
SELF—CONS IS TE N T CORRELATION THEORY OF F E RRO MAGN ET I S M A1305

The use of a temperature-dependent exchange coupling
retains the correlation of the cluster with its environ-
ment at temperatures above the order-disorder transi-
tion. This feature makes it particularly useful in study-
ing the growth of short-range order in a system as the
ordering temperature is approached from above.

Helot the ordering temperature the theory needs
considerable improvement. The magnetization curve is
predicted to be a step function, and currently there is no
adequate auxiliary relation between long- and short-
range correlation functions. It is hoped that the 6rst
defect may be remedied by including more of the terms
appearing in the general derivation of the cluster Hamil-
tonian, and that the second need can be filled by study-
ing low-temperature expansions for the correlation
functions. At present there seems to be no possibility
for extending the theory to include the presence of an
external magnetic field.

Since the primary strength of effective field theories
is in the temperature region below the ordering transi-

tion, and the S.C.C.M. has its greatest efIectivenes-
above the transition, it is natural to suggest the possis

bility of a cluster theory which would include both an
effective field and an effective coupling. This would

probably involve a self-consistency requirement for
both the spin-average and the spin-spin correlation

function, which it is hoped would not be too intractable
mathematically.
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Experimental and theoretical investigations are reported on the second-harmonic generation (SHG) of

light in crystals long enough so that SHG is limited by double refraction. This effect has been called the

aperture effect. SHG has been observed in ammonium dihydrogen phosphate (ADP) under matching con-

ditions using the highly parallel beam from a gas laser. Crystals of lengths 5 and 10 cm were used. It was ob-

served that the peak of the SHQ is displaced from the peak of the fundamental by a few millimeters. This
is the order of magnitude to be expected, since the fundamental is an ordinary ray and the SHG is an

extraordinary ray. Since the position of the SHG peak should depend upon absorption, the absorption co-

efficients of ADP for the fundamental (4= 1.1526 p) and the second harmonic (Xs——0.5763 y) were measured

and found to be u&=0.151 cm ', F2=0.024 cm '; the latter value may represent small-angle scattering
rather than true absorption. The matching angle, the angle between the beam and the optic axis for index

matching, was measured and found to be 8 =42.7'. Two kinds of theory are presented. The experiments

are erst discussed in terms of a heuristic theory which relies upon intuition and plausiblephysical arguments.

The experiments are shown to be in quantitative agreement with this theory. A formal theory is also given

for SHG under matching conditions by beams of Qnite aperture taking into account double refraction and

absorption. For parallel beams this theory reduces to the heuristic theory.

1. INTRODUCTION

''N this paper we discuss theory and experiments
- - relating to the second-harmonic generation of light
(SHG) in very long crystals under index-matching con-

ditions. In particular the limitations imposed by double
refraction and absorption will be treated in detail. The
experiments are an extension of those undertaken by
Ashlon, Boyd, and Dziedzic' (ABD) to measure the
second-order polarization coeScient det; of potassium di-

hydrogen phosphate (KDP). In these earlier experi-

ments SHG in a KDP crystal 1.23 cm long was ob-

'A. Ashkin, G. D. Boyd, and J. M. Dziedzic, Phys. Rev.
Letters 11, 14 (1963).

served from the 1.1526-p He-Ne optical maser in
single-mode operation.

The theory of SHG under matching or nearly match-

ing conditions has been discussed by Kleinman, ' who

delnes an effective coherence length due to beam di-

vergence 4„z' (in this paper labeled 4',' for brevity),
which varies inversely as the angular divergence of the
beam. Physically, the significance of 4, is that for thin
crystals S&f,' the divergence can be neglected, the
whole beam can be considered to be matched in phase
with the second harmonic light, and SHG varies with
thickness as 8; on the other hand, for long crystals
S&S,' the divergence of the fundamental beam causes

' D. A. Kleinman, Phys. Rev. 128, 1761 (1962).
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part of it to be mismatched with the second harmonic
light and SHG varies as S. Typically for the ruby laser
and other solid state lasers 4,'=0.1 cm owing to many-
mode operation and crystal nonuniformities. The success
of ABD' in observing SHG with the gas maser was
due to the very long coherence length (4,' 10 cm)
possible with the gas maser in single-mode operation.

In the formal treatments of the theory, Armstrong,
Bloembergen, Ducuing, and Pershan' (ABDP) and
Kleinman' have represented the laser and second har-
monic light by unbounded plane waves. ABDP' point
out that the interaction between light waves of finite
aperture takes place along the direction of energy Aow.
Kleinman' has described SHG in very long crystals in
somewhat more detail, pointing out that SHG will

ultimately be limited by the slightly different directions
of propagation of the energy of the laser and second
harmonic beams. This effect, which he has called the
aperture effect, can be characterized by a length t',

representing the crystal thickness at which a second
harmonic beam starting at the incident surface with the
same aperture as the laser beam would just separate
from the laser beam. The statement is made that re-
gardless of how parallel the laser beam is, the effective
coherence length can never be greater than the aperture
length S„which typically may be of order 4, 10 cm.

In this paper we report the first observation of the
aperture effect. We observe in ammonium dihydrogen
phosphate (ADP) crystals of length 4'=5.03 cm and
4=10.4cm with an essentia)ly parallel fundamental
beam that the peak of the second harmonic intensity is
displaced a few millimeters from the peak of the funda-
mental intensity. Experimentally the effect is quite
similar to double refraction in birefringent crystals, in
which a beam of light breaks up in the crystal into an
ordinary and extraordinary ray which propagate in
different directions. Since double refraction is already
a familiar phenomenon and a familiar term in physics,
we shall employ it hereafter as a preferable alternative
to the relatively unfamiliar aperture effect.

In order to interpret the experimental results, the
theory of SHG will be extended to include double re-
fraction, and will be shown to be in substantial agree-
ment with experiment. We emphasize, however, that
these developments are natural extensions of the founda-
tions already laid. Two approaches to the theory will
be described, each of which is important and useful
in its own way. The first, which we call the helristic
approach, leans heavily upon plausible and intuitive
arguments and is therefore quite easy to follow if one
overlooks the complexity of some of the formulas that
come out of it. The results obtained by the heuristic
theory are correct. The second, or format, approach we
consider to be rigorous in that it rests squarely upon
the accepted and well-verihed theory' ' of SHG by un-

3 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

~ N. Bloemhergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).

bounded piane waves. To obtain the effects of double
refraction it is necessary to represent the finite laser
and second harmonic beams as Fourier integrals over
plane-wave components. By means of this theory we
verify the correctness of the heuristic theory, which we
expect will find important applications in cases too
complicated to treat formally. We find both experi-
mentally and theoretically that the displacement of the
second-harmonic peak intensity depends upon the rela-
tive absorptions of the laser and second-harmonic beams.

The role played by diffraction in SHG has not been
at all clear up to now. It has been suggested' ' that since
diffraction causes a divergence of the beam, it can be
treated simply by assigning an appropriate coherence
length 8,.' to take account of the spreading. This cannot
be correct, however, since 4,' has been dered' in terms
of an average over directions of the second harmonic
intensity, it being assumed that the components in
different directions are uncorrelated. Such a description
is appropriate if the divergence of the laser beam is due
to the presence of many transverse modes. It should
also be pointed out that 4,' only takes into account the
departure from matching of an uncorrelated diverging
beam; it does not take into account the reduction of
intensity that accompanies the diverging of the beam.
Therefore, the theory of SHG by diverging beams
given in Ref. 2 only applies to uncorrelated beams in
crystals thin compared to the beam aperture divided
by the angular divergence.

In this paper, we are concerned with the case where
the laser beam is in a single mode of the optica1. maser
resonator and is therefore completely correlated. The
properties of these modes are known in detail from
the general theory of the modes in optical resonators. ' ~

When one reflector is spherical and the other is plane
with a small transmission, the beam emerging through
the plane mirror is extremely parallel for a considerable
distance called the near field region, and then diverges
in the for field region, maki-ng a half cone angle 8s equal
to Xr/7cws, where Xr is the fundamental wavelength and
mo the bean radius to be dered in Sec. 2. This is
similar to a plane wave diffracted by an opening of
aperture 7rws. For this reason we use the term digrac-
HorI, to refer to that divergence which is characteristic
of the modes of the electromagnetic field. The Fourier
integral representation of the laser and second harmonic
fields may be regarded as an average over directions
of the amplitudes of the plane-wave components rather
than the intensities. Although the theory of the diffrac-
tion effect is considerably more elaborate than the old
theory of the divergence effect, ' it is interesting that 4,'
calculated in the old way with the divergence angle 60

turns out to be just the aperture length 4,. A full treat-

5 G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489
(1961).

G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347
(196Z).

r A. G. Fox and T. Li, Bell System Tech. J. 40, 453 (1961).
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ment of diffraction will be given separately based upon TABIE I. Parameters of the maser beam in free space. The
resonator spacing was d/2 =140 cm, and A is evaluated at 2=38the formal theory introduced here. In this PaPer we cm Aperture length is defined in (341)

shall only treat in detail the case of the near field.

SPHERICAL
MIRROR

-- IRIS

~ ~3XV
He-Ne LAsER I ei I DC

BREWSTER
WINDOW

FLAT
I I MIRROR

REFERENCE
SIGNAL

MOTOR DRIVEN--
CHOPPER I

DRIVE FOR
GEAR BOX J

I

I
GEAR BOX

FOR ANGULAR-'
AD JUSTMENT

il

PHASE
SENSITI VE'
DETECTOR

iL
/

HARMONIC
BEAM

HARMONIC
S IGNAL

X-Y
RECORDER

LONG PASS
FILTER

I

ADP

)
CRYSTAL

LIGHT
~ TIGHT

BOX

-FUNDAMENTAL
BEAM

---FLEXIBLE JOINT
SL IT

SHORT PASS
FILTER

MOTOR DRIVEN
MECHANICAL

STAGE
6399

PHOTOMULTIPLIER

X DIRECTION

I'IG. 1. Schematic diagram of experimental equipment.

2 D. R. Herriott, Appl. Opt. 2, 865 (1963).

2. DESCRIPTION OF THE EXPERIMENT

The experimental setup shown schematically in Fig. 1
was arranged to permit direct comparison of the posi-
tions of the harmonic beam relative to the fundamental
beam at the output face of the long ADP crystals used.
In most respects this arrangement is similar to the
one used in previous work. ' The 0c excited He-Ne
laser with Srewster angle windows was used to produce
about 1 mW of polarized cw radiation at j..1526 p.

The output was taken through the Rat mirror of
the half-nonconfocal resonator" which allows the
sample to be placed in the near field of the various
possible transverse modes of the resonator. Simple iris
adjustments serve to select the lowest order transverse
mode. For simplicity the present measurements were
restricted to the fundamental Tripp, mode which has
a Gaussian electric-field distribution and minimum
diffraction effects. q is the longitudinal mode number,
i.e., the number of half-wavelengths between the
reflectors. With a scanning Fabry-Perot interferometer
similar to that described by Herriott it was determined
that there were three strong longitudinal modes.

b' b n)p

(m) (m) (cm)

50 16.50 0.174
10 6.94 0.113
3 2.99 0.074

Bp

(«g)
1.21X10 '
1.86X10 2

2.84X10~

(«g)
0.056X10~
0.203 X10~
0.698X10~

10.28
6.67
4.38

where
w =ws(1+ @)'~2,

I

t= 2s/b

(2.3)

(2.4)

ws ——gl/P )&~2= (byt/27rg, t) ~ (2.5)

is the (minimum) spot size. fi is called the confocal
parameter, the radius and separation of the hypothetical
equivalent confocal resonator. X» is the wavelength of
the fundamental in free space and m» is the refractive
index, which in free space is unity. The actual reflectors
coincide with the surfaces of constant phase of the
hypothetical resonator.

In terms of the radius of curvature b' of. the curved
reflector and the distance d/2 between the two reflectors

(2f(g $2)1/2 (2 6)

Defining the beam half-angle at r=w by 5=dw/dz,
one finds

where

~=fi ~/(1+8)",

2zvp

~ps» ~pep

(2.7)

(2.8)

is the far field diffraction half-angle. When the sample
is placed in the 2Mar field p«1, the effect of the refractive
index is to change the far-field diffraction angle accord-
ing to (2.8) while the spot size remains the same. In the
near field the beam is nearly parallel and 6=0, while
in the far held 6=8p.

To vary the spot size zvp mirrors of three different
curvatures were used. Table I summarizes the relevant
beam parameters at the position of the samples in the
near field; namely, 38 cm from the output Rat mirror.
The aperture length 8, will be defined later.

The linearly polarized fundamental beam from the
gas maser is introduced through a long pass Biter into a

According to theory the radial distribution of electric
field of the fundamental mode is'

~
E&(r) [

=Ese-"'i"'/(1+ P)'I', (2.1}

where Ep is a constant. The radial and longitudinal
intensity distribution is given by (neglecting absorption)

&.( )=~"-'"i"/(1+8) (2.2)

The variation of the spot radius x with distance s from
the Rat mirror is given by
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matching angle 9 is given by the expression

er 'q'$(n ')'—(e )'j
sin'0 = (2.9)
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HARMONIC

hght-tight box where it interacts with the ammonium
dihydrogen phosphate (ADP) sample as shown in Fig.
1. A 7200:1 gear reduction box permits the angle
between the beam and the optic axis to be varied very
slowly about the phase matching direction. The ex-
traordinary wave harmonic light generated in the
crystal emerges displaced relative to the ordinary wave
fundamental as shown schematically in Figs. 1 and 2.
Scanning of the fundamental and harmonic beam shapes
is accomplished, with the crystal in place, by the
transverse motion in the x direction of a detector con-
sisting of a slit perpendicular to the optic axis of the
ADP and a short pass Alter in front of a RCA 6199
photomultiplier. The narrow slit was used rather than
a pinhole in order to get increased signal. There was no
loss in resolution inasmuch as the y intensity distribu-
tion is known to be Gaussian. Detection with good
signal-to-noise ratios involved the use of a 390-cps
chopping wheel with a phase-sensitive detector. A
simple motor drive on the scanning slit permitted direct
recording of the beam shapes on a chart recorder.

The relevant optical properties of ADP are sum-
marized in Table II, and the optical aspects of the
experiment are shown schematically in Fig. 2. The

TABLE II. Index of refraction and absorption data for ADP.8, nq, as from present measurements. em', N2' from Refs. (a), (b),
(c). Np calculated from (2.9). m~' from I&' and Ref. (a). p com-
puted from (3.1).

8=5.03 cm 4=10.4cm
u(cm ') n(cm ')

) I,
= 1.1526 g

) 2
——0.5763 p

1.503'
1.5246

1.4632
1.4792

0,151
0.018

0.151
0.024

Radians
Degrees

P
0.745 0.030

42.7' 1.72

a Anne Marie Vergnoux, Cahiers Phys. 73, 41 (1956).
~ I. C. Gardner, Natl. Bur. Std. (U.S.) Report IV-4/Tp 110613, 1947

(unpublished).
& R. O'B. Carpenter, J. Opt. Soc. Am. 40, 225 (1950).

Z=O

FIG. 2. Illustrating double refraction in SHG. Fundamental
enters on the left where we show the index surfaces for the case
where the surface normal is a matching direction. The propa-
gation plane ZW containing the optic axis and the beam axis
makes an angle of 45' with crystallographic X and I' axes.

where e1' and e1' are the ordinary and extraordinary
refractive indices for the laser light and e2' and n2' are
the corresponding quantities for the second harmonic
light. The matching angle 0 was carefully measured,
and (2.9) was used to compute er'. We also measured
the double refraction angle p at the second harmonic
frequency; the result agreed with that computed from
(3.1) within experimental error.

Since absorption plays an important role in the
interpretation of the double refraction effect, the values
of the absorption coeKcient n1 and n2 were measured
directly on the ADP samples used. As summarized in
Table II, it was found that nr))ns and that about 80%
of the laser beam was absorbed in the longer crystal.
Furthermore, for these long samples angular deviations
from the matching direction as little as 20 sec of arc
resulted in a significant decrease of harmonic power.
Thus n1 had to be carefully measured in a manner
which included in the absorption coefficient all scatter-
ings' larger than 20 sec. This was accomplished by
placing a small aperture detector far enough away that
the subtended angle at the sample was reduced to 20
sec. Both samples gave err ——0.151 cm ' where about 15 jo
of this value can be attributed to small angle scattering.

Experimental results on double refraction are in-
cluded in Figs. 3 and 4. The experirrlemta/ fundamental
beam intensity as a function of slit position x is shown
(dashed curves) for the three choices of reflector and
spot radii summarized in Table I. The heights of these
curves are normalized to give the same integrated in-
tensity. The corresponding experimentally determined
second-harmonic intensities are also shown (points) as
a function of x. It is apparent that the double-refraction
eGect is more pronounced the longer the sample and
the smaller the spot size. The width of the slit is indi-
cated in both figures, showing that in no case was the
observed intensity distribution limited by resolution.
Further discussion of these results will be postponed
until after the next section.

3. HEURISTIC TREATMENT

3.1 Double Refraction and Absorption

The optical maser beam interacting with the negative
uniaxial crystal oriented in the phase matched direction
is shown schematically in Fig. 2. The refractive index
for the fundamental ordinary wave is independent of
the direction of propagation and therefore the index
surface~ is a sphere of radius e1. The second harmonic
is an extraordinary wave" "and thus the index surface

' W. Kaiser and M. J. Keck, J. Appl. Phys. 33, 762 (1962).' J. A. Giordmaine, Phys. Rev. Letters 8, 19 (1962).
~ P. D. Maker, R. W. Terhune, M. Nisenof7, and C. M. Savage,

Phys. Rev. Letters 8, 21 (1962).
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$.0 direction by an angle p given by

0.8 tanp =-,' (nt')'
(ns')' (ns')'

sin28 . (3.1)

o.e
Al

X
Ot

K
0.4

II
J

/ /I
r p /

r+ A

-0.3 -Og -O.f
CA%

0.)

Fro. 3.The slit intensity E2 of the second harmonic as a function
of position x2. The points are measured values and the curves are
calculated from (3.30). Also shown are dashed curves representing
the measured fundamental slit intensity. The beam axis is indi-
cated by the peaks of the dashed curves, while the p line of Fig. 2
is at x&=0. The crystal length is l =5.03 cm.

is an ellipsoid of revolution about the optic axis. The
ellipsoid intersects the sphere at the matching angle
8 and the crystal is so oriented that the optic axis
makes an angle 8 with the surface normal.

It can be shown" (see Appendix) that for any direc-
tion of phase propagation the direction of energy propa
gation (Poynting vector) is given by the normal vector
to the index surface. For the ordinary wave both
vectors are parallel but for the extraordinary wave the
Poynting vector deviates from the phase propagation

gg=Qz sln8~=dssE1 sing~& (3.2)

This angle p also governs the usual double-refraction
effect (in which both the ordinary and extraordinary
waves are at the same frequency), and therefore can be
measured directly. The angle p in Table II is computed
from the index data presented there.

The Ggure applies to a positive uniaxial crystal if
the fundamental is made the extraordinary wave and
the second harmonic is made the ordinary wave. The
fundamental beam would then follow the p line as in
ordinary double refraction. The theory to be given here
can be carried through in exactly the same way for
this case.

For negative uniaxial crystals like ADP or KDP
having the point group symmetry 42m(DM, Vd) the
optimum orientation is that shown in Fig. 2. De6ne
Cartesian coordinates x,y, s such that s is in the propa-
gation direction normal to the surface of the crystal,
and the optic axis is in the xs plane. The distinction
between the two x coordinates xj,x2 will be explained
later. The propagation plane (xz) formed by the optic
axis and the direction of propagation of the funda-
mental makes an angle of 45' with the crystallographic
X and F axes. The fundamental is an ordinary wave
polarized with the electric vector perpendicular to the
plane of the figure (y direction); the second-harmonic
polarization is along the optic axis. Vjlith this choice of
axes the effective component of the polarization trans-
verse to the propagation direction is' '

).0

0.8

3
—fTl fll

where d36 is the nonlinear coefBcient as defined by
Kleinman. ' Here Q, and E1 are wave amplitudes which
in general are complex. The second-harmonic polariza-
tion will generate a second-harmonic electric 6eM E2,
an extraordinary wave. It has been shown by ABDP'
that E~ satisfies the diGerential equation

0.6
Ol

X
N

K
0.4

0.2

-0.3 -0, 1 Q. f

Fro. 4. Same as Fig. 3 for crystal of length l =10.4 cm.

'2 H. Kogelnik, H. Motz, SymPosium on ElectromugneHc Theory
and An/ennas, Copenhagen, June ZS, 196Z (Pergamon Press Inc. ,
New York, 1963).

dEs/dz= (27riots/nrc)g, e'&'"r "»'-(3.3)

(2~~a/nrc)$. =Jsr, (3.4)

where kr, ks are propagation constants (k1=2v.nr/Xr
=rernr/c) for the fundamental and second-harmoruc
waves, respectively. In deriving (3.3) it is necessary to
assume that both waves are plane waves, although Q,
may be a slowly varying function of s. %e adopt the
convention that all wave amplitudes are associated
with the time factors e—i~at or e—e'opt

We are particularly concerned here with the special
case in which the laser beam is in a single Gaussian
nsode. Near the focus these modes are very much like
plane waves except for their 6nite aperture. It is then
appropriate to assume that Ej is real and write
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where S» is the intensity and which differs from (3.10) only if the fundamental beam
contains more than a single mode. To take mixing of
different modes at possibly diQerent frequencies or the
spatial mixing of diferent Fourier components of the
same frequency into account it is necessary to use (3.11)
with g, given by (3.2) and Ei expressed as a linear
combination of complex field amplitudes representing
the modes in the beam.

For convenience later on in discussing the experi-
mental results we shall introduce a new notation for
writing (3.10). We denote points in the fundamental
beam, the source points, by x&, y», s», and points in the
second-harmonic beam, the observer points, by x2, y2, s2.
We regard (3.9) as an integral over source points giving
the second-harmonic 6eld at an observer point

J= (16lrsp) 2/)2isc2) d ps sine (3.3)

The equation for E2 now becomes

dg /dz —iJS (z)e((2sl—Pp) s (3.6)

where we have indicated that S& may depend on s in
order to include absorption of the laser beam. The
integral form of (3.6) giving E2(t) at the exit surface z= l

(3 7)E2(/) =iJ Sl(z)e'('"l ")'d—z

has been derived by Franken and %ard" by summing
the radiation from a phased distribution of dipoles.
The absorption of the second harmonic can be accounted
for simply by supplying the factor expL —2n2(8 —z) 7 in
the integrand; for the matching case m»=e2, k2=2k»
we have

Sl(xl,yl zl)e ~2(*' "'"dzl. (3.12)E2(x2,yp, z2) =iJ

ale shall measure the source points from an origin on
the beam axis and on the incident surface. Define x2 for
the observer points in such a way that x2=0, y2=0 lies
on the p line

E2(E)=2J Sl(z)e '(t *) /2dz

0

X2= S p~2.

(3.14)*2+PZl l yl y2 y l

Since (3.8) is valid for plane waves it seems plausible (3.13)
that it should also be valid for waves which are nearly
planewaves exceptforbeinghnite in theg, ydirectlons. The Path of integration over the source Points is

This leads us to the approximation

E2(x,y,Z) =iJ Sl(x,y z)e '(t—')/'dz

0

(3.9)

Now refer to Fig. 2; the line at angle p, which we shall
call the p line, represents the direction of energy Govt
of the second harmonic. Intuitively we should expect
that this fact should be taken into account in (3.9);
more precisely, we expect that the path of integration
should not be along the s direction but along the p line.
This leads 6nally to the formula Sl(xl yl zl) —Spe

—nlzle —2(xl +pl )/mp (3.15)

and (3.12) becomes

with x~ held constant in the integration since it refers
to the observer point. Then when we set z2 ——4, (3.12) is
identical with (3.10). It should be noted in (3.13) that
x2 measures x coordinates in the second-harmonic beam
relative to the p line.

%e now limit our discussion to SHG under matching
conditions in the near 6eld with the laser beam in the
fundamental mode. In this case from (2.2)

E2(x,y,E)=iJ Si(x pE+pz, y,z)—e ""t *'/'dz (3.10)
/2(xs, y2,$) =iJSpe ~lt/ e 2pl'/~p

which is the basic formula of this section.
In proceeding from (3.3) to (3.10) we have made

three assumptions which constitute our heuristic method:

(a) that E& is real, (b) that a finite intensity distribution
in the transverse direction can be inserted for Sl(z) in
(3.8), and (c) that the path of integration in (3.9)
should be along the p line. Actually assumption (a) is
not at all essential since it could be eliminated simply
by writing (3.10) in the slightly more general form

E2(x,y,l)

X dzle
—Rzl—2(@2+pal)2/Mop (3 16)

0

where the effective absorption coefhcient is

G= G» —~O,'2.1 (3.17)

Nl ——v2 (xl/wll),

2) =42 (y2/wp),

I=v2 (x2/wp),

r =V2 (pz,/wp),
(3.18)

It is convenient to introduce the normalized variables

2xzco2

P (x p4+pz, y,z)—e '(t *)/2dz

S»C
(3.11)

"P. A. Franken and J.F. Ward, Rev. Mod. Phys. 35, 23 (1963).

and the normalized constants

t=%2(pt/w p),

q=(rwp/2v2p.

(3.19)

(3.20)
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1.0

t=o.5

t t, n (3 i4) becotnes
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—(am/2)/e " p(u) &gs(u, v) = s (3.22)
where

e 2@re—(~+—" d7' ~p(u, )', ,q =—
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(3.23)

(3.24)
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FIG. 7. The function G(t,g) deiined in (3.33) as
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1000 lim F (u, t,q)'= 0
&
—+co, q-+p

(I(—t)

=m/t' (—t(N(0) (337)

=0 (I)0).

t, q
—+ 0 and G —+ 1, and the total power is given by

P2 ~KP 12/2/to os (3.36)

which agrees'4 with Eq. (1) of ABD' and Kleinman's'

equation (123) as expected. Note that Ps varies as 8
in this limit which is characteristic of SHG by an un-

bounded plane wave in the index matching direction.
In the previous discussion' of the aperture egect it was

proposed that there should be a critical length such
that in long crystals SHG no longer increases at P. That
discussion did not state precisely how SHG should vary
with 4' nor describe the Geld distribution, although it
was stated that the field would never grow larger than
a certain maximum value. In the case of nonabsorbing
thick crystals t)&1, q= 0, the intensity distribution has
the form

signiGcant SHG; the relevant region for SHQ is there-
fore near the incident surface, and the second harmonic
energy Bows out along the p line. On the other hand,
when q&0 the second harmonic is so strongly ab-
sorbed that SHG takes place near the exit surface on
the beam axis.

3.2 The Aperture Length

The total SHG power is given by

In the case of q=0 Eq. (3.35) may be integrated
directly; the result is

G (t,0)= (L2s.f'I'/t) erf (t/V2) —(2/P) (1—e "I') (3.38)

The function G(t, q) given in (3.33), (3.34), and (3.38) is
plotted as a function of t in Fig. 7 for several values of

q; for q/0 the curves were computed by numerical
integration.

For the nonabsorbing case the asymptotic dependence
of G can be obtained from (3.38) as

Rs(u)dhs (3.31) lim G(t,q) ~
t~ofi, q~

(2s.)'" Kp

pS
(3.39)

which may be written

Ps= KPt'Pe ~'t(1/wo')G(t, q),
where

(3.40)t.= (2s)'"=2.5.

from which a normalized aperture length may be

(3 32) defined

(2)1/2 +~

G(t,q) =
I

—
I

&~3
F (N, t,q)'dl,

This is the intersection of the asymptotes for I,—+ 0 and
t -+ oo when q=0. From (3.39) the aperture length is

G(0,0) =1. (3.33)

For the purpose of numerical computation it is best to
use the form

where

(, )= " '"L '( )+'( —)j
f2

(3.34)

E(t,q) =e e'q~ erfxdx (3.35)

ci= 2q/v2, cs= (t+2q)/V2, c=4v2

as can be obtained from (3.23) and (3.33) by inter-
changing the order of integration. The total harmonic
power Ps is seen to be proportional to G(t, q). In the
limiting case of a thin nonabsorbing crystal we have

Kp 'Np

g.=~~t2—=1.77—.
P P

(3.41)

For crystals of length 4'&4 the dependence of SHG
power I'2 on length changes from quadratic to linear
as seen in Fig. 7. The linear dependence of E2 on 4 comes
about because the second-harmonic intensity reaches a
maximum value within the double-refraction region,
but the area of this region on the exit surface grows
linearly with S.

3.3 The Coherence Length

It is interesting to show how the effect of double
refraction on I'& just derived can be obtained by a

"A printer's error exists in Eq. (1) of Ref. (1) in that the co

should be eo'.
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The special case of r=m is the spot radius at which the
electric Geld falls to e ' of its axial value as given in
Eq. (2.3). A ray may be identified by the value of

r/w = ro/wo (3.45)

At a distance s from the beam minimum, the ray makes
an angle with the axis of

dr rp $ rp
8=—=8p—

ds u/p (1+P)'/' wp
(3.46)

where bp and 6 have been defined in (2.8) and (2.7).
The component of 8 seen in the xs plane is the angular

deviation from the phase matched direction

8.= (x/r) p= (xo/ieo) a.
The phase mismatch may be written"

(3.4g)
where

completely diRerent line of argument which ascribes
the effect to divergence of the beam and departure from
matching. We present this as a curiosity and not as an
alternative treatment, since it does not lead to a correct
description of the true Geld distribution. A rigorous
treatment of diffraction will be published separately.
Following Kleinman' we consider only the effect of the
divergence on the phase matching and not its eQect on
the laser intensity, and we regard the laser beam as an
uncorrelated bundle of plane waves. Since we now ignore
the double refraction effect, we write (3.36) in the form

(3.42)
where

(3.43)

measures the phase mismatch. We consider that along
the beam axis perfect phase matching occurs (/=0),
but away from the axis in the xs plane there is a small
mismatch. Consider rays of the fundamental beam as
being lines along the propagation vector at each point.
Thus the trajectory of a ray is given by

(3.44)

average as

sin'iP 2 '/' +"

7r

sin'(V u, )
(3.52)

(ru, )'

This may be integrated by the technique of replacing
the 2 in the exponential by a dummy variable, di6eren
tiating with regard to this variable and integrating
over I&. This result may then be integrated over the
dummy variable to obtain the result

2——L1—exp( —V'/2)g -+ 1
9"2

&«(2or)'/

(2g)i/&/g for g"))(2~)1/2

(3.53)

This result is identical to that of G(t,0) of Eq. (3.3g)
shown in Fig. 7 where the variable v' replaces t in that
formulation.

If one were to Fourier analyze the fundamental beam,
plane-wave components would appear having directions
within the entire diBraction cone of half-angle bQ The
small values of 6 in the near Geld. are therefore irrelevant
to the present calculation. It is therefore quite reason-
able that the appropriate value of V is that correspond-
ing to 6= 5p so (3.50) becomes

(3.54)

Ke still use the ray picture, however, to derive the
linear dependence of P upon ui in (3.51) and the linear
dependence of V upon S. The critical length at which 92
stops increasing as 8 and increases as 4 is determined
by the condition /= (2')'/' just as for double refraction.
e emphasize that the divergence of the beam, except
for the eGect on the intensity not considered here, when
the laser beam is in a single mode does not introduce
a new effect not already taken into account in double
refraction. Furthermore, the effective coherence length
4,' previously defined by Kleinman is identical in this
case with the aperture length of Eq. (3.41).

P=hi sin/p. (3.49)
Define

where t was previously defined by Eq. (3.19).It follows
for /o«1 that

P= 7'ui. (3.51)

We now average sin'P/P over ui using as the weight-
ing function the square of the fundamental intensity
which varies as e p"&'. Since V depends on f or s through
the ray angle we face the question of what is the
appropriate value to use for K For the moment, how-
ever, consider V some constant and carry out the

h= u+g+ pt (3.56)

is a convenient variable for describing the position of
the peak. For g=0 the solution of (3.55) is h=0; for

3.4 Position of Maximum Slit Intensity

As an aid in analyzing experimental results it is
convenient to have approximate formulas giving the
position of the maximum of F(u). From (3.25) the
condition (dF/du) = 0 gives

wi/PqLerf(i/'+ h)+ erf (ipse
—h)j

= 2e "'e "/' sinh(th), (3.55)
where
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peak heights we define the quantity

0= (1/t) sinh 'fpr'"q erf(t/2)e"'45 (3.57)

If (ht t))1 and rat+/it))1 the solution of (3.55) is
M (b', 50) = maxLRs(N) js.

maxLRs (st)jp. ,p

h= sgn(q) Pt —
L
—ln(2

) q [
7r'/') g'/') (3.58)

providing ~q~ (rzpr '/s. This formula predicts the peak
positions in Figs. 3 and 4 very satisfactorily. If t&2
the domains of validity of (3.57) and (3.58) in q are
approximately

(3.57)

(3.58)

0(2z.l/2
( q J

(st/2 tt/4—
t,-"/4(2pr'/s

I q I (1. (3 59)

We have not devised a convenient formula valid for
iqi)-'pr '" =0.28.

4. DISCUSSION OF EXPERIMENTAL RESULTS

Second-harmonic generation has been studied using
three beam spot sizes and two crystal lengths. The
experiment was performed by scanning the second
harmonic and fundamental beams with a slit. The
experimental slit intensities Ri (dashed curve) and Rs
(points) are shown in Figs. 3 and 4. Also shown are
theoretical curves for Rs calculated from (3.30) and the
appropriate experimental parameters.

All of the parameters in the theory are determined
from the known values of the thickness 4, the spot size

ws, the absorption coefficients cti, cts, and the double
refraction angle p defined by (3.1). The Ri curves are
normalized to constant power I'~, which implies that
the peaks of E» vary inversely as m o. The theoretical g2
curves are also calculated for constant I'y. The experi-
mental Rs points have been normalized to the sume peak
height as the corresponding theoretical curve to facilitate
comparison of the shapes of the theoretical and experi-
mental curves. The measured peaks of E2 agree closely
with theory in their dependence on mo.

The comparison of theoretical and experimental peak
heights is summarized in Table III. For comparing

The theoretical Lcalculated from (3.30)$ values
M(b', 50)th„, and experimental values 3E(b',50).„~ and
their ratios are given in Table III.

The total (relative values) second-harmonic power
I'~ is given in Table IV as a function of mo. Also tabu-
lated are the values of t (3.19) and q (3.20) obtained
from the measured parameters and used to plot the
theoretical curves in Figs. 3 and 4.

It is apparent from Figs. 3 and 4 that theory and
experiment are in satisfactory over-all agreement in
regard to peak positions and shapes. In Fig. 3 there are
minor discrepancies in peak positions for @0=0.0835
and 0.j.51. In Fig. 4 there seems to be a discrepancy in
the width of the F0=0.084 peak and to a lesser extent
the 0.164 peak. We have no explanation for these minor
discrepancies. The dependence of second-harmonic
power on spot size given in Table IV is also in reasonably
good agreement with theory. The greatest discrepancy
occurred for +0=0.084 in the 10.4-cm crystal. It is
dif6cult to discuss the experimental errors in these ex-
periments. It seems that the discrepancies are not due
to the slitwidth or difficulty in measuring the position
x2 of the slit. The most likely source of error is in the
measurements of power.

5. FORMAL TREATMENT

5.1 Basic Equations

The theory of SHG by plane polarization waves has
been treated in considerable detail. This is a special
case of the interaction of three plane waves for which
AHDP' have given an exact solution. Since we are con-
cerned here with SHG in long crystals, it may be of
interest to consider the possibility of the efficient con-
version of power from the fundamental to the second-
harmonic beam. Under matching conditions with no
absorption the fundamental 6eld amplitude Ei(z) and
the second-harmonic field amplitude Es(z) satisfy the

TmLK III. Comparison of theoretical and experimental
peak heights. bt'(b', 50) is dejned in (4.1).

TAsz.E IV. Ratio of total SHG power P2 for various fundamental
beam sizes. Normalized parameters t (3.19) and g (3.20) based on
experimental spot radius m0 and parameters of Table II.

b' u p(cm)
(meters) theory exp

3fexp

bI(b', 30)th... bt(b', so)... bi~... b' rpp(cm)
(meters) exp t q

Ps cap
Pg Pg

theory exp Pq ~h«~

50
10
3

50
10
3

4=5.03 cm crystal
0.174 0.151 1.0
0.113 0.115 1.91
0.074 0.0835 3.57

4= 10.4 cm crystal
0.174 0.164 1.0
0.113 0.115 1.89
0.074 0.084 3.17

1.0
1.97
3.88

1.0
1.87
4.35

1.0
1.03
1.09

1.0
0.99
1.37

50
10
3

50
10
3

0.151
0.115
0.0835

0.164
0.115
0.084

4'= 5.03 crystal
1.41 0.253
1.86 0.192 1.58
2.56 0.140 2.57

4'=10.4 cm crystal
2.69 0.269 1
3.84 0.188 1.60
5.25 0.138 2.35

1
1.73
3.40

1
1.08
1.45

1 1
1.61 1.02
2.68 1.04
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relations'

Ei(s) =Ei(0) sech(s/g, ),
E,(s)= iE,(0) tanh(s/g„),

(5.1)

105 cm. (5.3)

Since this is much longer than the crystals we have in
mind, and longer than the absorption length of most
crystals, we are justified in treating the polarization
wave as an externally applied and specified source.

The theory of SHG by unbounded plane polarization
waves has been treated by Bloembergen and Pershan'
and by Kleinman. ' Vnder ma/ching coeditioes with no
absorption the held amplitude is given by

E,(s)= 2~i((o/cn) dEi2s, (5.4)

where s is measured from the incident surface of the
crystal and the beam propagates normal to the surface.
This agrees with the second relation (5.1) in the limit
s((Z~, and also with (3.3). The linear growth of E2(s)
may be ascribed' to constructive interference between
a forced wave generated by the polarization and a free
mare, or light wave, generated at the surface by the
forced wave. It is equally valid to ascribe the growth
to constructive interference between the waves radiated
from each differential sl3b of polarization in the ma-
terial; according to this view we regard (3.3) as the
fundamental equation, and (5.4) is the solution for the
matching case satisfying E2(0)=0. Actually (5.4) does
not give the entire second-harmonic Geld. The value of
E2(0) is related to the amplitudes of nongrowing waves
in the medium and a reQected wave at the surface. '—4

These waves are many orders of magnitude weaker
than the growing wave (5.4), and may be neglected in
the experiments we are considering here.

The theory of SHG is based upon the inhomogeneous
vector wave equation"

p' x ~ x E—(~/c)'e2 E=4~(co/c)'Sxe'"', (5.5)

where e2 is the dielectric constant tensor at the fre-
quency ~, and K is the wave vector of the polarization
wave. If, as in previous treatments, we regard the laser
beam as an unbounded plane wave of wave vector ki,
it follows that K= 2ki. A beam of finite aperture, how-
ever, has other Fourier components, and it is our main
purpose in this section to take proper account of these
and determine their eGects. We begin by reviewing
brieQy the theory as given by Kleinman' in the absence
of absorption.

where the characteristic length 4„for power conversion is

g„= (cn/27')) d—'Ei (0)
—', (5.2)

with e the refractive index, co the second-harmonic fre-
quency, and d the appropriate component of the second-
order polarization tensor. We estimate that in the
present experiments Ei(0) 0.02 esu (6V/cm), and
d=d&8 3)&10 ' esu, so that (5.2) gives

The general solution of (5.5) consists of a forced wave
(or inhomogeneous wave"), which is some convenient
particular solution of the inhomogeneous equation, and
suitable free waves, which are solutions of the homo-
geneous equation obtained by setting 8&=0. The free
waves are chosen so as to satisfy the boundary condi-
tions of the problem. The free waves have the form

EUei(&o/ci vms r
) (5.6)

where the refractive index n2 ——n2(s) is a function of the
direction s (unit vector) of the wave vector

k,= (cu/c) n2s. (5.7)

The polarization direction U= U(s) (unit vector) is also
a function of s satisfying together with m2 the relation

where o., is the dyadic

a, U=O, (5.8)

a, =n2'(I —ss) —e2) (5.9)

K= (co/c)n'e (5.10)

similar in form to (5.7). In general n'Wn2(e), since we
are considering the general case of arbitrary K.

When n'Wn~(a) the polarization wave is said to be
mismatched; the mismatch is described quantitatively
by y' in the relation

n'e —n2s= p'N, (5.11)

where N is the direction (unit vector) normal to the
incident surface of the crystal. This equation deter-
mines both q' and s to be associated with a prescribed
n'a. Here n2 and s specify a free wave (5.6) which must
exist in the presence of the forced wave in order to
satisfy boundary conditions at the surface. It can be
shown' that if p'(&1 it is not necessary to specify
exactly the boundary conditions or to take into account
all of the waves present. The dominant effect is the
production of a growing wave through the interference
of the forced wave with one free wave. When q'=0 the
waves are said to be matched, and the growing wave is
given by (5.4). More generally, under nearly matching
conditions the growing wave is given by

where
Ex(r) =N rg(2igx)y. axe'*',

1—e ~

g(~) = = e "'&P

(5.12)

(5.13)

and

2&x= (co/c)qN r. (5.14)

In general y in (5.14) is complex, but in the absence of

with I the unit dyadic or idemfactor. Equations (5.8),
and (5.9) determine both n2 and U. We may define a
quantity m', called the effective index, and a unit
vector o, by the relation
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absorption we have p= p'. The dyadic p is defined by

y= —2we(co/en)L(N U)(e U) —N ej 'UU, (5.15)

are written in the form

QUet(&a/c) n2s r ae—N r/2
7 (5.18)

where n and U refer to the nearly matched free wave. To
a good approximation y can be written

where e2 and 0.~ are real. This corresponds to a complex
wave vector

y =2'

i�(co/cn)
UU, (5.16) k2 ——(co/c)rt2s+ ,'t'c-2N, (5.19)

providing the laser beam is nearly normal to the surface.
Here the dyadic UU acts as a projection operator to
select that component of ttII which is effective in pro-
ducing a growing second-harmonic wave. For the
arrangement considered in Sec. 3, y Q is in the x direc-
tion and (3.4) could be written

(5.17)

which establishes the connection between (5.12) and
our previous formulas in Sec. 3. For the matching case
g(2'&)=g(0)=1 and (5.12) reduces to (5.4). Away
from matching, the function g(2iltrr) oscillates"', with
distance to give the familiar"„-coherence length eBect"
used in (3.42),

~ g(2') [
=

~ (sining)/P [ .

5.2 Absorption

The essential equations which we need from the
previous theory, and which we have quoted without

proof, are (5.11) and (5.12). The first generalization
which we must make in the theory is to introduce ab-
sorption. Absorption of the fundamental may be intro-
duced formally into (5.5) by letting K be complex.
Absorption of the second harmonic corresponds to
complex e2, which leads to a complex refractive index
m2. The usual procedure for isotropic media is to assume

light waves of the form (5.6) with complex nm which
can be expressed in terms of the real and imaginary
parts of &2. This can also be done for anisotropic
media, but the relationship of e2 to e2 is very much
more complicated. Nevertheless, we may consider the
theory for unbounded plane waves to be formally com-

plete, since the Fresnel equations for the surface waves'

(or boundary harmonics') remain formally valid for
complex em and K.

It is well known" that the use of a complex refractive
index leads to complex angles in the Fresnel equations
which have no obvious geometrical significance. The
complex angles arise because one is requiring the real
and imaginary parts of the wave vectors to have the
same direction. This is an unnatural requirement be-
cause the planes of constant phase do not necessarily
coincide with the planes of constant amplitude. It is
obvious physically that the amplitude planes, in a
medium with a plane incident surface, must be parallel
to the surface, whereas the phase planes can have an
arbitrary direction. It follows that the complex angles
can be eliminated from the theory if the light waves

"J.A. Stratton, Etectrorrtagmetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), Sec. 9.13.

in which the imaginary part has been given the correct
direction from the outset. Similarly, the polarization
wave can be written in the form

-iK r—agN r
K& (5.20)

te's —n2s+i(c/co)nN= pN, (5.21)

where cr has already been defined in (3.17).The solution
of (5.21) is

p +ep

where p' is given by (5.11) and

It follows from (5.14) that

2'/r= (co/c) q'N r+inN r.

(5.22)

(5.23)

(5.24)

We see that absorption enters the problem in two
distinct ways; the absorption of the second harmonic
enters through (5.24) where it affects the phase match-
ing, and the absorption of the fundamental enters both
through (5.24) and (5.20) representing the attenuation
of the polarization wave. Replacing Q& exp(iK r) by
(5.20) in (5.12) gives the general form for the second-
harmonic electric Geld

Err(r)=N rg(2igrr)7 e'rrex~~ ', (5.25)

with f& given by (5.24).

with real K and ni.
Although it is not necessary to use complex angles,

there is a price to pay for the convenience of using real
angles having the usual geometrical significance.
Strictly speaking, n& and n& in (5.19) are not character-
istic of the medium alone but also depend on the orienta-
tion of the surface N. This can be a serious difficulty
for large absorption and large deviations from normal
incidence. On the other hand, if the absorption is small
and the deviations from normal incidence are small,
this complication is of no concern. We can regard e2
and n2 in (5.19) as the usual refractive index and ab-
sorption coefficient. Similarly, a& is essentially identical
with the ordinary absorption coefficient for the funda-
mental beam.

In (5.11) we have defined a real function q
' to meas-

ure the mismatch in the absence of absorption. In the
presence of absorption we must generalize the mis-
match function to take into account the imaginary
parts of the wave vectors. The general comjlex ntes-

match fgncti ore p must satisfy
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rf —rfs ——»'N. (5.27)

We shall assume that the surface normal N is a matching
direction, and also that rf t is in the direction N.

The relation (5.27) is shown geometrically in Fig. 8.
As in Fig. 2 we have taken the s direction to be along
N, the optic axis in the x» plane, and the y directional
normal to the plane of the 6gure. The tangent plane to
the index surface at q~ is shown, and the normal to
this plane makes the angle p with N. The mismatch q'
according to (5.27) is the distance from rf to the index
surface measured parallel to N. This may be written
as an expansion in powers of the components of (rf —rf t)
as follows

where p'") is linear and p'&') is quadratic, etc. In I'ig. 8
q'") is shown as the distance from q to the tangent
plane.

The equation in g space for the tangent plane is

rf,—e+&7, tanp= 0.
It follows that p'(') is given by

(5.29)

5.3 Expansion of the Mismatch Function

Before (5.25) can be applied it is necessary to express
the mismatch function p' of (5.24) and (5.11) in. terms
of the components of K. It is convenient to define the
vectors

rf= (c/ o)&K=e' o, rft ——(c/a&)2kt, rfs mls(s)s. (5.26)

The vector g2 is constrained to lie on the index surface
for the second harmonic shown in Fig. 2; the vector g~
lies on this index surface in the matching direction; the
vector p is arbitrary, and we are required to 6nd &' as
a function of &f. The mismatch equation (5.11) becomes
in the notation, of (5.26)

FK'. 8. Geometrical representation of the mismatch relation
(5.27). The surface normal is in the s-direction, and the index
surface, tangent plane, and p line are the same as in Fig. 2.

to the second order in the components of K—2ki. We
have set tanp= p since p((i.

(r) =exp( ntN r)—@&re'*'dK (5.34)

over the three components of K. We have written the
effect of absorption as a separate factor rather than
include it in 'gx. It follows that

S.4 Representation of the Polarization

The polarization 8(r) produced in the crystal by
the laser beam will not be an unbounded plane wave
of the form assumed on the right side of (5.5), although
for some purposes this may be an adequate approxima-
tion. The beam will in general be finite in aperture, and
therefore requires many Fourier components to repre-
sent it. We shall represent the polarization beam by the
Fourier integral

p' "&= rf, rs+rf, tanp, — (5.30) axe' 'dK=Q(r)~g (5.35)

p' &'& = (&f,'+ &7„')/2&s. (5.32}

It now follows from (5.24) that 2lt &r can be written

2$&r= (E, 2kt+pE:,)»—
+i »+L(Z'.'+Z„')/4kt)» (5.33)

where I is the (matched) refractive index. To the
second order in (rf —rf t), q'&'& is the distance in rf space
from the tangent plane to the index surface measured
on a line through rf parallel to N. For a uniaxial crystal
the index surface is an ellipsoid of revolution; corre-
sponding to a negative uniaxial crystal like ADP we
shall put the semimajor axis equal to e2' and the semi-
minor axis equal to e2'. It is somewhat tedious but
elementary to show that

p'"&=-'e$(r&r&, /ceo&ra~)'+ (r& /Ns~)'j (5.31)

Since p'('& is a small correction to p'('), and the crystal
will usually be nearly isotropic, it is proper to replace
(5.31) by the simpler relation

represents the polarization with No absorptt'ol of the
laser beam. The inversion of (5.35) is

@&r
——(2x)—' Q (r)a ge '"'dr— (5.36)

The integral is to be taken over all space where @(r)~~
is diferent from zero. Ke let s=0 be the incident sur-
face and s=E the exit surface of the crystal; we then
have

@(r)»r~——0»(0, »)E. (5.37)

The convergence of (5.36) as 8 —+ oo is assured by the
fact that (r)»r~ must fall off as» ' at distances large
compared to the beam aperture.

We shall assume that the Fourier components @Jr
are very small except in a small neighborhood of K
space containing 2ki. Here ki is the nominal wave
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restrict s to the region s&S. Thus, if s is restricted to
the slab, the values of Q(g, y,s) outside the slab are
immaterial.

According to (5.50) the Geld at the exit surface of the
crystal can be written (dropping the unimportant
factor e"~&~)

E&(g,y,4) =e l '( dse 'y g(g pl+—ps, y), (5.51)

where now s is a dummy variable of integration
s= (1—p)S replacing p in (5.50). This result is identical
with (3.11) of the heuristic treatment. A detailed dis-
cussion of doi/hie refr(/c/ioN based on this equation has
been given in Sec. 3 for the case in which the laser beam
is in the fundamental mode. The experimental confirma-
tion of the results derived from (5.51) has been pre-
sented in Sec. 4. The derivation given in this paragraph
confirms the validity of the heuristic method for the
near field. From our heuristic discussion we know that
the variable s in (5.51) can be interpreted in accordance
with our usual notation as the distance from the in-
cident surface. The integral can be interpreted as a
summation over the contributions of the dipoles in the
slab to the field at the exit surface.

Qx= (2n-)
—' dgdy (g y)(l K* i —zy—

&( (2~)—1 (f~P (s)(,i(2k&—xz) z (5 52)

If the laser beam is in the fundamental mode (2.1),
@(g,y) is of the form

y (g y)
—

gpss
—p(zp+pp) /wpp (5.53)

As discussed above it is permissible to omit B(s) pro-
viding we consider points s not outside the slab. The
evaluation of (5.52) then gives

Qx=Qp(mp'/8)r)|)(2ki —E,)e "z'(x '+ p" /'. (5.54)

Inserting (5.54) into (5.38) and retaining only the
linear terms of (5.33) gives

Ep(g y s) sy. Qp() alzg2i/z&z—

1

dp~yaz/, p(y +(z izpz) ) /wo (5 55)— —

which also agrees with (5.50) and (3.16). Although it is
unnecessary in practice to evaluate Qz. , since the

5.6.Z Fourie~ Method

We have obtained our result (5.50) without ex-
plicitly considering the Fourier components gz. The
same result can be obtained in any specific case by the
Fourier method. From (5.36) and (5.45)

with the second term in the exponent coming from
(5.33). Since p(1 the condition for the dropping of
this term is

s/4k i«wp'/8, (5.57)

which is identical with the near-field criterion (5.47).
This confirms the validity of the linear approximation
for )Prr for parallel beams.

Here we have applied the formal theory to the case
of SHG in the near field where the polarization beam
may be considered parallel. The method based upon
(5.38) is quite general, however, and will be applied
in a subsequent paper to the far field where diffraction
eGects play a dominant role.

6. SUMMARY

YVe have presented a discussion of the effects of
double refraction and absorption on the second-har-
monic generation of light under index-matching condi-
tions, treating the negative uniaxial crystal in detail. In
Sec. 2 we have described experiments in which the
second-harmonic intensity distribution was measured

by means of a detector equipped with a traveling slit.
The second-harmonic beam was generated in long
crystals of ADP by an essentially parallel beam from a
gas laser in single-mode operation. It was found, as
described in Sec. 2, that the peak of the second-harmonic
beam is displaced a few millimeters from the center of
the laser beam. This is the first reported observation of
this eGect, which had previously been predicted and
called the aperture effect, since its observation depends
upon the displacement being larger than the beam
aperture. A characteristic Iength, the aperturelength,
has been defined which measures the crystal length
at which the aperture effect begins to limit the sec-
ond-harmonic power.

In order to discuss the experiments in the simplest
possible way we have given a heuristic theory in Sec. 3
which makes use of several ad hoc but plausible assump-
tions. This theory starts with the familiar theory of
SHG by unbounded plane waves. The finite intensity
distribution of the fundamental (laser) beam and the
correct direction of energy propagation of the second
harmonic are then inserted into an integral expression
for the second-harmonic field. Results are obtained for
the intensity distribution of the second harmonic,

Fourier method must always agree with the general
result (5.50) in the case of a parallel beam, the Fourier
method is of practical importance when diffraction
effects are to be taken into account.

The validity of neglecting the quadratic terms of
(5.33) is a, consequence of the small magnitude of these
terms compared with the quadratic terms in the ex-
ponent of (5.54). If we retain the quadratic terms,
(5.38) contains the factor

exp( —(E P+ J(., P) [()wpP+i(Ps/4k&) j}, (5.56)
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It is found that an effect occurs in SHG that is
closely related to the familiar phenomenon of double
refraction. In double refraction parallel light from a
slit entering the crystal will split into two beams and

emerge from the crystal as two separate parallel beams.
In SHG double refraction causes the second-harmonic
intensity to spread uniformly over the region that lies
between the two beams of ordinary double refraction.
This uniform spreading of intensity only applies to the
case of no absorption. In the presence of absorption
the second-harmonic intensity peaks somewhere be-
tween the double-refraction beams depending on the
relative absorptions of the laser and second harmonic.
This is the aperture e6'ect.

In Sec. 4 the experimental data is compared quanti-
tatively with the theory in regard to the position of the
peak, the shape of the intensity distribution, and the
dependence of peak intensity and total power on spot
size of the laser beam. The theory was found to be in
satisfactory agreement with experiment.

In Sec. 5 a forrnal treatment is given based upon a
I'ourier representation of the polarization beam. It is
shown that this treatment properly includes all mixing
effects. Double refraction is obtained from the formal
theory by considering an idealized parallel beam. Such
a, beam is a reasonable approximation for the laser
beam in the near Geld. The formal treatment gives in
this case the same result as the heuristic treatment; this
con6rms the validity of the latter for parallel beams.

The investigations reported here, experimental and
theoretical, have filled in several gaps that previously
existed in the literature of nonlinear optics. Specifically,
we have: (a) experimentally studied SHG in very
long crystals ( 10 cm) with essentially parallel gas
laser beams in order to determine the limits over which
coherence can be maintained; (b) experimentally ob-
served and measured the aperture eRect (double
refraction); (c) given a simple heuristic theory for the
beam shape in double refraction; (d) shown that the
theory and experiment are in good quantitative agree-
ment; (e) presented a rigorous theory for SHG under
matching conditions which does not require the ad hoc

assumptions of the heuristic theory; (f) verified. the
correctness of the heuristic theory for parallel beams.
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S= (c/8rr)E x He

for a plane wave of the form (5.6)

E (r) —QU&i (n/c) ns r

(A.1)

(A.2)

is in the direction of the normal to the index surface
at s as shown in Fig. 2. A detailed formal treatment of
this problem has been given by Kogelnik and Motz, "
but we shall use a simpler method similar to that of
Born and Wolf."Born and Wolf do not consider the
index surface, which is the reason we include this
Appendix.

The equation satisfied by the unit vector U according
to (5.8) and (5.9) may be written

e U=ri riU —rt(ri U),

where g is the refractive index vector

(A.3)

(A.4)

first used in (5.26). The tangent plane to the index sur-
face may be defined as the locus of all vectors 6g for
arbitrary (small) variations l)s. Thus any vector which
satisfies

S~ S=o (A.5)

for all 5g must be normal to the index surface; this is
the key point in the proof. Now take the variation of
(A.3); by multiplying on the left by U and invoking
the symmetry of the e tensor

U e=eU
one obtains

S~ L~ —(~ U)Uj=o.

The magnetic field H(r) is given by

H(r) = —(ic/(o)v x E(r)
ties x U&i((fn/c) ns r

(A.6)

(A.7)

(A.8)

It follows that the Poynting vector S can be written

S= —(sic/8rr) iEi'jU(s U) —sg, (A.9)

and it further follows from (A.7) that S satisfies (A.5).
This completes the proof

"M. Born and E. Wolf, Principles of Optics (perganmn press,
Jng. , London, 1959), Sec. 14.2.3.

AI IEmrz
We shall now show formally that the Poynting vector

(averaged over time)


