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The energies of the lowest He-like compound-atom or resonance states lying below the #=2 hydrogenic
level are evaluated variationally for He and H™. In order to do this, we employ the definition of such states
given by Feshbach as eigenvalues of the Hamiltonian with the open channel projected out, together with the
modification required by the Pauli principle. Our trial wave function uses a Legendre expansion in the rela-
tive angle and a sum of exponentials in the radial coordinates, with appropriate angular factors to obtain
the desired symmetry, parity, and orbital-angular-momentum eigenvalues associated with the 1.35¢ and
13Po states. Our results are approximations to the actual physical resonances in that the shift and finite width
caused by coupling to the neighboring continuum are not included. It appears, however, that the actual
shifts are small, so that the positions of these compound-atom states are believed to give a close indication of
where the physical resonances may be expected to occur. The results for He and H™ are compared in detail
with the calculations of resonances in e-H and e-He™ elastic scattering and with the observation of these
states by ultraviolet photon absorption in He (where they are called autoionizing levels) and by inelastic

scattering of electrons from He.

I. INTRODUCTION

HE existence of states of compound nuclei made
up of an excited target nucleus and an incident
nucleon has long been known to give rise to the strong
resonances found in nucleon-nucleus elastic scattering.
The theory of such states would lead one to believe
that they should just as well exist in the scattering of
electrons by atoms. However, lack of detailed experi-
mental data for the elastic scattering of monoenergetic
electrons by atoms resulted in a lack of interest in the
properties of such compound atom states. Certainly,
there was an awareness of the possible existence of such
resonance states as an explanation of the phenomenon
of autoionization, which was postulated to explain
certain long known anomalous features of the continu-
ous absorption of radiation by atoms.

In recent years, interest has been revived in the sub-
ject of these compound atom states as a result of
advances in theoretical and experimental techniques.
Burke and Schey,! in the course of a detailed close-
coupling calculation on electron-hydrogen elastic scat-
tering, found a number of resonances occurring just
below the inelastic #=2 threshold. Very recently
Burke, McVicar, and Smith? have found resonances in
a similar calculation of e—He™" elastic scattering. In-
elastic scattering of electrons® by He showed discrete
energy losses of about 60 eV, which were interpreted
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by Fano* as the excitations of compound levels of the
He atom, which interact with the adjacent continuum.
Additional energy loss experiments in He by Simpson,
Mielczarek, and Cooper,5 using electron beams with
very sharp energy resolution have disclosed the pres-
ence of other compound levels lying between 60 and
65.4 eV, the threshold for single ionization with the
He* left in the n=2 state. Finally, the continuous
optical absorption measurements of Madden and Cod-
ling® clearly exhibited an entire Rydberg series of the
compound (or autoionization) states in He.

In the present work, we follow the method of Fesh-
bach’ in describing resonant scattering of a particle by
a composite system. The presence of resonances is
manifested by the existence of singularities in the
generalized optical potential for the system, and the
energies at which these singularities occur are seen to
be the eigenvalues of an altered Hamiltonian. These
are our compound atom or resonance states. The rela-
tion of these states to resonance reactions in inelastic
processes, derived by Fano by means of configuration
interactions between the discrete states and the con-
tinuum, is also seen to follow from Feshbach’s approach.
We follow the method of Hahn, O’Malley, and Spruch®
in the treatment of identical particles (electron on
H-like target).

We are left with a Rayleigh-Ritz variational calcula-
tion for the energies of the compound states, which we
perform with the choice of an appropriate trial function.
Finally, a detailed comparison of our variational esti-
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mates of the energy levels is made with existing experi-
mental data and other theoretical results.

II. THEORY OF COMPOUND ATOM STATES
AND RESONANCE REACTIONS

In this section, we attempt to summarize the theory
of the compound atom or resonance states and their
relation to resonance scattering and reactions, using
the approach developed by Feshbach.”

We begin with the Schrodinger equation for a fixed
hydrogen-like system and an incident electron

(H—E)¥(ry,1;)=0, ®

where it is understood that ¥ is also an eigenfunction
of the total L2, L,, and parity of the two-electron sys-
tem. Full antisymmetry in space and spin coordinates
is achieved by requiring ¥ (ry,rs) to be symmetric for
singlet states and antisymmetric for triplet states. The
asymptotic form for the case of scattering at energies
below the inelastic threshold is

v (rl’rz)r:uo 1o (1) Y Lo (£2)[sin (kro— 3 Lo +n1) /krs], (2)

which thus designates 1 as the target electron and 2 as
the incident electron, since #, is the hydrogenic ground-
state wave function. For Z>1, the phase in (2) must
be suitably modified, because of the long-range Coulomb
interaction.

Following Feshbach? and Hahn, O’Malley, and
Spruch?® we introduce a pair of projection operators P
and Q, which originally satisfy only

P+Q=1 ©)
and the intrinsic property of projection operators
Pt=P, Q*=Q. 4)

This allows us to obtain the coupled equations
P(H—E)(P+Q)¥=0,
QH—E)(P+Q)¥=0.

These are formally uncoupled by solving (5b) for
Qv =[1/Q(E—H)QJQHPY (6)
and putting this into (5a), to give
PLH+HQ[1/Q(E-H)QJQH—-E]P¥=0, (7)

where we make use of conditions that Q and P project
out orthogonal parts of Hilbert space, or QP=PQ=0,
which follows from (3) and (4).

We have not as yet specified the form of projection
operators P and Q, other than that they satisfy (3)
and (4). We choose them so that (a) they are symmetric
in r; and 1y, since we are dealing with two identical
particles, and (b) P¥ gives the correct asymptotic
behavior (2) for energies below the inelastic threshold,

(Sa)
(Sb)
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PV — ¥, 8
71 or r2—0

Thus, even though PY¥ differs from the total ¥ over all
finite regions of space, since its asymptotic behavior is
identical to that of the total ¥, the solution of (7) for
P¥ will lead to the exact scattering cross section.
Another important consequence of (b) is that the com-
ponent Q¥ vanishes asymptotically and hence belongs
to Hilbert space.

A pair of projection operators satisfying all of the
above requirements is given by Hahn, O’Malley, and

Spruch,® i.e.,
0=010,

Peioo, )

where Q;=1—P; and P; is the operator® which projects
out the hydrogenic ground state in the ith electron
coordinates, |uo(rs)){(%o(r;)|. One can easily show that
this choice of P and Q satisfies all the above require-
ments. For example, if we expand the true wave func-
tion in terms of the complete set of hydrogenic wave
functions, then

\If(rl,rz)=<Zn+/>un(r1)F,,(r2), (10)

and
P\I/=uo(r1)F0 (1‘2)+u0 (I‘z)(Mo(rz) I\II>
— g (r1) 24 (x2) (2o (r2) | Fo(12)) ;w%o(l'l)Fo(l’z) )

where Fo(rs) has the asymptotic form indicated in (2).
If one were interested in the scattering when excitation
is possible, i.e., the multichannel case, this choice of P
and Q would no longer be appropriate.?

Since Fo(rs) contains all of the essential elastic scat-
tering information, one could rewrite (7) in the form of
a one-body integro-differential equation for Fo(rs),
where all the two-body effects are contained in a
generalized optical potential. It would, however, be very
complicated and not susceptible to direct solution.

We now follow the procedure of Feshbach? in de-
scribing the appearance of resonances. They will arise
from the presence of zeros in the denominator of the
generalized optical potential. The basic equation (7)
may be rewritten, using the fact that P=P2, as

[HPP+ Vopt_E]P‘I’=0, (11)

9 This choi?e of P; is the appropriate one for dealing with com-
pound levels/below the =2 threshold. If one were interested in
the compound levels below the hydrogenic state of arbitrary #,
the appropriate forms are

n=1 n’—

1
;) = 1irme (X5 1o (X
P; "12_‘1 1'23-0 mz:—l'lun 'm (n)Xun I'm (r.)[,
and, as above, Q;M=1—-P;(n QM =0;(mQ,(n) and PM=1
—Q). This general choice of Q¢ will lead to a spectrum for
Q™ HQ™ whose continuum starts at the #th level. In the present
paper, #=2 throughout, and this superscript has been dropped.
Also, for convenience, u, is used for #;00.
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where
Hpp=PHP, V1w=PHQ[1/Q(E—H)QJQHP.

The explicit appearance of the resonance energies comes
about by introducing the complete set of eigenfunctions
for the operator QHQ=H qq, i.e.,

HQQ‘I)n(rl,l‘z)= g"@n. (12)

Now, while the operators H and also Hpp have a
spectrum which is continuous in the scattering region,
it is a consequence?® of the choice of Q, following from
Eq. (8), that the eigenvalues &, of Hgq are discrete
point eigenvalues below the excitation threshold. These
eigenstates &, are interpreted, as shown below, as states
of the compound atom or resonance states. It follows
from (12) that Q®,=®,, so that the set of ®, are also
eigenfunctions of Q with eigenvalues 1. The complete-
ness of the set ®, in the Q subspace allows us to insert

Q:anq’nx@nl

into the expression for V,p, immediately following
1/Q(E—H)Q. We make use of the theorem stating
that when a function containing operators operates on
an eigenfunction of these operators, one may replace
the operators by their respective eigenvalues, or

[1/QE—H)Q]|®.)=[1/(E—8)]|®x). (13)

In the case where resonances may be considered as
isolated, which appears to be so for electron-atom
collisions, the total optical potential may be divided
into two parts when E is close to one of the &,’s, say
&, giving (11) in the form

Hpo|®:)(®|Hor

(H'-E)PY=——————PY, (14)
E— &,
where
Hpq|®:)(®a|Hor
H=Hpp+> ——m—
nts E— 8,,

is the slowly varying (in energy) part of the Hamil-
tonian which gives rise to potential scattering, or the
nonresonant part of the scattering. The sum is under-
stood to include an integral over the continuous part
of the spectrum.

To solve Eq. (14) we proceed as did Feshbach, except
that we use the standing wave solutions for the sake
of simplicity. First, consider the homogeneous solution
P¥, of (14), satisfying

(H'—E)P¥,=0, (15)

with asymptotic form as 7, — given by Eq. (2) with
n replaced by 7o. This has the interpretation of the
potential scattering part of the wave function P¥.
Equation (14) is now solved formally using the standing-
wave Green’s function G constructed from the homo-
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geneous solution. G has the asymptotic form
G — — 2mk/ W) uo(r1) ¥V L (£2)
73—00

X[cos(kre—5La+no)/krs J(¥oP. (16)

Again, if Z>1, the appropriate Coulomb modified
phase should appear in the argument of the cosine
function. The formal solution of Eq. (14) is

P\I/<")>= P‘I’o>+ (E- 53)_IGHPQ<I>8><‘I>SHQPP\I’(“)>, (17)

where the superscript () signifies that this wave func-
tion does not necessarily have the normalization of (2).
Now Eq. (17) is a separable equation for P¥ ) and can
be solved exactly (given ¥, and &,). Multiplying Eq.
(17) on the left by (®,Hqp, we find

(®,Hqr¥o)
(®;Hop¥ W)= . (18)
1— (E-' gs)—l<¢sHQpGIJPQ<I)3>

Using (18), the explicit solution (17) for P¥ becomes

GH p®;)(®.H o p¥
P\IIW>=P\I/0+] Ppe®:)(®.H or 0>, (19)
E—§,—A,
where
Ay=(®,H qpGH pod,) (20)

is the shift in the energy from &, caused by the coupling
to the continuum wave function ¥,.

Going now to the limit 7, —o and using (16) for G
and the asymptotic form (2) of ¥,, we find

Py — uo(rl)YLM(fz)
73300

X [sin(kra—3 Lo +no+9.)/krs cosy,], (21)
where
tang,= — 30,/ (E— 8,—A,) (22)
and Ty, the width, is given by
T'o/2= (2mk/1?) | (¥oH pe®ds)|2. (23)

[Equation (23) differs from the standard definition? of
the level width by the constant factor 2mk/#%r. To
obtain agreement, the asymptotic normalization of ¥,
as given in Eq. (2) should be multiplied by the square
root of this factor.] We see from Eq. (21) that the
total phase shift is 7o+7,, the sum of the potential and
resonance phase shifts, so that (for Z=1) the partial
elastic-scattering cross section is given by

o= (4r/k?) (2L+1) sin®(no+7,). (24)

From (22) it follows that the phases increase by = in
going through the resonance. Assuming the width T,
to be small compared to the energy region in which 7o
and ¥, vary appreciably, T'; and A, are taken to be
constant and evaluated at E= §,+A,.

Inelastic Processes

Thus far we have seen, following the method of
Feshbach, how the compound states ®,, the eigenstates
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of QHQ, give rise to resonances in elastic scattering.
However, it should be clear that the resonance behavior
built into the wave function in Eq. (19) will show up
also in any inelastic process (involving a He-like system
in the present instance, with £~§&,) having this as a
final state, as for example in photoionization. The way
in which the resonant state &, affects the matrix element
(¥|T|i) for the transition, through its effect on the
wave function ¥, has been derived by Fano. He uses
the method of configuration interaction, treating states
corresponding to ®, and ¥, as degenerate approximate
solutions of the wave equation, and using them to
construct an eigenfunction ¥.

Our solution (19) is also such an eigenfunction. Now
that this wave function has been derived, it is only a
short distance further to derive Fano’s result for the
general matrix element (¥| 7'|7) for transitions between
an initial state ¢, and the final state ¥. For this matrix
element, the wave function ¥ is assumed to have the
asymptotic normalization of Eq. (2). Our function
whose P component is given by (19) has instead the
asymptotic form (21), which differs from (2) by the
factor cosy, in the denominator. It must therefore be
multiplied by cosn, in order to be properly normalized.
We may without loss of generality go one step further
and write the properly normalized Eq. (19) in the form

PV = cosn, PV =cosy,P¥y—siny,P¥;.  (25)

The function P¥;, thus defined by substituting (19)
into (25), may be written using (22) and (23) as

GH PQ‘I’;)
(WoH po®,)

The significant thing about this function ¥, is that,
like ¥,, it does not contain the rapidly varying energy
function E— &;—A,, and so may also be treated as
energy-independent in going through the (assumed
narrow) resonance.

Before proceeding to write the matrix element for
the transition, we note that Eq. (25) contains only one
component P¥ of the scattering wave function,
whereas we need the entire wave function ¥ =P¥-+Q¥.
However, given P¥, then Q¥ is immediately determined
by Eq. (6). It is shown in the Appendix that with P¥
given by (25), Q¥ is of the same form as (25), so that
we may write for the entire scattering wave function

(27)
where ¥o and ¥, are given by (A7) and (A8) of the

Appendix. The expressions for sing, and cosy,, which
follow directly from (22), are

PV, = (1?/2mk) (26)

V=, cosn,— ¥ siny,,

3T,
sing,= ,
I:(E— 8,— As)2+ (%F8)2]1/2
8,+A,—E
cosy,=

[:(E— é,s— As)2+ (%Fs)zjlﬂ .

A 1347

The matrix element (¥|7'|7) now follows immediately
and is given by

(¥| T[4)=cosn,(¥o| T'| i) —sing,(¥:| T|1)
=[(8+A,—E)(Wo| T|3)—iT.(¥4 | T|4)]/
[(E— 8:— A2 4-(3T. )2 ],

This is the general matrix element for a one-level
resonance reaction. Elastic scattering is included as a
special case. Away from the resonance, assuming it to
be narrow, siny,— 0, and the absolute value of the
matrix element for the transition is simply |(¥o|T|4)],
the nonresonant matrix element. From (28) the for-
mula derived by Fano for the ratio of the cross section
to the nonresonant cross section follows immediately,

namely,
T Tl (e
@l Tl 1te

(28)

) (29)
where

e=—coty, and ¢=(¥1|T|i)/(Wo|T|3). (30)

We have suppressed the subscript s on 7,, ¢ and g, it
being understood that they depend on the particular
resonance.

In summary then, we have seen that, given the eigen-
states ®,, of the operator QH(Q, these compound atom
or resonance states give rise to Breit-Wigner-type reso-
nances in both elastic and inelastic processes involving
the state ¥ of the helium-like system when E~§,.

In the following section, we proceed to calculate
variationally the energies &, of the lowest series of
resonances states for the He and H~ systems.

III. VARIATIONAL CALCULATION OF THE
COMPOUND-ATOM ENERGY LEVELS

Our objective is to evaluate the eigenvalues of the
compound system, defined in (12) as the eigenvalues
of the altered Hamiltonian Hge=QH(Q. This is as much
a two-electron problem as when dealing with the ordi-
nary two-electron Hamiltonian H, and thus we consider
a variational treatment. By assuming a trial function
for ®, we may perform a Rayleigh-Ritz calculation,
which will yield an upper bound on the ground-state
energy associated with the operator Hgq. Also the
Hylleraas-Undheim theorem states that if the trial
function is made up of a linear combination of % func-
tions, then the variational procedure leads to # energy
eigenvalues, each of which is an upper bound on the
respective exact eigenvalue.

We can remove the Q operators from the Hamiltonian
and put them into the trial function, as shown in the
following. Starting with (12)

QHQ|®.)=6.|%.), (12)
we operate on the left with (®,|Q=(®,| (% obtaining
(Bs|QHQ|®,)= 8:(®:] 0] 2.)
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and by the Hermiticity of Q and QH,
(02:| H| 02s)= 6(0%,| 0Q2,). €29)

Now the normal Hamiltonian appears, but the eigen-
functions ®, have been replaced by Q®,. We take an
arbitrary trial function &y, from which we construct

¢tr=Q<I>t,= (I—Pl—P2+P1P2)@tr7 (32}

which then serves as our trial function for a conven-
tional variational calculation. Each &y, must have built
in the correct symmetry properties for the state under
consideration, i.e., eigenfunctions of L? L, parity, and
symmetry in r; e 1y (for singlet or triplet states). It is
easy to show that the operation of Q on ®;, preserves
all of these properties. The effect of Q operating on an
arbitrary function is seen to project out of it the ground
atomic state #o in each of the electrons, or

@tr= Z ai,u;(n)uj(rg) .
%,570

(33)

It has been shown!® that the exact two-electron wave
functions for the 13S¢ and 1:3P° states can be written
in the forms

o3} (1'3Se) = F (7’1,1’2,1’12) :f:F (1’2,7’1,712) y
®(13P%) =71V 1 (11)G (71,72,712) 72V 12 (£2) G (72,71,712) -
We approximate these by taking the trial function

N
B =71V 1o (F1)[#200 (1) 2 @ie™im

=1
2 M
+3 > biPr(cosfip)riPrdefirrimriva]

A=0 jr=1

=+ (I'1 = I'z) . (34)

The 2s hydrogenic function was included explicitly,
as it is one of the lowest hydrogenic states contained in
the trial function and hence likely to make an important
contribution to the energy. We can get explicit 2p
dependence by choosing 8; or y;=0.5 for one of the
terms in the sum multiplying Pj(cosfys). Since the
energies are degenerate with respect to all possible M
values, we have taken M =0. Of the general functions
F(ryrer12) and G(ryrer1s), which may each be ex-
panded as

Z 4N (71,?’2)P)\ (C05012) s
A=0

we are retaining only terms through A= 2. The omission

of all higher M’s leads to the converging of our energies

to values somewhat higher than the exact eigenvalues.
As mentioned earlier, the choice of

ﬂ(=N+No+N1+Nz)
terms in the trial function leads to an #X# Hamil-

L E, A. Hylleraas, Z. Physik 48, 469 (1928); G. Breit, Phys.
Rev. 35, 569 (1930) ; C. Schwartz, zbid. 123, 1700 (1961).
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tonian matrix which, when diagonalized, gives upper
bounds to the » lowest eigenvalues of Hgq. More ex-
plicitly, we solve the secular equation, Det (3¢— 891) =0,
where the matrix elements of 3¢ and 9T are the coeffi-
cients of ¢ic; in the expression (Q®|H|Q®:) and
(0P| QP1r), respectively. By varying the nonlinear pa-
rameters o, 8;, and v, separately for each of the eigen-
values, we get the lowest possible upper bound for each
eigenvalue.

The two-electron Hamiltonian may be written in
scaled form as

2 2 2

H=—V=V@————f— | (35)

1 72 Zr 12
where lengths are in units of @¢¢/Z and Z is nuclear
charge of the two-electron system. The corresponding
eigenvalues will be the total energy in units of Z2 Ry
relative to the energy of two free electrons at infinity
with zero kinetic energy. The spectrum of QHQ will
consist of discrete bound states with §,<<—0.25 (units
of Z% Ry), corresponding to the binding of the second
electron to a hydrogen-like atom in the #=2 state, and
a continuum with >—0.25. Thus, any eigenvalues
that arise from the variational procedure which are
2—0.25 have no significance and will converge to
—0.25 by taking more terms in the trial function.

If we interpret these states of the compound system
as doubly excited states in a central field description
(252p, 253p, etc.), then it is reasonable to expect that
the number of such bound states will be infinite for
Z2>2, since the effective asymptotic nuclear charge is
Z—1, and there will be an infinite number of Coulomb
levels. For Z=1, it seems that the number of compound
atom states will also be infinite, as observed by Gailitis
and Damburg," owing in this case to the strong electric
dipole interaction between the asymptotic electron and
the degenerate #=2 levels of hydrogen.

Our results for the lowest discrete eigenvalues of each
symmetry obtained with the use of a 9-, 15-) 20-, and
25-term function are given in Table I. A complete
simultaneous variation of all the exponential parameters
would be prohibitive, so our results represent the lowest
eigenvalues obtained by varying some of the parameters
and randomly choosing the remaining ones. The states
calculated are 135¢ and 3P° for Z=1 and 2. The
choice of parities (—1)Z was dictated by the fact that
they are the only states which can arise in the scattering
by a ground-state hydrogenic system. The state 2p? 3P,
whose energy also lies in the range of the single con-
tinuum, has been shown to exist for H- and He, but
it will not autoionize (no parity change allowed) nor
give rise to any resonances in elastic scattering (1:3P°
state).

11 M. Gailitis and R. Damburg, Proc. Phys. Soc. (London) 82,
192 (1963).
12E. Wold, Institute for Theoretical Physics, Oslo, Report
sto.( 113,1)1962 (unpublished) ; E. Holgien, Physica Norwegica 1,
961).
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TaBLE I. Variational estimates of the lowest eigenvalues of the
operator H gq (compound levels) in units of Z2Ry.

System and Dimensions of Hamiltonian matrix
state 9X9 15X15 20X20 25X25
H- i
15e(1)  —0.29728 —0.29737 —0.29741 —0.29744
15¢(2) —0.25148 —0.25149 —0.25155 —0.25192
35e(1) —0.25401 —0.25401 —0.25401 —0.25401
3§¢(2) —0.25012 —0.25013 —0.25013 —0.25013
1po(1) —0.25176 —0.25191 —0.25191 —0.25193
1po(2) —0.25002 —0.25002° —0.25003 —0.25003
3pe(1) —0.28331 —0.28457 —0.28500 —0.28504
3pe(2) —0.25038 —0.25039 —0.25041 —0.25042
He
1Se(1)  —0.38904 —0.38909 —0.38909 —0.38912
15¢(2) ~—0.30906 —0.30926 —0.30926 —0.30956
1Se(3)  —0.29298 —0.29355 —0.29477 —0.29490
15e(4)  —0.26963 —0.27127 —0.27466 —0.27503
15¢(5) —0.26784¢ —0.26928 —0.26997 —0.27000
3ge(1) —0.30100 —0.30111 —0.30120 —0.30120
35¢(2) —0.27938 —0.27993 —0.28021 —0.28021
85e(3)  —0.27249 —0.27547 —0.27672 —0.27672
35e(4) —0.26474 —0.26477 —0.26546 —0.26546
35¢(5) —0.26127 —0.26223 —0.26329 —0.26334
1pe(1)  —0.34427 —0.34511 —0.34554 —0.34579
1po(2) . —0.29473 —0.29578 —0.29587 —0.29750
1pe(3)  —0.27429 —0.27608 —0.27707 —0.27797
1pe(4) —0.26938 —0.27048 —0.27136 —0.27205
1pe(5) —0.26538 —0.26709 —0.26722 —0.26784
3pe(1) —0.37943 —0.37983 —0.38010 —0.38044
3pe(2) —0.29032 —0.29103 —0.29123 —0.29141
3pe(3) —0.27525 —0.27556 —0.27608 —0.27697
3pe(4) —0.26881 —0.26892 —0.26921 —0.26975
3pe(5) —0.26359 —0.26389 —0.26393 —0.26656
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Fic. 2. Energy level diagram of the calculated compound
levels below the #=2 threshold in He*. The energies are in elec-
tron volts and represent the excitation energy from the ground
state of He.

terms in our trial function. The relatively poor con-
vergence of this type of expansion for the normal states
as compared with a trial function containing 7y, ex-
plicitly is well known. However, the inclusion of 71, will
lead to additional mathematical difficulties in obtaining
Q®::. If we take the normal-state results as an indication
of the accuracy of our compound-state energies, then
we would expect our results to be too high by at most
0.05 eV for H~ and 0.1 eV for He. At any rate, these
energies represent upper bounds to the exact compound
level energies.

TasLE II. Lowest eigenvalues of the operator H
(normal levels) in units of Z2 Ry.

In H~ we found only two eigenvalues for each sym-
metry lying below the #=2 threshold. This is consistent
with the expected uncertainties, which are discussed
below. In He we limited our attention to the five lowest-
lying eigenvalues only. The compound levels are plotted
in the form of an energy-level diagram in Figs. 1 and 2.

As a check on our numerical procedures, we have used
&, (not ¢y, as a trial function for a variational calcula-
tion of the lowest-lying bound states of the true Hamil-
tonian. These results are given in Table II, together
with best available values for comparison. Note that
our results do converge to the somewhat higher energies;
this we might expect because of the omission of A>2

1
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Fic. 1. Energy level diagram of the calculated compound levels
below the #=2 threshold in H. The energies are in electron volts
and represent the excitation energy from the ground state of H
(plus free electron of zero kinetic energy).

System and Present “Exact”
state calculation result
H- 1§ —1.05278 —1.05550s
He 1§ —1.44934 —1.45186*
1p —1.05994 —1.06192P

a C, Pekeris, Phys. Rev. 115, 1216 (1959).
b C, Pekeris, B. Schiff, and H. Lifsen, Phys. Rev. 126, 1057 (1962).

IV. COMPARISON WITH EXPERIMENT AND
OTHER CALCULATIONS

A. Absorption of Continuous Ultraviolet
Radiation by He

Experimental results of this kind have been obtained
by Madden and Codling® by using a continuous source
of ultraviolet radiation in the region 160-210 A. They
have resolved about 25 resonances due to compound
1Pe states which lie below the =2, 3, and 4 levels of
Het. Of the 12 resonances they observe below the
n=2 state of Het, we use the 5 lowest-lying ones for
comparison with our calculated eigenvalues.

The observed continuous absorption spectrum shows
anomalies which closely obey the Fano form (29).
Depending on the value of the parameter g, (g+¢)%/
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TasLE III. Excitation energies of lowest lying 1P° compound states
in He as observed in continuous absorption.

Experimental
. Orbital 8s+As & of Table I
Amax (in A) classification (in eV) (in eV)
206.21 (+0.05) (2s,2p) 60.129 60.182
197.56 (£0.03) (sp, 23—) 62.76 62.810
194.78 (+0.02) (sp, 23+) 63.65 63.873
193.30 (+0.05) (sp, 24—) 64.14 64.195
192.33 (£0.02) (sp, 24+) 64.46 64.424»

s Dr. Burke (private communication) suggests that this compound level
is the lowest lying in the 2pnd series, which is expected to lie between the
(sp, 247F) levels and is too weak to be observed in ultraviolet absorption.

(14 ¢) has the shape given in Fig. 3. The experimental
wavelengths given in Table III correspond to the point
for maximum absorption. The quantity (¢4 ¢)?/(14¢€?)
is the ratio of total absorption to background absorp-
tion in the vicinity of a resonance. As the background
absorption is slowly varying, it may be regarded as
constant over the resonance, and (¢g+e€)?/(1+¢€) may
be taken as the actual form of the total absorption
coefficient.

The displacement of the value of ¢ for maximum
absorption from e=0 can be simply found to be 1/g.
Thus, if we define &,+ A, as the line center, we find, by
setting €(Emax)=1/¢ and using Eqgs. (30) and (22),

gs"l_As:Emax”‘ (Ps/zq) ] (36)
and this may be evaluated from the experimentally
determined En.x and line-shape parameters ¢ and T',.
A detailed determination of I'; and ¢ has been done only
for the lowest-lying level, for which

g=—2.75,
I'=0.037 eV.
Putting these into (36) gives, for the lowest state,
(85 As)exptr.=60.122 eV+-0.0067 eV=60.129 V.

Since the magnitude of the correction for the lowest
line (0.0067 eV) is so small and the widths decrease
sharply for higher lines, the experimentally deduced
values for &,4A; have the values given in the third

8 T T | T I

(q+€)2
|+€2

F16. 3. Fano line shape for g=—2.
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column of Table III. We list our compound atom 1P°
energy levels from Table I in the fourth column of
Table ITI, where they appear as energy above the ground
state of He.

As the uncertainties in our calculated values of &,
are about —0.1 eV, we cannot reliably deduce the shifts
A, by comparison with the experimental values. A
purely theoretical evaluation of A, should be possible
by means of (20), but this has not yet been done.

It should be mentioned that the 4= sign in the Cooper,
Fano, Prats'3 classification of these states (second
column, Table III) does not appear explicitly in our
variational approach. It originates in their application
of perturbation theory, starting with central field #l
orbitals as the zero-order approximation, and should
not be confused with the == signs we use in our trial
forms for the singlet and triplet states. In other words,
the Cooper, Fano, Prats 4 designation does not
describe a basic symmetry of the compound-state wave
function but is convenient for the classification of these
states.

The quasi-forbidden nature of transitions to the
minus states was pointed out by Cooper, Fano, and
Prats and verified experimentally. The observed ab-
sorption strengths for these states is below that for the
plus states by a factor of 1/50 or less. We hope to verify
this by computing the transition probabilities with our
variational wave functions in the future.

B. Electron Energy Loss Measurement

The energy loss spectrum of the scattered electrons
in ionizing collisions with He atoms also. gives evidence
of He resonance states. In Table IV, we list the results

TasrLE IV. Excitation energies of compound states in He as
determined by electron energy loss measurements (all energies
ineV).

Experimental
position of
resonance
(&s+As) Closest-lying calculated compound levels

57.9 57.824[1S°(1)]
58.5 58.296[3P°(1)]
60.0 not evaluated—believed to be 1D¢(1)
60.1 60.182[1Po(1)]
63.6 63.751[35¢(2)]; 63.873[1P°(3)]
64.5 64.554[35¢(4)]; 64.494[3P°(5)]; 64.424[1P°(5)]
64.8 64.669[35¢(5)]

of Simpson, Mielczarek, and Cooper® along with the
closest lying 8,’s from Table I. It appears that some of
the observed energy-loss resonances could very well be
the resultant of a number of closely lying compound
states.

The earlier detection by Silverman and Lassettre? of
two energy-loss peaks in helium at 60.04-0.1 and 63.5

18 J. Cooper, U. Fano, F. Prats, Phys. Rev. Letters 10, 518
(1963).
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=+0.2 eV which have been classified by Fano as (2s2p)!P
and (sp,23+)'P, are fairly consistent with our eigen-
values for 1LP°(1) and 1P(3). On the basis of our present
results, the higher-energy resonance seen here could be
partly due to the 35¢(2) compound state at 63.751 eV.

It should be noted finally that the results of the
present calculation (Table I) predict a number of addi-
tional levels in all S and P symmetry states which
should, in principle, be observable in such experiments.

C. Elastic Scattering Calculations

Close coupling calculations on the elastic scattering
of electrons by H and Het have been done by Burke
and Schey! and Burke, McVicar, and Smith.2 They
have found the presence of very narrow resonances at
incident energies just below the #»=2 inelastic threshold,
which are interpreted as arising from the presence of
compound states. These scattering resonances in H
have also been predicted by a number of other workers
including Temkin and Pohle,'* McEachran and Fraser,!
and Herzenberg and Mandl.1¢

By performing the close-coupling calculation at a
very fine mesh of incident energies, they can observe
the rapid transit of the scattering phase shift through =
radians, as predicted in Eq. (22) for energies in the
vicinity of a compound level. This allows the deter-
mination of the position of the resonance center §,4A,,
as well as its width T,.

Their results are summarized in Table V. In the last
column we list our lowest lying variational energies in
electron volts taken from Table I. For He, the most
outstanding discrepancy is in the apparent absence of
35S resonances in the scattering results, while we find
a normal series of 2S¢ compound levels. The statement
made by Burke ef al.? is that no resonances were found
having widths greater than 0.001 eV. We did not com-
pute the widths.

There is good agreement for the lowest resonance in
each of the series, but it gets poorer for the higher
members. It is possible that some of the higher reso-
nances are too narrow for detection in the scattering
calculations. It appears that in the 1P case there is a
good correspondence between the Fano, Cooper, and
Prats plus levels [our 1P°(1), 1P°(3), 1P°(5)] and the
scattering results. This would indicate that the minus
levels (LP°(2), 1P°(4)) were too narrow to be seen in the
scattering calculation. A similar pattern appears with
the 15¢ levels, also suggesting that the resonances found
in the scattering calculation are 15¢(1), 15¢(3), 1.5¢(5).

In electron-hydrogen elastic scattering, the two reso-
nances furthest below the inelastic threshold (1S¢, 3P°)
are in good agreement with the present variational
results. The higher 'P° resonance is in fair agreement

(119‘ %) Temkin and R. Pohle, Phys. Rev. Letters 10, 22, 268
63).

15 R.P. McEachranand P. A. Fraser, Proc. Phys. Soc. (London)
82, 1038 (1963).

16 A. Herzenberg and F. Mandl, Proc. Roy. Soc. (London)
A274, 252 (1963).
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TaBLE V. Results of elastic scattering calculations compared
with presently evaluated compound energy levels (all energies in
eV and with same reference energies as in Figs. 1 and 2).

Position of resonance from

System and scattering calculation Presently
state (8s+A4s) calculated &,
e+H 15¢ 9.6,2 9.9» 9.559
10.18b 10.178
55e No resonances found 10.149
10.202
1pe 10.1» 10.178
10.203
3pe 9.8a 9.727
10.198
e+Het 15¢ 57.860° 57.824
62.916 62.154
64.179 62.952
64.673 64.033
64.307
35e No resonances found 62.609
63.751
63.941
64.554
64.669
1po 60.257 60.182
63.683 62.810
64.474 63.873
64.817 64.195
64.424
3pe 58.352 58.296
63.132 63.141
64.247 63.927
64.701 64.320
64.494

a References 1 and 15; see also P. G. Burke and K. Smith, in Proceedings
of the IIIvrd International Conference on the Physics of Electronic and Atomic
Collisions, edited by M. R. C. McDowell (John Wiley & Sons, Inc., New
York, 1964), p. 89. Dr. Burke and Dr. Smith have informed us that the
very low energy resonances (1.75 and 2.5 eV) reported in the latter reference
are not real, but arose from a spurious nonconvergence of the phase-shift
calculation. .

b A. Temkin, p. 107 of above-quoted conference proceedings.

¢ All of these values for eHe* scattering are taken from the last paper
in Ref. 2. Dr. Burke and Dr. Smith have also informed us that in new scat-
tering calculations the 3S resonances are found as well as additional reso-
nances in the other states, which considerably improve the correspondence
with our present results.

but is not located to high accuracy in the scattering
calculation.

The presence of at least two resonance levels in every
symmetry state is consistent with the infinity of such
states pointed out by Gailitis and Damburg.’® The
higher lying compound levels in H~ are predicted to be
so close to the continuum that they do not appear
bound in our present approximation.

D. Other Variational Calculations

Variational calculations of different types than our
present one have been performed on H~ and He by Wu,
Hylleraas, Holgien, and Propin. Their results are given
in Table VI.

The method used by these investigators is to assume
a trial function having primarily the designated con-
figuration (but with the mixing of other configurations)
which is a total eigenfunction of L2 L., S?, and parity.
However, they have generally allowed a variable scale
parameter to represent an effective nuclear charge. In
this way, their trial functions were not of the form
Q&;,, and hence their results do not represent rigorous
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TaBLE VI. Other calculated values of the excitation energy of
compound levels (all energies in eV and with same reference
energies as in Figs. 1 and 2).

System and state Other results Present results
H- (25218 9.393= 9.559[1S¢(1)]
(252p)3P 9.915P 9.727[3P°(1)]

He (25)18 59.354c 57.273= 57.9904  57.824[1S¢(1)]
2p291S 62.160° 62.757¢  62.154[15¢(2)]
(2s2p)1P 60.375¢  60.182[1P°(1)]
(252p)3P  59.805¢ 58.508> 59.9334  58.296[3P°(1)]
221D 60.933¢ 60.190¢  Not evaluated

a E, Holgien, Proc. Phys. Soc. (London) A71 357 (1958).

b E. A. Hylleraas, Astrophys. J. 111, 209 (1950).

o T. V. Wu, Phys. Rev. 66, 201 (1944).

dR. Kh. Propm, Opt. i Spektroskoplya 8, 300 (1960) [English transl:
Opt. Spectry. (USSR) 8, 158 (1960)}.

e E. Holgien, Proc. Phys. Soc. (London) A72, 141 (1958).
upper bounds on the desired compound states. This
situation was well recognized by these authors. The fact
that their trial functions do not have the ground hydro-
genic state properly projected out will lead to a lowering
of the energy to the energy of a hydrogenic atom in its
ground state and a free electron of zero kinetic energy
simply by the addition of more terms to the trial func-
tion. There will be no convergence to the desired
compound-atom eigenvalue.

It should be pointed out that the variational calcula-
tion for compound state eigenvalues with rigorous
upper bounds can be applied in a practical manner only
to two-electron systems. This is because we are required
to project out of the arbitrary form of the trial function
(®,) the exact ground state wave function for the target
atom (with appropriate modifications depending on the
identity of particles). In the present calculation, the
target atom is hydrogen-like and its ground state is
known exactly. However, for the next larger system, a
He-like target, we do not have exact ground-state wave
functions in simple enough analytic form to allow a
variational calculation comparable to the present one.
If the ground state is not entirely projected out of the
trial function, we do not have the property of rigorous
upper bounds. The job of projecting out a two-electron
ground-state function of the Hylleraas or Pekeris type
would indeed be formidable.
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APPENDIX

Given Eq. (25), P¥=cosy,P¥,—siny,P¥;, we wish
to derive Q¥, using Eq. (6), and to verify that it is of
the same form as Eq. (25), so that the entire wave
function ¥ may be written in the form (27). We first
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expand the right-hand side of Eq. (6) in the eigenstates
&, as is indicated in Eq. (13), giving

1
Q\If=Z,ﬂd>n>(<anHPx1/). (A1)

When Eq. (25) for P¥ is substituted into this and the
singular term #=s is written separately, it becomes

Q¥=73" B [cosn,@nQHP\I'o)-smm(@,,QHP\Ifl)]

ns

+ q’s> [_Sinnr<®sQHP\I/l>+COS'ﬂr(‘I)sQHP\I/o)].
) (42

Now, using Eq. (26) for P¥; and remembering (20)
and (22), the last term may be written

8

(h2/2 2 q’,g) Sil’l’l]r |_<(psHQPGIJPQ@s>+%F8 COt’r]r}
m,
(Wl pe®, )L E—8,
siny,®,)
= — (B2/2mk)————.
(WoH p®s)

Putting this into the last term in (A2) enables us to
write Q¥ in the form

Q¥ = cosn,Q¥o—sing, Q¥ (A3)
where 3
Q¥o=3 (‘1’ HopP¥o) (A4)
n#Es
and
h? ) <I>n>
Q¥ =—r += (®,H opP¥1)
2mk <\I/0HPQ<I).,> n#s B— n
W2/ 2mk ®,H o pGH pod,
ik [¢,>+>: gy o orClraty) >], (A3)
<\I’0HPQ(I>3> n#s — On

where the explicit expression for P¥; in Eq. (26) has
been used. Finally, combining Eqs. (A3) and (25),
¥ (=P¥4Q¥) may be written

W = cosn,¥o—siny, ¥y, (A6)

where )
=PVt ¥ % (®,.QHPY,) (A7)

n#s [L— &y
and
72/ 2mk)
= —[@,H—GH rg®s)
(¥oH pe®,)
®,)
+ ] (A8)
n#*s E—' n

where the Green’s function G was defined from the
left-hand side of Eq. (14). Equation (A6) then is the
desired result.



