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Correlations in Magnetic Exchange-Lattice Relaxation
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At sufficiently low temperatures, the bottleneck in magnetic relaxation can be between the exchange sys-
tem and the lattice for substances with an exchange interaction of the same order of magnitude as the Zeeman
interaction. We extend GriSths original theory by including correlations between difterent pairs of spins
in a calculation of the exchange-lattice relaxation rate. A density-matrix approach is used in which the ex-
change and lattice systems are each assumed to possess a temperature. Results are restricted to temperatures
for which Curie s law holds. Variation of exchange interaction with interatomic spacing is assumed to be the
dominant source of relaxation, and single- and two-phonon processes are analyzed as well as atomic diffusion
with a slow jumping rate. For linear chains with nearest-neighbor interactions, correlations have a marked
eGect on the phonon relaxation rate at temperatures well below the Debye 8. Two-phonon processes give
a T' temperature dependence instead of the T"dependence found by GrifBths, and the relaxation rate for the
direct process is less than that calculated by Griifiths by a factor of the order of (AJ/k8)'. This could be of
more than academic interest, since a number of paramagnetic materials in which exchange-lattice relaxation
might be observable appear to have linear chain structures as far as magnetic properties are concerned. In
three-dimensional magnetic lattices the correction to Griffiths' formula is about 20%%uq for the two-phonon
processes. If the source of lattice motion is atomic di6'usion with a jumping frequency 1/r, much less than
the exchange frequency, then correlations are shown to be negligible. In this instance Garwin and Landes-
man's result TEL=r, is reestablished.

I. INTRODUCTION

A T low temperatures, Zeeman energy is often most

efhciently converted to lattice energy by erst
being transformed into exchange energy. This two-stage
magnetic relaxation process, in which the exchange
system acts as an intermediate reservoir, is shown sche-
matically and discussed in Pig. 1. It has been used to
explain temperature-independent relaxation times in
paramagnetics with strong exchange interactions' and
more recently has been applied2 ' to solid He'. The
latter example is particularly interesting since in He' it
has been possible to observe the second stage, exchange-
lattice, of the relaxation process, ' ' and thus there is
renewed interest in theoretical treatments of exchange-
lattice relaxation. The existing theory is due to GriSths7
who showed that variation of exchange interaction J
with interatomic spacing couples exchange quanta to
lattice phonons and thereby is an eGective relaxation
mechanism. Garwin and Landesman4 have extended
GrBBths' ideas to the case where J is modulated by
atomic diffusion.

A major assumption of the GriKths' theory (and the
work of Garwin and Landesman) is that correlations
between diferent pairs of spins may be ignored. Each
pair of exchange-coupled spins is assumed to relax in-

ZEEbtAN EXCHANGE

TEL

dependently so that to compute relaxation of the total
exchange Hamiltonian

30o=h E«t I@I' It

it is sufficient to study the relaxation of any neighboring
pair of spins I; and I; (it being assumed that J;,=J, in-
dependent of i and j, if i and j are nearest neighbors and
zero otherwise). In this paper, however, we are able to
include correlation eBects by use of a density matrix. As
in Griffith's work, the exchange system is assumed to
have internal equilibrium throughout the course of re-
laxation so that an exchange temperature may be used,
and the calculation is restricted to temperatures well
above the Neel point. These two simplifications enable
us to treat correlations in a straightforward manner and
in much the same spirit as Gri6iths' method of summing
transition probabilities.

7Ve treat the three cases examined previously'7: con-
version of exchange energy to lattice energy by (1)
single-phonon processes, (2) two-phonon processes, and
(3) atomic diffusion in which the jumping frequency is
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Kansas. FIG. i. Three-bath model for magnetic relaxation in substances

' N. Bloembergen and S. Wang, Phys. Rev. 93, 72 (1954). with strong exchange interaction. At low temperatures the direct' H. A. Reich, Phys. Rev. 129, 630 (1963). Zeeman-lattice relaxation time TzL becomes much longer than' S. R. Hartmann, Phys. Rev. 133, A17 (j.964). Tzm, the Zeeman-exchange relaxation time, so relaxation proceeds
'R. L. Garwin and A. Landesman, Phys. Rev. 133, A1503 from the Zeeman to the exchange system If Cz/Tzz(&. Cz/Tzz

(1964). where Cz and CF are the respective Zeeman and exchange heat
R. L. Garwin and H. A. Reich, Phys. Rev. Letters 12, 354 capacities, then the observed relaxation time T& for the longi-

(1964). tudinal component of magnetization is Tzz. But if Cz/Tzz
B. T. Beal, R. p. Giffard, J. Hatton, M. G. Richards, and )&Cz/TzL, exchange-lattice relaxation is the bottleneck and

p. M. Richards, phys. Rev. Letters 12, 393 (1964). T&=L(Cz/Cz)+17TzL. This paper is concerned with the later
r R. B. Grifhths, Phys. Rev. 124, 1023 (1961). situation and gives a calculation of the relaxation rate g= T«-1.
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much less than J. In case (3) we show that correlations
may be neglected so that the result obtained by Garwin
and Landesman remains valid; but correlations can
have a noticeable effect on the phonon processes. For
three-dimensional lattices, the correction to GriKths'
formula is about 20%; and for linear chains the relaxa-
tion is markedly altered at temperatures well below the
Debye temperature. The two-phonon processes give a
T' instead of T~ dependence of the relaxation rate on
temperature T, and the single-phonon relaxation rate
(proportional to T) is less than that calculated by
Griffiths by a factor of the order of (kJ/kg)', where 0 is
the Debye temperature and k is Soltzmann's constant.
Since the magnetic moments in a number of paramag-
netic materials, including organic free radicals, to
which the theory was originally applied, ~ appear to form
linear chains, this effect might in principle be observable
at suKciently low temperatures.

II. CALCULATION OF RELAXATION RATE FROM
EQUATION OF MOTION FOR DENSITY MATRIX

Relaxation of a system with Hamiltonian Xo coupled
to a lattice with Hamiltonian S which commutes with
Ko may be derived from the equation of Inotion for the
density matrix p of the combined system in a manner de-
scribed in the text by Abragam'.

where K' is the Hamiltonian which expresses coupling
between Xo and F, and

K'(t) =exp)(i/k) (Xe+8)t$
XX'(0) e pP( —i/&)(Xo+~)t3 (3)

p*(t) = expL(i/k) (Xs+P)t$

y p(t) expL( —i/k)(X, +5:)t$. (4)

The above equation of motion (2) treats K' as a per-
turbation, assumes that the integrand is appreciable
only for times much less than t, and neglects a term in
LX'(t),p(0)), which is expected to give zero on the aver-
age. For a discussion of the derivation and underlying
assumptions of Eq. (2) the reader is referred to Ref. 9.
It should be noted that both the system Ko and the
lattice F are treated quantum mechanically so that all
time dependence of K' is expressed by the exponential
factors appearing in (3).

To make progress with (2) we assume that each of the
systems may be described by a temperature so that

p= exp( —P,Xe) exp( —P5')/trp,

8D. D. Thomas, H. Keller, and H. M. McConnell, J. Chem.
Phys. 39, 2321 (1963);H. Kobayashi, T. Haseda, E. Kanda, and
S. Kanda, J. Phys. Soc. Japan 18, 349 (1963).' A. Abragam, T/ge Principles of 1Vrcclear Magnets'srn (Oxford
University Press, New York, 1961),Chap. 8, pp. 276—289.

where P, and P are 1/kT and 1/kT, respectively, with
T, and T the respective "exchange" (or whatever Xe
may be identified as) and lattice temperatures. The
lattice heat capacity is assumed to be ininite; so the
time dependence of Io is governed by that of P,. If we
assume P,Xs((1 for all matrix elements which make an
appreciable contribution to the integrand in (2), then,
upon multiplying both sides of (2) by Xs and taking a
trace over the states both of Ko and of F, we obtain

dp, /dt=st(p p ,),— .

where the relaxation rate g is given by

(6)

dr tr(X,&X'(0), LX'(—r),

)(,Xp exp( —pF)gj)/k' trXos exp( —pF) . (7)

where A@(t) is a function only of the lattice variables
and hence

Ag(t) =exp(i'/k) 6;,(0) exp( iTt/k) —(9)

and the dynamical variables of A;; are all associated
with Xo, so A;; commutes with 5 and 6;;, and we have

A;, (t) =exp(iXst/k)A;;(0) exp( —iXet/k) . (10)

Here, as in GrifBths' work, we will have

A;;=I; I;,
~cs = J's(res) —J's (12)

where J@(r@)is the exchange interaction frequency be-
tween spins I; and I; when they are separated by a dis-
tance r;;, and J@, as in (1), means Jts(r;so) where r;to is
the equilibrium separation. If dipole-dipole interactions
were to be included, we would find that 3C' can be written
as a linear combination of terms" such as appearing in
(8). Griffiths has shown that the dipole-dipole interac-
tion makes a negligible contribution to the relaxation
rate so we will not consider it in the speciic cases to be
treated. However, it is worth noting that results of this

10 See Ref. 9 p 289

In deriving (6) we have noted that p, =p in (5) is a
steady-state solution' to (2) so that p may be replaced by
p —p(p) in (2), where Io(p) is the value of p for p, =p. The
integral in (7) is independent of t as a consequence of
invariance properties of the trace. The above equation
for the rate at which exchange temperature approaches
lattice temperature is of the same form as derived by
Hartmann' for Zeeman-exchange relaxation, provided
Xp s,nd 5 are properly interpreted (in the case of Ref.
3, Ko would be the Zeeman Hamiltonian and P the ex-
change Hamiltonian).

YVe now write the perturbation K' as

K'(t) = ttt P a;,(t)A;;(t),
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where

"B(r)dr

{Kp')
(14)

)& {A;,(0)(dsApi( —r)/dr')) (15)

in which the curly brackets are de6ned by

{8)= tr8/tr(1) (16)

for any operator 8 which is a function of the spin vari-
ables, ({8) is the average value of 8 at infinite tempera-
ture). In deriving (14) we have made use of invariance
properties of the trace together with (10) to express the
commutators involving Xp as d'Az&( —r)/dr'.

Since

A;;(0)—A i,((—r)
d7

is zero for the spin operators normally encountered, we
may integrate (15) by parts to obtain

B(r)dr= —O' Q Q dr
i&j k&L

d2

Ag 0 AI) —~ Ag 0 AI) —v.

d7

~v(0)—~si(—r)
z&j A:&l) r=o

&&{A;;(0)Ai,i(0)) . (17)

Equations (17) and (14) are particularly useful for
discussing effects of correlations upon the relaxation
rate. To neglect correlations is to assume that only
terms for which i=k, j =f, contribute to (17). It is
generally the case that

{Ae(0)A~i(0))={Ae(0)Ao(0))4,si, (18)

so correlations do not affect the second term on the right-

section apply to dipole-dipole or any other perturbation
which can be expressed in a manner similar to (8).

When (8) is inserted in (7) and the lattice part
of the trace is performed, we obtain terms of the form
(6;;(0)61,((—r)) and (ski( —r)ho(0)) where the tri-
angular brackets indicate a thermal equilibrium average
with respect to the lattice variables:

(8)= tr exp( —pO:) 8/tr exp( —pF) (13)

for any operator 6 which is a function of the lattice vari-
ables. In the high-temperature approximation we may
take these two averages to be equal since, insofar as
their contribution to the relaxation rate (7) is concerned,
their difference is of the order of PXp. With this simpli-
fication, we then obtain, upon using (8) in (7)

hand side of (17). Thus, the question becomes one of
analyzing the autocorrelation function {A;,(0)A &i(—r) )
for nonzero 7-. It is instructive to consider first the con-
ventional case of relaxation of Zeeman energy in systems
for which exchange energy is much less than Zeeman
energy. Then 3'.0 is simply the Zeeman Hamiltonian
whose eigenstates are known and 3C' is the dipole-
dipole Hamiltonia, n which, analogously to (8), may be
written' "as

2

Ks;p' ——h Q Dgg(~&A, (~'
M=2

with suitable definitions for 6;,(M& and A@™in terms
of lattice and spin variables, respectively, and where
3;,(M~ has matrix elements only between those eigen-
states of Ko with energies E and E for which
E —E =MRS„where co, is the angular resonance fre-
quency, Because of this, we then have

{A"( &(0)A ( '&(—r))
e(M'curr{A . ,(Mi(0)A„(M'i(0)) (20)

which is zero unless i and j are the same spins as k and l
(and also, of course, unless M'= —M). Thus correla-
tions do not contribute to the relaxation rate (7) for
ordinary Zeeman-lattice relaxation with negligible ex-
change interaction. The assumption (5) of a spin-
temperature eliminates correlations at the outset; only
a more detailed description" of the density matrix can
show the effect of correlations in this case.

If, however, Xo contains the exchange Hamiltonian,
whose eigenstates are not easily determined, we do not
have simple selection rules such as in (19) and (20) for
determining the time dependence of {A,,(0)Ai, i(—r)).
A common device in problems of this nature is to assume
a gaussian dependence. In this case we would say

{Ag(0)Aii(—r)) = {A,,(0)Ai((0))e ~'" (21)

and thus conclude, once again, that correlations have no
effect since Eq. (21) says that if two pairs i, j and k, i
are uncorrelated at time r =0 they remain uncorrelated
for all future times. This latter statement is easily seen
to be false, and we show in the next section that "later
time correlations" can make an important contribution
to exchange-lattice relaxation by phonon processes. On
the other hand, if lattice motion is primarily one of
atomic diffusion characterized by a jumping frequency
much less than the exchange frequency, then we show in
Sec. IV that the second term on the right-hand side of
(17) is much greater than the first term so that correla-
tions are not important in this instance.

III. PHONON PROCESSES

A. Phonon Correlation Functions

The phonon contribution to the relaxation rate
is determined by computing the correlation function

"P.S. Hubbard, Phys. Rev. 109, 1153 (1958).
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(6;,(0)h~~( —r)) for the case in which the lattice is de-
scribed by noninteracting phonon states. %e show in the
Appendix that Eqs. (14) and (17) reduce in the proper
limits to those used by GriKths; and since GriQiths has
discussed this part of the calculation in some detail,
we will only outline the treatment here.

The quantity 0;; is given by (12) and for small de-
partures of r;; from equilibrium, we write

esses which utilize the whole phonon spectrum. Static
terms are also neglected since they obviously do not
contribute to (17).The result is

(6;j(0)ap(( —r))„p—— —L" ki
32m.4m'S'v'

Q)P

codpo f,j,p~(q)

X)(np+1)8 e""' "&j'+n (np'+1)e ""' "&'j (27)

(22) where the subscript "tp" stands for "two-phonon" and

where, in the same notation as used by Grifhths, r;; has
Cartesian components x; (s=1, 2, 3) and u; is the
sth component of r;;—r@'.The displacement from equili-
brium I; s is next written in terms of phonon creation
and annihilation operators, and the matrix elements
needed for (h,j(0)j4~(—r)) are computed. The m; are
assumed to be small so that the ffrst term in (22) gives
the dominant contribution to single-phonon processes,
ones for which the matrix elements (e,

~
0;;~ e,&1) are

nonzero —where
~
I,) is the state containing n p phonons

with wave vector q. The summation over phonon
states is replaced by an integration and a simple Debye
spectrum is assumed for which phonon velocity is in-
dependent of direction of propagation and polarization.
The contribution of single-phonon processes-denoted by
the subscript "sp"- to (6;;(0)j4~(—v)) is then found to
be

(~,,(0)~«(—.)).,=Z,, „
4x'nzXv'

X ed&of;;,«(q)$n, e'"'+(8,+1)e '" j, (23)

(28)

Insertion of (23) or (27) into (17) and. (14) gives the
relaxation rate for single- or two-phonon processes, re-
spectively. The methods used in evaluating the integrals
are the same as employed by Griffiths, in which the
central assumption is that the spin correlation function
{Aq(0)Aj,~(

—~)} becomes negligible in a time of the
order of 1/J.

B. Thoro-Phonon Relaxation Rate

Since the two-phonon case actually turns out to be
simpler, it will be treated 6rst. According to the above
assumption, when Eq. (27) is used in (17) we need
only consider frequencies ~ and co' in (27) such that

~

pp' —a&
~ &J.But since the integrands in (27) go to zero

as co and co' go to zero, these integrands will be most
signiffcant for pp and pp' of the order of AT/A. And then,
since by assumption AJ«kT, we may set co'=co (and.
q'=q) in (26). Insertion of (26) in (17) and (14) then
yields

where v is the velocity of sound in the crystal, V the
volume, Ã the number of atoms, m the atomic mass, coo

the Debye frequency, co the angular frequency of a
phonon with wave vector q and

(24)

qgp{BCp'} =
16m 4m'E'v'

XZ Z ~;;,~r
i&~' k&1

O'F;,y((Q) dQ

is the thermal equilibrium occupation number of the
qth phonon mode. The quantity f;;,&&(q) is deffned by

sinqr;k sinqr, E sinqr;k sinqr;~
f;;,a~(q) = + — —,(25)

X ~ d~~y, , «(q)~ ~,(~,+1), (29)

where g&~ is the two-phonon contribution to the relaxa-
tion rate and where

and
qr, k

+ij,kl

qr, k

BJ BJ

8$» 8$kg

qri)

(26)
F;j,«(Q) =2 {A;j(0)Ap)(—r)}e'o dr (30)

In a similar manner we compute the two-phonon con-
tribution to (dg(0)d&&( —r)). Here we consider only
those matrix elements which describe absorption of one
phonon and emission of another since these are the proc-

is iclentical to the quantity F(Q) used by Griffiths when
i, j=k, l In the derivat. ion of (29), the variable Q= co—pj'

is introduced, it is assumed that F(—Q) =F(Q), and the
upper limit is extended to ~ in the integral over dQ
since we assume that F(Q) is negligible for frequencies
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much greater than J.The second term on the right-hand
side of (17) is seen to be zero under the assumption that
n, =nq. in (27).

As noted by GrifBths,

O'F;;,Pl(O) dO= —
m (A;;(0)Ail( —r) } (31)

0 87 0

from the definition (30), and thus the contribution of
the spin-correlation function may be computed exactly.
An important feature and simpli6cation is that the form
(31) of this contribution is independent of f;;,i,l(q) and
e,.This is rot the case with the single-phonon relaxation
rate, as will be seen.

Evaluation of the trace (31) is performed with the
help of (1), (10), and (11);and when the summation in-
dicated by (29) is carried out, we obtain

n4. (~0'}= (2/9)I'(I+1)'
16m'm'S'v'

x Q'P(J;j' —J;,J; )Q;,; —(J;,'—J;,J; )Q;,;
i,j,k

+JiiJi&(QV, i& Qe' j&)j i (32)
where

Thus (32) becomes

ijip(X0'} = (2/9)I3(I+1)'

jg4 V2J2Jj'/'2g4

X id'did n, (n,+1)
16X9~'mU~'~" 0

XP' (A,;A, g A;,A;&—;~)(1 cos 8;—;„). (37)

rjipPe(P} =
12 'P(I+I)'(Xs'i' 'r '

I
gag J2J A4 —,(3g)

5m'(uo' V j 8

For the linear chain it is evident that (37) predicts a
zero relaxation rate since 8;;&——0 or ~ for any set of spins
along the chain. Hence we must expand fi;, i, l(q) to a
higher power of q to get a 6nite relaxation time. As a
result, the relaxation rate is proportional to T' for
T«0 instead of T~ as it would be in the absence of cor-
relations (neglect of the cos48;;q term). )For T«8 the
upper limit of the integral in (3/) may be extended to
~, and thus the temperature dependence of g&~ is de-
termined by the power of co appearing in the integrand. ]
The 6nal result for the linear chain at temperatures
well below 8 is given by

Qij, kl I ij,kl ~'d~Lf'j, .i(q) 7'n. (n.+1) (33) where we have used the relation

(so
——(61''/ V) '"v (39)

and where all three indices i, j', k must be different as
indicated by the prime on the summation sign in (32).

We now investigate the relaxation rate (32) in various
lattices for nearest-neighbor interactions. For tempera-
tures well below the Debye 8, the integral in (33) is
evaluated by using the long-wavelength approximation
for f4j,kl(q) (25). The result of most interest is that the
summand in (32) is identically zero for the linear chain
under these conditions.

For nearest-neighbor interactions, we write

L;,„;=J"x;, ,

Ls~,~.g
=J "Ai~A~.I cos'tIs~g

(35a)

(35b)

where 8;,, is the angle (i,j,k). In the long wavelength
approximation, we 6nd

f', ' (q) =kA'

f;j,ji.(q) = ——',q'a' cos8;, l, .
(36a)

(36b)

(34)

where A;; is unity if spins i and j are nearest neigh, bors
and zero otherwise. The expression for L;; ~i is in general
rather complicated. For simplicity we assume that
J;;(r,;) is a function only of the magnitude r;„and,
consistent with the neglect of other than nearest-neigh-
bor interactions, we assume J")&J'/a where the primes
denote differentiation and a is the nearest-neighbor
separation. In this case we have

for the simple Debye spectrum.
At temperatures of the order of 8 and higher, the in-

tegral in (33) may be evaluated by using the high-
temperature approximation n, =k /Theo together with
the exact expression for f;; l,l(q). GrKiths has done this
for the case of no correlations LSee Appendix 8 of
Ref. 7J. If we call his result for the relaxation rate (pro-
portional to T') Il and the complete figure, including
correlations, I2, then

J2

Ij

slnx s1112x sinx)
4 1— — —1+ —2

i
dx

g 2x x&
""j" f sinx) '

4
i

1— idx (40)
x j'

for the linear chain. In a simple cubic lattice, we have
I2/I, = 3. (We are thinking here of a three-dimensional
lattice whose magnetic ions are grouped together in
linear chains. )

The T' two-phonon relaxation rate is a property of
nearest neighbor interactions as well as of the linear
chain. If bo/h nearest-neighbor and next-nearest-neigh-
bor interactions are included on the linear chain, a non-
zero T~ relaxation rate results. Vanishing of the T~

term is not, however, dependent on the simpliied form
(35) for I.;; H since the complete expression gives
qualitatively the same result.
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TABLE L Correction factor I2/Il for two-phonon relaxation rate in
various lattices other than the linear chain Lsee Eq. (41)g.

Lattice

Square array
Simple cubic
bcc
fcc (or hcp)

I2III

0.846
0.523

For lattices other than the linear chain, Eq. (37) does
give a nonzero T~ relaxation rate. If, once again, we call
Is/Il the ratio of our more complete results to Griffiths',
then evidently

Is/Il Q'(A——eA;s A;;A;p—A;s) .

f;;,sl(q). In the long wavelength approximation f;;pl(q)
is proportional to q'=rps/e', so we must compute

~
{A;;(0)(d'A&1( r)—/dr')) ~, p which is a considerably

more complicated trace than (31). Griffiths has com-
puted g p for the linear chain, square array, and simple
cubic lattice neglecting correlations, and we shall not
give explicit expressions here. We do, however, demon-
strate below that, as in the two-phonon case,
vanishes in the long-wavelength approximation for
linear chains with nearest neighbor interactions.

Confining our attention to nearest-neighbor inter-
actions along a linear chain, Eq. (42) becomes, in the
long wavelength approximation,

V~p 2 It +ilk, k+1(r's +r'+l, k+1 r +1,k r', %+1 )

X(1—cos'8;, )/Q' A;,A; . (41)
i,j,k

d4

X A;„(0)A, (—)
dv. 4 r=p

(43)

Since an explicit expression for q&„ in the absence of cor-
relations may be found either in GriKths' work (for
T&8) or in Ref. 4 (for T«0),"it will not be repeated
here. The correction factors (41) for various lattices are
given in Table I.We note that the term A;jA;~A;A, . is zero
unless two adjacent spins have nearest neighbors in
common. It appears even when there are no correlations,
but was neglected by Griffiths for simplicity. Among the
lattices studied here, it is nonzero only for fcc (or hcp).
Thus the difference of close to a factor of 2 between our
result and GriKths' in the fcc lattice is not due so much
to correlations as it is to the fact that, for this structure,
on four of 11 sites for which A@A;&(i' /k) is unity, we
also have A;;A;&A, &(i WjWk) equal to unity.

C. Single-Phonon Relaxation Rate

F12+i,i+1;k, k+1

for the linear chain, and also

(rj7g +fr+] Q+1 r +\, s r s+1 ) — 2C'
so that the coeKcient of

(44)

(43)

d4

A r4+1A s, s+, 1( r)
dv-4 t=p

in (43) is independent of i and k. Thus we have

where we have left out constants of proportionality for
simplicity and have used (25) together with a relation
similar to (31).We observe, however, tha, t

The single-phonon relaxation rate is computed by
using (23) in (17) and (14). As in the two-phonon case
we assume that only those values of ol in (23) for which
co &Jneed be included; so we may use the high-tempera-
ture (tp«kT) approximation for R., in (23) to obtain

d4

tr P P A l eXp( —iKpr/k)
dg4 i&j,nei k&l, nei

XAsl exp(iRpr/k)
r p

(46)

rf,pfXp') = P ZK;, ll
4m'mme' i&j I «

X I';;,sl(~)f;;,sl(q)~'dpi (42)

or the single-phonon relaxation rate q„. In the above
F@,sl(rp) is defined as in (30) and, as in (29), we have ex-
tended the upper limit to ~ in the d~ integration. There
are two basic differences between q,~ and g~, as Inay be
seen by comparing (42) with (29): (i) The temperature
dependence of rf,p (linear in 2') is independent of f@,sl(q),
but (ii) the trace which must be taken does depend on

' Garwin and Landesman's expression for 'Q&p should be multi-
plied by 3 to account for an error in transcribing Gri%th s equa-
tions (private communications between P. M. Richards and R. L.
Garwin and H. A. Reich).

d' trBCp'

v'=0
(47)

and this is zero since trXp is, of course, independent of
7. Hence, we have a rather general proof, which could
equally well be applied to the two-phonon case, for the
vanishing of the relaxation rate in linear chains with
nearest neighbor interactions when the long wavelength
approximation is used. The proof hinges upon the fact
that f;,; , ,+~1s(qs) 1is independent of i and. k. This is a
property unique to the linear chain and long wavelength
approximation. If terms in q4 are included, then we see

where "nei" means that the summations are restricted
to nearest neighbors. But since BCp

——IP,; A@ and the
trace is invariant with respect to cyclic permutations,
we see that (46) reduces to
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that f;;,2}(q) does depend on i and O and hence there is
a finite relaxation rate.

By making the next approximation for f(q) we bring
in an additional factor of o)2g2/v2. Then since we expect
the major contribution of the integral in (42) to be for
o} of the order of J and since roe is of the order of 2)/a, the
single-phonon relaxation rate for the linear chain should
be less than that calculated by GrifIiths by a factor of
the Order Of (J/o)s)2= (OJ/OO) 2(&1.

IV. RELAXATION BY ATOMIC DIFFUSION

%'e now examine the situation in which the dominant
lattice motion is one of atomic diffusion. Garwin and
Iandesman showed that if the correlation time r,
associated with lattice motion is much longer than 1/J,
then the exchange-lattice relaxation time is of the order
of r,. This result will be rederived here in the present
formalism, and we will show that correlations may in
fact be neglected.

Since we expect {A@(0)A2}(—r)} to be significant
only for times of the order of 1/J or less, the first term
on the right-hand side of (17) may be roughly approxi-
mated by

d2

5,;0 5~) —r 2,;OAg)0 J
dr v=0

=(~'t(0)~ (o)){A'(o)A (0)}/J ' ( )

while the second term will be of the order of

&~„(0)~„(0)){A,,(o)A„(o)}/.,
if we give a classical description to atomic diffusion in
the manner of Torrey. "Thus the second term in (17)
will be greater than the 6rst term by a factor of the
order of Jr.))1 so that with (14) we have

We evaluate &6;,(0)h;;(—r)) as follows. For nearest-
neighbor interactions the complete Hamiltonian of the
system is written as

BC=OJ P o(;,(t)A;;A;;, (51)

where A;} is given by (11) as before but now A;, is a
quantity which is unity if the lattice sites i and j are
nearest neighbors and zero otherwise and a;,(t) is unity
if the s~'tes i and j are both occupied by spins at time t
and zero otherwise. The perturbation K' is the differ-
ence between 3C and its thermal equilibrium value, and
thus, comparing (51) with (8) and (12), we have

&ij o;ij r = &ij ~

At least for short times, we may write

(54)

& '(o) '( ))=& ")l.1—P( )j (55)

where P(r) is the probability that a jump has occurred
in a time r which leaves either one or both of the sites i
and j unoccupied given that they were both occupied
at time r=o. Since we are interested in P(r) for short
times we need consider only nearest-neighbor jumps.
Following Torrey, we define Pi(r) as the probability
that a spin mak. es a single jump onto a neighboring site
in a time r. We also understand Pi(r) to have the ther-
mal equilibrium distribution of vacancies built into it-
that is, Pi(r) represents the probability of jumping onto
a neighboring site only if the probability of that site's
being vacant is the thermal equilibrium probability.
We have

where (n;,) is the thermal equilibrium expectation value
of (2;;. The correlation function (6;,(0)h@(—r)) then
becomes

& '(o) '(- ))= ' '(& '(o) '())-(')') (

where we have assumed symmetry in r and —r and
noted that

Pi( )=(rlr.)e '" (56)

rtg{Ses2}=—O' Q Q Ag;(0) I} y, }( r)— —
f, &q' k+l ~-0

X {A;;(0)Ag,}(0)} (49)

for pz, the "slow diffusion" relaxation rate. The quantity
{A;;(0)A&}(0)}is zero unless i, j =O, l, and hence cor-
relations do not contribute to this relaxation rate. Per-
forming the trace gives

rtd{Ses2}= —-' O2(II2+1) 2

for a Poisson distribution, thus de6ning r,. If there are
Z nearest-neighbor sites, then

P(r) = 2(Z—1)Pi(r) (57)

for r&&r, where the factor of 2 comes from the fact that
either the spin at i or the spin at j may jump, and we
have Z—1 since we are given that one of the Z neighbors
is occupied at r=0.

Using (56) and (57) in (50) and (53) together with
(55) then yields

rtgPCs'} = ,'O'I'(I+1)'J'(Z 1)-NZ/r, (58)—
as long as the number of vacancies is sufficiently small
that &n;,)=1.But since

"H. C. Torrey, Phys. Rev. 92, 962 (1953). {g(&o2}= 2 O2I2(I+ 1)2JNZ (59)
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under the same approximation, we obtain 6nally

rte= 2(Z 1)—/r, .

SUMMARY

(60)

Magnetic exchange-lattice relaxation has been in-
vestigated well above the Keel point under the assump-
tion that the exchange and lattice systems may each
be described by a temperature. Correlations between dif-
ferent pairs of spins were handled by a density matrix
formalism whereas these correlations were neglected in
GrifFiths' treatment. The most striking eGect of cor-
relations is in linear chains with nearest neighbor inter-
actions at temperatures much less than the Debye 0.
The relaxation rate for single-phonon processes is less
than that computed by GriKtbs by a factor of the order
of (AJ/k8)', and the two-phonon processes give a T'
dependence instead of the normal T~ term. In three-
dimensional lattices, correlations have about a 20%
effect which, though not dramatic, is at least of academic
interest when one considers that correlations are rigor-
ously negligible in Zeeman-lattice relaxation if a spin
temperature is assumed.

When the frequency of lattice motion is much less
than J, correlations can be neglected. Garwin and
Landesman's result that the relaxation time is of the
order of r„ the correlation time characterizing diffusion
jumps, is therefore justi6ed.
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APPENDIX: EQUIVALENCE WITH
GRIFFITHS' FORMALISM

If the lattice average in (17) is expressed as a sum
over the eigenstates

~ p) of the lattice Hamiltonian, we
obtain the following equation for the relaxation rate.

i&j k&1 p&~

where

W„.(si,t t) =2(t I ~'~I p)(~I ~~~I»

X d7 e'"~"'{A;;(0)A g(( r) }—(A2)

is the transition probability per unit time that the lat-
tice changes from the state

~ » to
~
v)—and thereby loses

energy E„—E„=Ace„„—due to coupling with the spin
pairsi, j and k, 1; and

(A3)

is the thermal equilibrium probability that the state
~ y)

is occupied. In writing (A1) we have taken the second
term on the right-hand side of (17) to be zero, as is the
case for the phonon processes above the Neel point
)see Eqs. (23) and (27)]. Equation (A1) reduces to
that used by GrifFiths if one neglects correlations so
that W„„„(ij,t' t) sis zero unless i = k, j= t and assumes
nearest neighbor interactions only. )Compare (A1)
with, for example, Eqs. (8), (13), or (22) of Ref. 7.$ It
is also of the same form as that used by Hebel and
Slichter. "

"L.C. Hehel and C. P. Slichter, Phys. Rev. 115, 1504 (1959)~


