/dX) p 0——

As a consequence of Eq. (16),

(16) The shear strain dependence of the superconducting
critical field at absolute zero is obtained from the rela-
tiOn Hpp/82r= AW(0) aS

Q.2

Performing a Taylor's series expansion once again
about f p", we obtain dN, ~2 dE,~2 16; dN-, ~.

X —
I I

1——— I. (23)
dXJ 2N; d~&(dn, ,/dX) p k);(dN;/d~');—=r;——s, (dE;/dX) p. (1.8)

Thus,

N;(dd„/dX) p' ——(Adp/N;)(dN;/dp)')'(dE;/dX) p'. (19)

From Eq. (12) we obtain

The Brillouin zones for the body-centered-cubic and
face-centered-cubic lattices with points of symmetry
designated are shown in Figs. I and 2, respectively. In
order to simplify the discussion we will assume, as in
the preceding work, ' that the first and second deriva-
tives of the E; are proportional to E;, the constant of
proportionality being determined by the geometry of
the Briliouin zone. The values' of I). in Eq. (22) are -',

for AC and ~ for AC'. Assuming an average value for
the 6;, and referring to Fig. 1, we have for the body-
centered cubic lattice

(20)

Now, since the individual (dA;/dX) p are not necessarily
zero and neither is their sum zero, we obtain from

(dn, „./dX) p
——LN;(f p' —E;)

)

dX2&, P;(n„a,))k2

dÃ 2

~C(0)=-
2 )9(d,—dn ) d ) =p, g„

1 6 ~dN

2)d(g Ep) kd ).=p, g ——
4 6' PdkV '

9)9(d,—R ) Ed ).=p,

1 6 (dN

2 X(h —R ) k d ).=p,
(24)
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and

1 LV dN)'
!2C'(0) =—

4N(fp —E~) d(o]„=r, e„

1 ~, (dN~

21K(|p E~—) kdk&) „=r, e„

3N(fp E~—)kd(uI =r, s„
1 6 (dNq

2 N(t p E~—) kd(u) „-r~s„
(25)

For the face-centered cubic lattice, referring to Fig. 2,

and

4 ~,2 (dN~'
~C(0) =-

9 1V(g E)kd—
(dN~

2 N(fp Eg) k—d(oP„=r-s~
(26)

2 +2 (dN~'
~C'(0) =-

3 1V({p—Ex) (deal „=r, 'x

1 6 (dN)
Ex' 1—

2 Nu p Ex—) &d~&- r-s=x

2 ~2 (dN~2

75 1V({p—Eg) (do) I „=r-s~

1 6 (dN~

2 N({p—Eg) kd(u) „=r
(27)

B. Temperature Effects runs over all ~~ greater than zero. Thus,

The free energy difference between the normal and
superconducting states, AF(T), may be obtained from
the BCS theory as

TS,=
4N(0)

f(p)dp,
P2 e~(22 22)1/2

(32)

AF(T) =N(0)(4r, )'{[1+(~/ka).)')'"—1} where 2=PE and pp=PA. The entropy of the normal
state is obtained as

~F(T)= 21m, ~ ', T~S. — —- (29)

The temperature dependence of the energy gap is ob-
tained from the BCS theory, as shown in Fig. 3. As
seen from Fig. 3, the gap width changes very slowly as
T increases from zero until T=~~T„where T, is the
superconducting critical temperature. It then begins to
fall more rapidly, approaching zero with a vertical tan-
gent at T,. Thus between zero and ~T„ the 6rst term
on the right in Eq. (29) is essentially independent of
temperature. The entropy of the superconducting and
normal states may be expressed in the usual way in
terms of the probability of occupancy, which are ran-
domly distributed over an ensemble. Thus,

S= 4k +2 f21nfp+(1——f2) ln(1 —f2), (30)

where in the superconducting state the summation runs
over all k greater than kp at the Fermi level, and

where h", is the lattice vibrational energy, and S„(T)
and S,(T) represent the entropy in the normal and su-

perconducting states, respectively. In the weak-coupling
limit h((k"„and thus we may approximate Eq. (28) by

TS„=
41V(0)

2nf(n)dn

=2(~kT)'N(0) (33)

where n=t'". At temperatures below —',T„ the super-
conducting entropy is almost negligible and thus the
temperature dependence of the free energy difference is
determined almost entirely by the temperature de-
pendence of the entropy in the normal state. Thus be-
tween T=O and 2T„we may approximate AM(T) as

AM(T) = ~~(0)—1(~kT)2[d2N(0)/d»)p (34)

Near the critical temperature, the superconducting en-

f2 1/e's&+1, —— (31)

where p= 1/kT, and Ep=(cu22+62')' '. ln the normal
state E& is replaced by s» in Eq. (31) and the summation

TI Tc

FIG. 3. Temperature dependence of the energy gap.
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tropy approaches the entropy of the normal state. By vides the relation in conjunction with Eqs. (9)—(11) and
differentiation of Eq. (30), we find for the strain de- (37), that at the critical temperature
pendence of the superconducting entropy KT.(d'AS/dX') r r, 6.6——DM(0), (41)

Novr

dS, (dEy)
4P—Z~ fa(1—f.)E.

~

dX z kdxi

E„(dE,/dX) = AI,(day/dX)+u g(d~&/dX) . (36)

where AM(0) represents hC or AC' at absolute zero,
and the constant E is defined in the first part of this
section as either 3 or 4.

3. COMPARISON WITH EXPERIMENT:
VANADIUM AND NIOBIUM

At T= T„E=O, EI.=~I„ f(pE) = f(p~) and

tdaS~
=40 E f..(1—fj:.)~il-

'&dXi, „,
" '"

'EdX

p dA~
=mr(0)~i

&dxi
(37)

From Kqs. (8) and (29), at T,

(dhF/dX) r=r, 0, —— (38)

even in the strained state. Further differentiation of

Kqs. (29) and (35) shows that

(d'hF/dX') r=r, =0, (39)

and therefore the difference in the elastic shear con-

stants at the critical temperature disappears.
The energy gap near T, may be approximated by the

relation4
A(T) =3.2kT.L1—(T/T )]'" (40)
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FIG. 4. The differ-
ence in the elastic
shear constants ofva-
nadium between the
normal and super-
conducting states as
a function of tem-
perature.

In accordance with predictions of the BCS theory, and
thermodynamic considerations, the free-energy differ-

ence, the internal energy difference and the entropy
difference between the normal and superconducting
states disappear at the critical temperature. As shown

by Eq. (39), the second derivative of the f'ree-energy

difference with respect to shear strains, and hence the
difference in shear constants, also disappear at the criti-
cal temperature. In addition, the energy gap at T= T, is

zero, from Eq. (40). Such is not the case for the second
derivative of the entropy difference with respect to
shear strains at T,. Substitution of the relation' that at
absolute zero A(0) = 1.76k T, into Eq. (40) and differen-

tiation of Eq. (40) with respect to shear strains, pro-
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FIG. 5. The differ-
ence in the elastic
shear constants of
niobium between the
normal and super-
conducting states as
a function of tem-
perature.

may be approximated by lo and use the relation at
- absolute zero4 that 6= 1.76kT, . Although we know the
total density of states at the Fermi level9 " and can
approximate the slope from the work of Cheng et al. '
on T;-V and V-Cr alloys, we cannot, at present, de-
termine the individual contributions from symmetry
points X, F, and, H in Eqs. (24) and (25). However, in
order to show that the analysis presented in Sec. 2 is
capable of giving the right order of magnitude when
compared to the experimental values, we will assume
without any theoretical justi6cation that there are no
contributions from symmetry points I' and H in Fig. 1.
The comparison between the values calculated from
Eqs. (24) and (25) and the data in Table I with the ex-
perimental quantities' are given in Table II.

' C. H. Cheng, C. T. Wei, and P. A. Beck, Phys. Rev. 120, 426
(1960).' C. H. Cheng, K. P. Gupta, E. C. Van Reuth, and P. A. Beck,
Phys. Rev. 126, 2030 (1962)."K.Clusius, P. Franzoni, and U. Z. Piesbergen, Z. Naturforsch.
15a, 728 (1960)."C. Chou, D. White and H. L. Johnston, Phys. Rev. 169, 788,
797 (1958).

The difference in the elastic shear constants of vana-
dium and niobium between the normal and supercon-
ducting states as a function of temperature have been
measured by Alers and Waldorf. ' The results are shown
in Figs. 4 and 5. The experimental quantities necessary
for a semiquantitative evaluation of Eqs. (22) and (23)
are listed in Table I. Unfortunately, no information is
available for niobium concerning (dE/d&v) and
However, since the density of states of niobium is
quite close to that of vanadium, we will approximate
these values for niobium by those for vanadium. In
these calculations, we will assume that E~, B~, and E~
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TABLE I. Experimental quantities used to calculate the shear
strain dependence of the free energy, critical temperature, and
critical field.

Quantity Vanadium Niobium
Refer-
ence

v (T=0'Kl
T.
&V(0)
(dS/da&). , =0
fo

8.32 cm'
5.1'K
1.95 eV ' atom '

—3.85 eV 'atom '
7.74 eV

10.75 cm' a

9.2 K 2
1.60eV 'atom ' 9—12

9, 10

a G. K. White, Cryogenics 2, 292 (1962).
b H. W. B. Skinner, Phil. Mag. 45, 1070 (1954).

exhibit positive values irrespective of the sign of the
slope of the density of states and the change in energy
of symmetry points with shear strain. This is due to the
appearance of these terms to the second power in Eq.
(22). Such may not be the case for the sum of the
second derivatives of the energy gap with respect to
shear strains, given by Eq. (21), in which the slope of
the density of states enters to the third power. As a
consequence, Eq. (21) may exhibit positive or negative
values dependent on the sign of the individual (dlV;/d~).

In addition, the 6rst derivatives of the energy gap
with respect to shear strain, given by Eq. (18), may ex-
hibit positive or negative values dependent on the sign
of the product of the individual (dX;/d~) and the
(dE;/dX)0. It should be remembered" ' that for a
given type of symmetry point (dE~/dX)0 may be posi-
tive or negative dependent on the relative shift of the
specific zone face towards or away from the origin dur-

ing shear. Of course, according to the model developed
in Sec. 2, the sum of the first derivatives of the energy

gap with respect to shear strain at zero strain is iden-

tically zero.

4. DISCUSSION AND CONCLUSIONS

The theory of superconductivity developed by
Bardeen, Cooper, and Schrieffer, in conjunction with
the quantum-mechanical theory of elasticity developed
by Fuchs, ' Leigh, ' and others, "has been shown to be
capable of presenting a model by which the difference
in elastic shear constants and the shear strain depend-
ence of the critical temperature and critical field may be
interpreted.

On the basis of this model the difference in elastic
shear constants between the normal and supercon-
ducting states arises from a similar electron transfer
mechanism, containing terms in E', which is the domi-
nant contribution determining the electron contribution
to the temperature dependence of the elastic shear con-
stants in the normal state. '

For the case of vanadium, and perhaps niobium, the
second term in square brackets in Eq. (22) is negligible
compared to one, and hence the difference in elastic
sh, ear constants and the second derivatives of the free
energy difference at absolute zero for vanadium should

Element Modulus Calculated~ Experimental

V

Nb

aC
aC'
aC
gCI

1.57 X&07
0 885X10'
484 X10'
2.42 X10'

4.7 X10~
2.1 X10'
46 X10'
0 84X 107

a Calculated on the basis of no contribution from symmetry points
P and K.

The free energy difference at absolute zero' for vana-
dium is 7.2&(10' erg cm ' and for niobium 15&(10' erg
cm '. The measured difference in elastic shear con-
stants, however, is two to three orders of magnitude
greater ( 10' erg cm ') than the free energy difference.
The calculations performed in Sec. 3 are intended to
show that the model developed in Sec. 2 is capable of
presenting the correct order of magnitude for the elas-
tic shear constants of vanadium and niobium. As men-
tioned previously, the assumption of contributions only
from symmetry points X in Fig. 1 is without any
theoretical justification. The experimental values for
vanadium in Table II show, however, that AC is
approximately twice AC at absolute zero. This indi-
cates, from Eqs. (24) and (25), that there are contribu-
tions from symmetry points .V only or that the con-
tribution from symmetry points I' is twice as large as
from symmetry points H. For niobium, however, hC is
more than five times as large as AC' at absolute zero.
In addition the energy gap of niobium is almost twice as
large as that for vanadium and the closeness of the
values of hC for both vanadium and niobium listed in
Table II would be rather surprising if one assumed the
same Fermi surface for niobium as for vanadium. On
the basis of the model developed in Sec. 2 and the values
listed in Table II, one must assume a rather different
Fermi surface for these two metals, even th, ough it is
generally assumed that they possess the same number
of s and d electrons and their electron densities of states
lie quite close together.

The analysis of temperature effects, presented in Sec.
2, reveals the qualitative features exhibited by the ex-
perimental curves of Figs. 4 and 5, disregarding the
anomalous dip in the curve of AC' for niobium which is
thought to be due to impurity effects. ' In general the
7' dependence is evident below ~» T, in accordance with
Eq. (34) and the difference in shear moduli disappears
at the critical temperature, in accordance with Eq. (39).
Although the energy gap and second derivative of the
free energy difference disappear at the superconducting
critical temperature, it is found that the second deriva-
tive of the entropy difference between the normal and
superconducting state at the critical temperature is
Rnite, and is given by Eq. (41) in terms of the difference
in elastic shear constants at absolute zero.

TABLE II. The difference in elastic shear constants between
the normal and superconducting states at absolute zero in units
of dyn/cm'.


