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The augmented-plane-wave method for calculating the band structure of a solid has been extended to in-
clude the relativistic terms of the two-component Hamiltonian which is obtained by two successive applica-
tions of the Foldy-Wouthuysen transformation to the Dirac Hamiltonian. Basis functions for the secular
equation which are basis partners for the irreducible representations of the double group are constructed
from the eigenfunctions of the nonrelativistic Hamiltonian. Expressions for the relativisitic matrix elements
between these basis functions are found and numerically evaluated, and the resulting Hamiltonian matrix
is diagonalized to give the energy levels for PbTe. The calculated bands, with only slight modification, ap-
pear to be consistent with available experimental information.

INTRODUCTION

HE large amount of experimental investigation of
PbTe which has been done in the past few years—*
has brought to light many interesting properties of the
material but has not led to a well-defined band structure
which explains all the measured properties. For this
reason, it was felt that a band-structure calculation
done from first principles would be of value in under-
standing PbTe. Despite the lack of self-consistency, the
resulting band structure should provide a basis for in-
terpretation of the experimental data. The experimental
data can then be used to suggest modifications of the
calculated energies, to give a better picture of the actual
band structure of the material. This approach has been
used to obtain the band structure for PbTe which is
reported here.

The calculation is based on the one-electron approxi-
mation for a solid and is done by means of the aug-
mented-plane-wave (APW) method of Slater and his
associates.”® Because of the importance of relativistic
corrections to the energies of PbTe and other heavy
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materials,10-1! the Hamiltonian used for this calculation
is not the nonrelativistic Hamiltonian which has been
previously used for band calculations. It is rather the
two-component relativistic Hamiltonian,2-14

P fi
H=—FV+ o-[(VI)Xp]
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hz 2) 4 (1)
] V21— ,
K 8m2c? 8'm362p

which is obtained from the Dirac Hamiltonian by two
successive applications of the Foldy-Wouthuysen trans-
formation. The third term of this Hamiltonian is the
familiar spin-orbit term, which may split degenerate
levels and cause mixing of levels, thus altering the band
picture. The fourth and fifth terms (the Darwin and
mass-velocity corrections, respectively) are invariant
under the operations of the single group and therefore
do not split levels. However, these terms may mix levels
of the same single-group symmetry, and they may shift
levels appreciably. Because the effects of all three of the
relativistic terms are strongly dependent on the angular-
momentum character of the wave functions, which
varies from band to band and, for each band, from point
to point in k space, these terms affect both the relative
spacing of the bands and their shape.

In order toinclude the relativistic terms in the energy-
band calculation for PbTe, it is necessary to extend the
formalism of the APW method to include the spin de-
pendence of the wave functions, and to calculate the
matrix elements of the relativistic terms between the
spinor wave functions. Because the nonrelativistic
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terms make the largest contribution to the energy, the
following procedure is used: First, the eigenfunctions
®.27(k;r) and the eigenvalues E,°(k) of the nonrela-
tivistic Hamiltonian

5= (p*/2m)+V @

are found by the APW method described in the refer-
ences.>® Spinor basis partners for the irreducible
“double-valued” representations of the double group of
the k vector are formed by taking appropriate linear
combinations of the products ®,**a and ®,%"8, « and 8
being the pure spin functions. The matrix elements of
the relativistic Hamiltonian [Eq. (1)] between these
spinor functions are determined, and the resulting
Hamiltonian matrix is diagonalized to give the rela-
tivistic energies and eigenfunctions.!®

The calculated band structure is compared with ex-
perimental data about the PbTe band structure and re-
vised slightly to improve its agreement with several
experimentally determined features. The resulting band
structure is examined with reference to other experi-
mental information about PbTe.

EXTENSION OF THE APW METHOD
Nonrelativistic APW Functions

In the present APW method for solving the Schrod-
inger equation for a crystalline solid, the potential of an
electron in the crystal is approximated in the following
way: Within a spherical shell (the “APW sphere”)
about each nucleus, the potential is approximated by
its spherical average (as in an atomic calculation),
giving the Hamiltonian spherical symmetry within each
of these APW spheres. Outside the spheres, the poten-
tial is approximated by a constant value, taken for this
calculation to be the average of the crystal potential
over the region outside the spheres. For this calculation,
the radii of the Pb and Te spheres are determined by the
requirement that the lead spheres touch the tellurium
spheres without overlapping and that the spherically
averaged potential within the Pb sphere, evaluated at
the surface of the Pb sphere, equal the spherically
averaged potential within the Te sphere, evaluated at
the surface of the Te sphere. (The latter condition is
only approximately fulfilled because of small modifica-
tions to the potential, made after the work began,
which did not warrant modification of the sphere radii.)
The potential used for this calculation is listed in com-
pressed form in Table I, and other constants entering
the calculation are given in Table II.

15 Tt would, of course, be possible to include the relativistic
terms directly in the original secular equation, rather than solving
two secular equations (one for the eigenfunctions of 3Co, and then
one for the eigenfunctions of 3C) as we have done. Programming
considerations made the approach which was followed somewhat
more appealing. However, it is perhaps slightly less accurate be-
cause the set of basis functions for the second secular equation is
necessarily limited.
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TasLE I. The spherically symmetric approxlmate PbTe crystal
potential in rydbergs, multxphed by the radius in atomic units,
is listed for a radial mesh twice as large as that used in the cal’
culation. The values listed for radii greater than the appropriate
sphere radii (see Table II) are used in the determination of the
constant value of the approximate potential in the region outside
the spheres (discussed in “Calculated Energies”). This value is
given in Table II.

7 —rVer(#) —rVre(r) v —rVer(r) —rVre(r)
0.0012 162.40 103.14 0.4104 38.415 30.268
0.0024 161.26 102.56 0.4488 35.062 28.038
0.0036 160.11 101.97 0.4872 32.150 26.064
0.0048 158.98 101.38 0.5256 29.601 24.310
0.0060 157.85 100.79 0.5640 27.352 22.736
0.0072 156.74 100.21 0.6024 25.359 21.304
0.0084  155.64 99.625 0.6408 23.141 19.989
0.0096 154.56 99.048 0.6792 21.696 18.775
0.0108 153.49 98.475 0.7176 20.312 17.657
0.0120 152.44 97.908 0.7560 19.062 16.389
0.0144 150.38 96.791 0.8328 16.881 14.576
0.0168  148.39 95.699 0.9096 15.036 13.049
0.0192 146.44 94.630 0.9864 13.459 11.749
0.0216 144.22 93.586 1.0632 12.106 10.637
0.0240 142.36 92.211 1.1400 10.942 9.6796
0.0264 140.60 91.317 1.2168 9.9387 8.8530
0.0288 138.89 90.349 1.2936 8.8149 8.1376
0.0312 137.22 89.398 1.3704 8.1678 7.5180
0.0336  135.60 88.469 1.4472 7.5281 6.9783
0.0360 134.02 87.560 1.5240 6.9682 6.3928
0.0408 130.95 85.805 1.6008 6.4768 6.0168
0.0456 128.01 84.127 1.6776 6.0450 5.6718
0.0504 125.19 82.518 1.7544 5.6647 5.3664
0.0552 122.47 80.972 1.8312 5.3294 5.0940
0.0600 119.88 79.482 1.9080 5.0333 4.8494
0.0648 116.82 78.041 1.9848 4.7713 4.6285
0.0696 114.40 76.675 2.0616 4.5391 4.4282
0.0744 112.07 75.027 2.1384 4.3329 4.2462
0.0792 109.82 73.666 2.2152 4.1494 4.0806
0.0840 107.65 72.403 2.2920 3.9861 3.9300
0.0936 103.53 69.982 2.3688 3.8406 3.7934
0.1032 99.681 67.694 2.4456 3.7112 3.6700
0.1128 96.070 65.526 2.5224 3.5966 3.5592
0.1224 92.670 63.471 2.5992 3.4438 3.4607
0.1320 89.458 61.521 2.6760 3.3817 3.3743
0.1416 86.193 59.671 2.7528 3.3047 3.2997
0.1512 82.933 57.916 2.8296 3.2471 3.2373
0.1608 80.222 56.245 2.9064 3.2019 3.1869
0.1704 77.636 54.270 2.9832 3.1692 3.1478
0.1800 75.168 52.806 3.0600 3.1495 3.1133
0.1992 70.557 50.040 3.1368 3.1429 3.1120
0.2184 66.337 47.512 3.2136 3.1499 3.1203
0.2376 62.474 45.192 3.2904 3.1711 3.1433
0.2568 58.937 43.056 3.3672 3.2066 3.1810
0.2760 55.688 41.085 3.4440 3.2572 3.2336
0.2952 52.689 39.260 3.5208 3.3227 3.3017
0.3144 49,384 37.564 3.5976 3.4038 3.3855
0.3336 46.828 35.983 3.6744 3.5004 3.4856
0.3528 44.481 34.415 3.7512 3.6129 3.6022
0.3720 42.305 32.786 3.8280 3.7414 3.7362

Because of this choice of approximate potential, it is
convenient to expand the eigenfunction with energy E
in a linear combination of “raw APW functions,”
®(k; r), having the following properties: Outside the
spheres, ®(k; r) is a plane wave, er, Within the
spheres ®(k; r) is a linear combination of eigenfunctions
with energy E of the spherically symmetric Hamil-
tonian, so chosen that ®(k;r) is continuous across the
APW spheres. These conditions require that the raw

TastLe II. Various constants used in the APW calculation for
PbTe. All quantities are given in atomic units.

Lattice parameter a = 12.1926
Pb sphere radius = 3.1005
Te sphere radius = 29958

Potential outside spheres=— 0.80138
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APW functions have the form

0 l
®(k; r)=de’r+pere 37 37 4mwilfi(|k|R,)

=0 m=—1

5 i) Y@ ), O
uplE(Rp) l kyPk l ) ) .

where 6=1 outside the spheres and zero within the
spheres, and p=1 within the spheres and zero outside
them. The vector r, is the vector from the origin of co-
ordinates to the nucleus at the center of the APW sphere
within which r terminates (the pth sphere). (Note that
p and r, depend on r.) The vector from this nucleus to
the point r is r/, and it has length #” and angular co-
ordinates 6’ and ¢’. R, is the radius of the pth sphere,
and j; is the spherical Bessel function,

Ji)= (7w /29) 2T 11 12(y) - 4)

The Y;™ are the spherical harmonics,'® with the phase
conventions of Condon and Shortley,'%17 so that they
are properly related by the stepup and stepdown angu-
lar momentum operators. (The spherical harmonics are
used for the sake of convenience in evaluating the spin-
orbit matrix elements, but the raw APW function de-
fined here is the same as that of Slater® and Wood.®7)
The radial functions #,;5 are defined by the equation
(in atomic units—see the discussion of the matrix ele-
ments of the relativistic terms)

a2 ' ) il(l-l—l)
I:—dr’zTVp(r) ' 72

:Ir’u,,m(r') =E7,uplE(r,) ) (5)

where V, is the approximate potential appropriate to
the pth sphere. The angles 6k and ¢x are the angular
coordinates of the vector k.

JOHNSON, AND PRATT

In order to take advantage of the rotational symmetry
of the lattice, symmetrized APW functions, &;,;,?, are
constructed from the raw APW functions, according to
the formula!®

@i, (k1) =2 r To(R):, *[RE](k;1),  (6)

where T'4(R);;* is the complex conjugate of the i,j
matrix element of irreducible representation ¢ of the
(single) group of the (reduced) k vector. R is one of the
unitary operations of the group of the k vector, and the
summation includes all such operations. The effect of
R on a function is as defined by Wigner!® and may be
written symbolically

[RAJ®)=f(R7r), or [RfIRe)=f(r). (1)

Wood” has shown that the function ®;,(;,* transforms as
the ith basis partner of the representation @, so that
standard group theoretical techniques may be used to
reduce the nonrelativistic secular equation between
these functions.” The raw APW functions and the sym-
metrized APW functions satisfy the Bloch condition,

®;, )2 (k; 1+ T) = e Td, o(k; 1) ®)

where ko is the reduced wave vector corresponding to
k, and T is a lattice translation vector. Thus, only APW
functions corresponding to k=k,+K, where K is a
translation vector of the reciprocal lattice, appear in
the expansion for eigenfunctions with reduced wave
vector ko.

It can be shown that, if R is any operation of the
crystal point group,

[R®](k; )=3(k; R-r)=®(Rk; ). O]

The symmetrized APW function may thus be written
[with the use of Eq. (3)]

0 l
®;, )¢ (k; 1) =8 2 g Ta(R); 46! RR) 7 4-p IZ 2 4mitji(|k|R,)

=0 m=—1

X (upin(r)/1p1e(Rp) Vim0, R €0 1T (R)i, LV ™ (Ori,brse) T*

The techniques for solving the nonrelativistic Schréd-
inger equation by means of a secular equation in these
symmetrized APW functions have been discussed in the
references®® and are not repeated here. The results of
such a calculation are the energies, E,%(k), for the vari-
ous bands, and the eigenfunctions of the nonrelativistic
Hamiltonian, expressed as a linear combination of
symmetrized APW functions,

@4 (ko; 1) =2k j C,i(n) B,y (k5 1) (11)

16 See Ref. 12, Vol. 1, Appendix B, Sec. 10.

17 E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1951), Chap.
I1I, Sec. 4.

(10)

where the summation includes only k which differ from
ko by reciprocal lattice translation vectors, K. It can
also be shown that the set of symmetrized APW func-
tions corresponding to Rk, where R is an operation of
the group of the (reduced) k vector, is linearly related
to the set corresponding to k; hence, the summation
also need include only one vector k from each set of
vectors related by the operations of the group of the k
vector.

'8 Note that both the raw APW functions and the symmetrized
APW functions should carry an energy index. This is omitted only
to ease notational difficulties.

1 E. P. Wigner, Group Theory and Its A pplication to the Quan-
lum Mechanics of Atomic Spectra, translated from the German
by J. J. Griffin (Academic Press Inc., New York, 1959), Chap. 11.
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Spin-Dependent Basis Functions for the
Relativistic Problem

The eigenfunctions ®;°*(ky;r) of the nonrelativistic
Hamiltonian are basis partners for the irreducible rep-
resentation ¢ of the single group of the k vector. There-
iore the set of functions ®;*"(ko; r)a and ®;2*(ko; r)g,
fncluding all basis partners of representation e, is a
basis set for that representation of the double group of
the k vector which is the direct product of the repre-
sentation ¢ with the representation Dy, (for which the
pure spin functions a and 8 form a basis set). If this
product representation is not irreducible, it may be re-
duced to a direct sum of irreducible representations by
a suitable unitary transformation.20:2! The basis partners
for these irreducible representations are the spinor basis
functions for the relativistic problem. They are linear
combinations of the functions ®;%"a and ®,°"8, the
coefficients being the matrix elements of the unitary
transformation matrix which reduces the product
representation.?!

In order to more conveniently use the spinor basis
functions, it is helpful to express them in terms of nor-
malized eigenfunctions, (Na.)"'®2%, of the nonrela-
tivistic Hamiltonian, where

1/2
R —

(The integral is independent of the partner index.2?)
The basis partners for the irreducible representations
(the spinor basis functions for the relativistic problem),
are then (with s as the partner index)

(12)

lbsd; an(kﬂ; l’)
=3 Us®[(Nan) @27 (ko; 1) ]
+Z‘L Dsida[(Nan)_lcbian(kO; r)ﬁ:l

za\bsd; un++B¢sd§ an— , (13)

where the summations include all basis partners of the
single-group representation ¢ from which the “double-
valued” representation d arises. (Note that there are no
summations over single-group representations or bands;
each spinor function, y¥,% °», contains eigenfunctions of
the nonrelativistic Hamiltonian corresponding to only
one single-group representation and only one nonrela-
tivistic energy level. The index » cannot be used to
label the energy levels of the relativistic problem,
however, because more than one ‘double-valued”
representation d may arise from a single, degenerate,
nonrelativistic band, and these will be split by the

2 See Ref. 19, Chap. 9.

2 G. F. Koster, J. 0. Dimmick, R. G. Wheeler, and H. Statz,
Properties of the Thirty-Two Point Groups (MIT Press, Cambridge,
Massachusetts, 1963).

2 See Ref. 19, Chap. 12.
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spin-orbit term.) The coefficients Ug;%® and D, % are
determined entirely by the group-theoretical relation-
ships between the ‘“double-valued” representation d
and the single-group representation a, and are thus
independent of the nonrelativistic band index, #. If the
spinor function ‘is normalized, the coefficients must
satisfy the relation

2 iLlUs ]+ | Dyste|2]=1

because of the orthogonality and normalization of the
functions involved.

Koster ef al.?! have calculated the matrix elements of
the unitary transformation matrices which reduce direct
products of the D, representation with the single-
group representations (or, equivalently, the ‘single-
valued” representations of the double group) to direct
sums of the irreducible representations of the double
group. By relating their “single-valued” representations
to those used in the nonrelativistic APW programs and
expressing their spin functions in terms of spin functions
quantized along the APW z axis, it is possible to use the
results of Koster e al. to determine the coefficients
U4 and D%,

(14)

Group Theoretical Relationships

The relativistic Hamiltonian may be written
(18)

where 3Co is the nonrelativistic Hamiltonian, 3Cg is the
spin-independent part (the mass-velocity and Darwin
terms) of the relativistic corrections, and 3Cs_o is the
spin-orbit term. Because the total Hamiltonian and
each of its parts are invariant under the operations of
the double group, the selection rule??

H=3Co+3Cr+Hs_0,

e @30 975 B0) = (s 4n |3 [ s V60,80 (16)

holds for 3¢’=3C, 3Co, 3Cr, or 3Cs_o. (The partner index
u may refer to any partner of the irreducible “double-
valued” representation d, the matrix element being in-
dependent of it.) The spin-independent parts of the
Hamiltonian are also invariant under the operations of
the single group, so the additional selection rule??

(@aon| 30| By )= (@03 | @27 Yourdy (17)

applies for 3¢"=3Cy or 3Cx. For 3¢"'=3C, this selection
rule may be replaced with the more restrictive one,

(@[ 3Co| B;*" )= (N an) En®8atdisbnn,  (18)
because the ®,%» have been chosen to be eigenfunctions
of ICo. )

The nonvanishing matrix elements of the spin-
independent terms of the Hamiltonian may thus be
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written

(\bud; anig_c”hpud; bn')
=/dvZij[Duida(j\,'an)ﬂq)ian]*:}cﬁ[Duidb(]\.*b",>—lq)jbn’]+/d.v Zv.'j[Uuida(¢\7un)_1@vian]*-’_‘c,/[qudb(-vbn')*l‘pjbn/]

= (NanNon) ™ 26 5{ (Dui?®)* D0+ (U i) * U 50} (a2 |50 | @,57)
= (NanVan)806 2l | Dui®® || Uni®e |2} (@10 [ 30" | D107)
= (Vanaw) K10 |50 | €22V}, (19)
[Use has been made of Egs. (13), (17), and (14).] If 3¢”"=3C,, the expression may be further reduced to
Wi o300 | Y% ¥y = B, 08018 nn - (20)
The matrix element of the relativistic Hamiltonian between two spinor basis functions is thus
W% @ | 30| @it 2 Y= 8478 t{ [ E 8+ (®197 |30k | 819" ) (N 4nV ar) " Past Wu® o7 |5Cs o ¥V}, (21)

The only part of the matrix element which need be directly calculated between the spinor functions is that arising
from the spin-orbit term. The parts arising from the spin-independent terms are completely determined by the
matrix elements of these terms between the eigenfunctions of the nonrelativistic Hamiltonian. The analytic ex-
pressions for the various matrix elements and the normalization are derived in the following section.

Matrix Elements of the Relativistic Terms
1. Matrix Elements“of JCr between the Eigenfunctions of 3Co

In order to simplify the calculation of the matrix elements of 3Cg, it is useful to re-express the form of the opera-
tors involved. The Hermitian character of the p* operator requires that??

@lan[ (8m362)~1 4 I @l“”’>E (8’”1362)71 ((plan)* op4(blan'dv
?
= (8%362)_1/ (popzq:.ian)* (P0p2<plan')d1.

= (2m62)‘1/ (EL0= V) (Ep*—TV) (@127 P dy. (22)

The Darwin term may also be re-expressed in a more convenient form by using the relations (where the integrals
are taken over the volume defined by the periodic boundary conditions),

[ v-[®* ¢ (VV) )do= [ (FVV)-do=0, (23)

V- [®* (VV)]=3*P' (V2V)+ (VV) - (V)P 4 (V) (VI')P*, (24)

Combining these equations leads to the result, with ®=&;%» and ®'=@;*"",
3 (@0 | 12 (8m2c?) L (V2V) | @2 )= — 12 (8m3c?) ! t/ (®Eem)*(VV)- (V@l“"')dv—{-/ (V@am)* (VV)®on'dvy . (25)

In calculating these matrix elements, it is convenient to make use of atomic units, in which the unit of energy is
the rydberg and that of length, the radius of the first Bohr orbit for hydrogen. The unit of mass is twice the elec-
tron mass, and the unit of angular momentum is %. The velocity of light has the value 2/&, where & is the fine-

% This may be proved through integration by parts over the volume defined by the periodic boundary conditions.
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structure constant, [137.03737]- In this system, the Hamiltonian operator is
3= —Vi+V— (Ga@)p*+ (&) (V*V)+ (Ga@)e-[(VV) Xp], (26)
Pop=—1V. (27)
The nonvanishing matrix elements of 3Cz between the eigenfunctions of the nonrelativistic Hamiltonian are

<q)lan I 3Cr I q)lan’>=_}&2<@lun| (—p4+%V2V) Iq)lan’>
=—ﬁﬂ/@f—mww—m@mwmwm
1
—{—5 /[(‘Pl“”)*(VV)- (V@27 )+ (Vem)y*- (VI)@e Jdvy . (28)

Because the approximate potential energy is constant in the region outside the APW spheres, the total contribu-
tion to the second integral comes from the region within the spheres. The contribution to the first integral from the
region outside the spheres is just

(Eno"'" V) (En'o"‘ V)Ial; nn’ (29)
where

Ial; nn' =/ (@l“")*él‘m'd'u , (30)

V is the (constant) value of the potential in the region outside the spheres, and v is that region. Although this con-
tribution is included in the present calculation, it should be so small as to be completely negligible. Since the rela-
tivistic terms have the translational symmetry of the crystal (and their matrices are thus diagonal in the reduced
wave vector, [ko), the.contributions to the matrix elements from each unit cell of the crystal must be equal. It is
therefore sufficient to perform all integrations indicated (including those for the normalization) over the unit cell
at the origin of coordinates, thus simplifying the calculation.

From Egs. (6) and (11), the eigenfunctions of 3Co have the form

(ko 1)=2 ks Cie,e() 2 r Ta(R)1, M RE"](k; 1), (31)
k=kot+K,

where the energy dependence of the raw APW functions has been indicated by the superscript #. The nonvanishing
matrix element of 3Cz between two such eigenfunctions is

(@127 3CR| P12 )= k.t 2wt Cr,e* () Cor v (W) 2R, &2 Fa(R)z,J‘a(R')z,y*/[RCP"]*(k; 1)3Ce[R®""|(k'; r)dv. (32)

The work of Wood®” shows that, because 3Cg is invariant under the operations of the (single) point group, this
may be reduced to the form

(@[ 5Cr | B )= (g/1a) Lt L v Cre,t* (W) Cier o (W) 2R Ta(R) o, / [ (k; 1) J*5Ce[ R ] (K'; )dv

= (g/na) 2Lkt L v Coe,t* (W) Cor () 0 Ta(R) 1,0 / [®"(k; 1) J*5Cz®™ (RK'; 1)dv,  (33)

where g is the order of the group of the k vector and #, the dimensionality of the representation a. [Use has been
made of Eq. (9).]
Within the pth sphere, the raw APW functions ®” have the form [Eq. (3)]

o (k; )= 1,m Aim(nK)1pn(r) V1" (6',9") (34)

where the subscript #, rather than E, has been used to indicate the energy dependence of the radial function
#p1a(r"). Because of the spherical symmetry of the approximate potential, the operator 3Cg involves only the radial
dependence of the wave functions. The integral within the sphere thus factors into the product of a radial integral
times an angular integral, and the latter reduces to 6;,:0m,mn because of the orthonormality of the spherical har-
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monics. The contribution from the pth sphere to the matrix element of 3Cg is then

— (g/1a)18® 2.t 2w, Cre,t* () Cor .o (W) R Ta(R) 1,0* 2o 1,m[ A4 zm(n,k)]*A im (' ,RK’)
REp d dV d
X[ {“pln(f)[EnO_ Vp][En’o p]”pln’ (")+2”pln (") “”pln’ (")+2”pln’ (")‘— —Upia(¥) t Y27 (35)
0 r dr dr dr

With the complete expressions for the 4;,’s, this becomes

—1&(g/1a)2 k.t 25t Cr,e* (1) Crr o ()R Ta(R) 4,0 Dtim e~ =B 10 (1677) iy (| k|Rp)jl(|k’ l Ry)

XY (0,0 LYV i Ori b r) T [2p1n(Rp)tpins (Rp) ™ / [umn(r)[E O~ Vol LEw®—V p Jupin (7)
» @ Vv, d

+2upln(7) '_uz)lﬂ ()43 2Uptn’ H(r)— '—upl"(r)] rdr=—&r(g/na)2 ke 2w ,v Cy,¢* (n)Ck',t’ (n)
r dr dr d

XZZ(21+1)jl(lkIRp)jl(lk,‘Rp)[”zzln(Rp)”pln’ (Rp)]—lf ’ {”plnEEno Vpl[Ew~— Vo uptn

iy v, d iy av,d }203 . P(k'ERk']
FUpin——— —Upin 3 Upin———Upin | r2dr a(R)y,pFe i RED 1p . (36
a4 e ’ |k||k’|) ©9

(The addition theorem for spherical harmonics has been used to eliminate the summation over .)
The contribution from the unit cell to the matrix element is the sum of the contributions from the Pb sphere and
the Te sphere, plus the small contribution to the mass-velocity matrix element from the region outside the spheres.

2. Normalization and Overlap of the Eigenfunctions of 3Co

A derivation completely analogous to that given for the matrix elements of 3Cz shows that the contribution from
the pth sphere to the overlap integral between two eigenfunctions of the nonrelativistic Hamiltonian is

Sp(al; nn')= [®:2n (ko; ¥) @2 (ko 1)do

pth sphere

=41r(g/na)2k,z Zk'.t’ Ck,t* (”)Ck’,t' (nl)Zl(zH‘l)jl( I kIRp)jl(lk,!Rp)[“pln(Rp)“Mn' (Rp)]—l
X f p“mn(r)um(r)rzdr 2 & Ta(R)e,p*e i 1Py (k-[RK']/ | k| |k'|). (37)

The integral over a unit cell of e=*'%¢®"x, if k and k' both correspond to the same reduced k vector, is Q8 -,
where Q is the volume of the unit cell. The integral over the volume enclosed by a sphere of radius R, of ¢~ rgik’
is

dre 08 R L k=K | F(|k—K|Ry), 59)
if the center of the sphere is at the point r, from the origin. Thus the contribution from the region outside the
spheres to the overlap integral (over_a unit cell) between two eigenfunctions of 3¢, which correspond to the same
reduced k vector is

al nn! = (g/na)Zk tZk’ & Ck t (n)ck’ t (ﬂ )
X2 & Ta(R) e, [k, i — Z dme—t &R R, 1 (|k— RK'| Ry)/ | k—RK'[ ], (39)

p=1
(The double summation over operations of the group has been reduced to a single sum by the technique used with

the matrix elements of 3Cg.)
The normalization factor V., is thus

an"{[z Sp(al ””):l‘l"lal anyf2. (40)

p=1
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3. Maitrix Elements of 3s_o between the Spinor Basis Functions

The spin-orbit term is not invariant under the operations of the single group, since they do not transform the
spin coordinates. Thus the double summation over operations of the single group, which appears in the expres-
sions for the matrix elements because of the symmetrization of the APW functions, cannot be reduced to a single
summation as in the case of the matrix elements of 3Cg. The fastest way to calculate the matrix elements of 3¢g_o
is therefore to generate each spinor function in the form

Ydior=qa ), upln(’l)zm Adsan(lm; P) Yz"‘(@’,(,‘b')-l-ﬂ Zl upln(r’>zm Bdsan(l’”; 17) Ylm(alyd’,) (41)

within each sphere, and store the coefficients 4 4s%*({m; p) and Bas®"(im; p) in the computer memory. The spinor
functions are then available as often as necessary for the calculation of the spin-orbit matrix elements, and little
additional calculation is necessary, so that the amount of computer time required for this part of the calculation is
appreciably reduced. Use of Egs. (10), (11), and (13) gives

a *"(Im; p)=4m (N an) i ttp1n(Rp) T ki Cuc,i (1) ji(| k| Rp) X 1 €7 F) 12[ ¥V ™ (O paypric) ¥ 203 Usi®Ta(R)s 5%, (42)

The expression for Ba,%"(lm; p) is obtained from Eq. (42) by substituting D,;% for U,;%. Because the approximate
potential is constant in the region outside the spheres, this region gives no contribution to the spin-orbit matrix
elements, and it is not necessary to generate the spinor wave functions for this region.

The spherical symmetry of the approximate potential within each sphere allows the spin-orbit operator to be
written in terms of the operator for angular momentum about the center of the sphere:

a? & 1dv & 1dv
Hs_o=—0[(VV)Xp|=———0-" L-——- — ——[‘0'+L_+%G_L++0'2Lz] , (43)
4 7 dr’ 47
in atomic units. The effect of the spin operators on the functions @ and g is the following:
oif=2a, o =0, of=—F; (44)
ga=0, o¢.a=28, ca=a
The effect of the angular momentum operators on the spherical harmonics is
LY ™0 ¢ )=mY (09",
(08" )=mY (6 ,9") (45)

L Y (0',9)=[1(1+1)—m(m==1) ]V (0" ¢') ;

they do not affect the radial part of the wave function. Thus the integral of Y3Cs_oy/ is factored into the product of
a radial and an angular integral, as was the case with the matrix elements of 3Cx. Use of the relations (44) and (45),
together with the orthogonality and normalization of the spin functions & and 8 and of the spherical harmonics,
allows the angular integration to be performed analytically to give

2 {Am{[ A (Im; p) T Aasb™ (Im; p)

4 p=11=0 m=—1

&2 Rp 1dV

Wi |35 o| s "">—~—Z ZU ’2d7"—_%pln(7’)“pln’(’)]
0 r dr

—[Baso(m; p)TBas®™ (m; p)}+[1G-1)— m(m-+ 1) T2 A gyn (b ;b)]*Bds'm’ (t, m+1; p)

+[ @+ 1) —m(m—1) [ Baso"(m; p) J*Aas™ (I, m—1; p)}.  (46)

Since the expression vanishes for /=0, the summation
may equally well start with /=1.

Because of the very strong dependence of the rela-
tivistic corrections on the angular-momentum char-
acter of the wave functions, which appears in the strong
dependence of the radial integrals on /, only the /=1
term of the above expression gives a significant con-
tribution to the matrix element. Thus it is adequate to
compute and store only the /=1 coefficients of the spinor
basis functions and to calculate only the /=1 term in
the above expression, which drastically reduces both
the computer time and the memory required for these
calculations. The error caused by this truncation appears

to be less than one percent in the spin-orbit matrix ele-
ments between most of the states. Only in the case of
states having no /=1 part about either atom is the per-
centage error in the matrix elements appreciable, and
the matrix elements for such states have negligibly small
effect on the band structure. For the same reason, it is
only necessary to include the /=0, 1, and 2 terms in the
expression for the matrix elements of 3Cg.

THE BAND STRUCTURE

Calculated Energies

The energy levels of PbTe have been calculated for
several points of the Brillouin zone by the technique
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Fic. 1. Calculated bands of PbTe in the (111), (010), and (110) directions of k space (top, center, and bottom, respectively) for the
nonrelativistic, spin-independent relativistic, and full relativistic Hamiltonians. The symmetries indicated are for rotations about the

Pb nuclei.

just outlined, which has been programmed for the IBM
709 computer. The calculated eigenvalues of the non-
relativistic Hamiltonian, of the relativistic Hamil-
tonian without the spin-orbit term, and of the full rela-
tivistic Hamiltonian are shown in Fig. 1 for several
points in the Brillouin zone. The calculated points have
been connected by solid lines to indicate the estimated
shape of the energy bands in the (111), (010), and {110)
directions of k space. The calculated energies are also
compared in Table ITI. Representative nonzero matrix
elements of the relativistic terms between the spinor
functions corresponding to the eigenstates of the non-
relativistic Hamiltonian are given in Table IV for the

points L and T. The distribution of charge for the vari-
ous nonrelativistic eigenstates is given in Table V; this
corresponds roughly to the distribution of charge in the
final, relativistic solutions and gives an indication of the
linear-combination-of-atomic-orbitals characteristics of
the various levels.

The potential used for the calculation, as mentioned
earlier, is constant outside the APW spheres and spheri-
cally symmetric within each sphere. The potential is
based on Slater’s simplification of the Hartree-Fock
scheme,?* in which the one-electron potential is taken

% J. C. Slater, Phys. Rev. 81, 385 (1951).
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TaBLE III. The calculated eigenvalues for the nonrelativistic Hamiltonian, the single-group relativistic Hamiltonian (no spin-orbit
term), and the full relativistic Hamiltonian. The coordinates of the wave vectors are in units of 7/a. The states at L and I' are numbered

for identification in Table IV.

Double-group Double-group Double-group
Single-group states states Single-group states states Single-group states states
Nonrel. Rel.  Full rel. Nonrel. Rel.  Full rel. Nonrel. Rel.  Full rel.
L(1,1,1) '(0,0,0) A(0,1,0)
1 Lz -0.149 +40.126 +40.132 L4, L5~ 10 T2 +0.068 +40.041 +40.041 I's* 21 +0.103 (not included)
1 +40.125 L¢~ 11 Iy +0.105 —0.039 —0.039 TI'e¢* Pt —0.101 —0.118 —0.118 =5
2 L» +0.151 +40.073 +0.072 L¢™ 12 T —0.086 —0.086 —0.086 I'z~ 23 —0.128 —0.188 —0.188 =;s
3 Ly +0.016 —0.029 —0.029 Le* 13 T —0.127 —0.144 —0.144 TI's* 23 —0.241 —0.309 —0.309 X5
4 Ly —0.394 —0.485 —0.451 L4, Ls™ 13 —0.144 T7* P —0.334 —0.431 —0.453 =
i —0.495 L~ 14 Iz —0.192 —0.305 —0.262 I's™ 2 ~0.313 —0.410 —0.387 =5
5 L —0.465 —0.553 —0.582 Lg¢™ i1 —0.390 TI'e~ 21 —0.499 —0.607 —0.599 Z;
6 L —0.406 —0.579 —0.573 L¢* 15 Tz —0.622 —0.684 —0.659 I's~ 24 —0.601 —0.661 —0.670 =5
7 Ls —0.604 —0.660 —0.640 La*, Ls* 15 —0.735 T~ 3 —0.663 —0.723 —0.723 Z;5
7 —0.686 " Lg* 16 I': —0.698 —1.001 —1.001 It 21 —0.829 —1.043 —1.043 =5
8 Li —0.995 —1.173 —1.173 Le¢* 17 In —1.339 —1.473 —1.473 T* 21 —1.315 —1.449 —1.449 35
9 L» —1.253 —1385 —1.385 L¢"
X(0,2,0) =(1,1,0)
AGLD Xy —0.041 —-0.136 —0.132 X 2 -+40.085 (not included)
A —0.012 (no convergence) As Xy —0.097 -0.215 —0.143 X;~ 22 —0.021 —0.034 —0.034 E‘s
As 40,110 +0.083 -4-0.005 As, As —0.283 X¢~ 23 —0.025 —0.107 —0.107 Zs
40.074 As X3 —0.345 —-0.359 -0.359 X:* 23 —0.211 —0.274 —0.274 Zs
As —0.388 —0.478 —0.423 As, As Xs  —0.725 —0.780 —0.747 X:i~ 21 —0.359 —0.461 —0.486 Zs
—0.478 As —0.816 X~ 24 —0.353 —0.452 -—0.426 Z;
A —0.467 —0.522 —0.559 As X1 —0.814 —1.074 —-1.074 Xe* Z1 —0.504 —0.631 —0.624 2=
A —0.400 —0.590 —0.600 As Xy —0.865 —0.910 —0.914 Xg~ 2y —0.616 —0.672 —0.680 Zs
As —0.605 —0.661 —0.651 As As X1 —1.223 —1.367 —1.367 Xe*t 23 —0.757 -—0.811 —0.811 25
—0.681 As 21 —0.934 —1.133 —1.133 Zs
Ar —0985 —1.171 —1.171 As A(0,1,0) i —1.259 —1.394 —1.394 Zs
Az +40.196 (not included)
Az = +0.115 (not included) K (3,3,0)
A(ED As  +0.087 +0.045 H40.066 Az Ks +0.115 +40.105 +0.105 Ks
As —0.040 —0.063 —0.060 A4, As -+0.030 As K; +0.124 40.040 -0.040 Ks
—0.064 As As —0.176 —0.274 —0.226 A7 K3 —0.109 —0.200 —0.200 Ks
A1 —0.140 —0.188 —0.187 As —0.311 As K1 —0.147 —0.220 —0.215 K;
Az —0.315 —0.406 —0.372 A4, As Az —0.286 —0.299 —0.299 A7 Ki¢ —0.218 —0.320 —0.299 K;
—0.478 As Ay —0.295 —0.401 —0.405 As K1 —0.269 —0.335 —0.361 K;
A1 —0.334 —0.436 —0.397 As A1 —0.578 —0.697 —0.700 As K —0.627 —0.730 —0.718 Ks
A1 —0.499 —0.631 —0.619 As As —0.681 —0.742 —0.706 A; Ky —0.695 —0.752 —0.775 Ks
As —0.615 —0.674 —0.651 A4, As —0.788 As K3 —0.767 —0.886 —0.886 K;
—0.709 As A1 —0.845 —1.048 —1.049 A K1 —0.914 —1.119 —-1.119 K;s
Ar —0.875 —1.083 —1.084 As At —1.292 —1.429 —1.429 As K1 —1.224 —1.365 —1.365 K;

to be the sum of a Coulomb potential and an ap-
proximate exchange potential. The Coulomb poten-
tial is that arising from the nuclei plus the charge
density of all the electrons; the exchange potential is
equal to —6[3p(r)/87]'/3, where p(r) is the charge
density from all the electrons, in units of the electronic
charge. In summing the contributions to the potential
from several atoms, these terms were calculated as
follows: The Coulomb potentials and the charge densi-
ties arising from all the atoms were separately summed,
the total Coulomb potential being set equal to the sum
of the atomic Coulomb potentials. The total exchange
potential was evaluated from the expression above, with
p set equal to the total charge density from all the
atoms. A similar procedure was followed in the averaging
required to obtain the approximate potential for the
calculation. The atomic charge densities and Coulomb
potentials were obtained from a Hartree-Fock-Slater
self-consistent calculation using the programs of Herman
and Skillman.?® To obtain the potential within the

% F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1963).

spheres, the contributions from a given atom, its near-
est unlike neighbors, and its nearest like neighbors were
included. To obtain the constant value of potential for
the region between the spheres, an integration was per-
formed which is equivalent to summing the contribu-
tions from all the atoms of the crystal and averaging
over the volume outside the spheres.?®

It must be noted that this calculation takes into
account only what might be termed the ‘“direct” rela-
tivistic effect, that is, the additional terms in the one-
electron Hamiltonian which arise from relativistic con-
siderations. However, there is also an ‘““indirect” effect
arising from the corrections to the wave functions of the
core electrons. Since the potential energy of the valence
electrons arises in part from the charge of the core elec-
trons, the changes in their charge distributions cause
corresponding modifications in the potential-energy
term appearing in the one-electron Hamiltonian. In a
nonself-consistent calculation such as that reported
here, the appropriate way to include the “indirect”
relativistic effect would be to use relativistically self-

26 This program was devised by L. Ferreira.
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TaBLE IV. Matrix elements at L and T for the mass-velocity
plus Darwin corrections, 3Cg, and for JCr+3Cs_o between the
normalized spinor functions corresponding to the eigenstates of the
nonrelativistic Hamiltonian. Matrix elements which are rigor-
ously zero or which were computed to be less than 10~ are not
listed. The key to the numbering of the nonrelativistic states is
given in Table ITI. (All the relativistic matrix elements are real
for the choice of basis functions used.)

4,7 (|Rrlj) ¢|HLr+ICs-ol) i, (i|3Cr|J) (i|3Cr+ICs-0|7)
1,1 +40.9238 40.9314 7,7  40.1414 +0.1612
1,4  —0.0412 —0.0254 7,7 40.1414 +0.1216
I,T 409238 +0.9162 7.8 —0.0138
1,2 —0.0204 8,8 —0.3420 —0.3420
1,4 —0.0412 —0.0571 9,9  —0.5807 —0.5807
15 +40.0163 10,10 4-0.8424 +40.8424
1,09 : —0.0051 11,11 40.7248 +0.7248
2,2 +0.8648 +0.8648 11,16 —0.1636 ~0.1636
2,41 —0.0425 11,17  —0.1159 —0.1159
2,5 40.0770 +0.0770 12,12 -40.7154 40.7154
3,3  +0.7716 +0.7716 13,13 40.6569 +0.6569
3,6 —0.0010 —0.0010 13,13  +0.6569 +0.6569
3,7 —0.0232 14,14 -40.4953 +0.5389
4,4  40.3183 +0.3512 14,15 +0.0175 +0.0114
4,4 40.3183 +0.2854 14,14  +0.4953 +0.4082
4,5 +40.0339 14,15 +0.0175 +0.0296
4,9 —0.0105 15,15  40.1175 4-0.1420
5,5  +40.2548 +0.2548 15,15  +0.1175 +0.0684
5,9  —0.0504 —0.0504 16,16 —0.1832 —0.1832
6,6  -40.1923 +0.1923 16,17 —0.0189 —0.0189
6,7 +0.0227 17,17  —0.6646 —0.6646
6,8  —0.1304 —0.1304

consistent atomic potentials and charge densities as the
basis for computing the crystalline one-electron poten-
tial. Because the programs of Herman and Skillman are
nonrelativistic, it was not possible to do this in the pres-
ent calculation. Future investigations, however, should
be able to use the results of programs by Waber and
Liberman,?” which do give relativistically self-consistent
results, as a starting point for relativistic band calcula-
tions. Neglect of the “indirect” effect in the present
work should result in a lowering of the calculated levels
from the energies which would have been obtained had
the “indirect” effect been included.

Since there is as yet no clear indication of the ionicity
of PbTe, the atomic potentials of neutral Pb and Te
were used to compute the approximate crystal potential
for this calculation. Consideration of the charge dis-
tributions of the states at L seems to indicate that the
effect of increased ionicity would be to move the (single-
group) L level (at —0.485 Ry) and the L; level (at
—0.660 Ry) together toward the gap. The L, level
(at —0.553 Ry) would be shifted slightly downward, and
the L, level (at —0.579 Ry) would remain almost at its
calculated level. The double-group levels would be
affected accordingly. The use of an approximate crystal
potential which is spherically symmetric within the
spheres and constant outside them has undoubtedly
also affected the calculated energies. This source of
error is currently being investigated.?® The indications

%7 See Ref. 25, Chap. 3, pp. 3-11 ff.
28 P. DeCicco et al., Solid State and Molecular Theory Group,
MIT (unpublished).
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are that, with careful choice of the value of the con-
stant potential outside the spheres, the effect of this
approximation is small, but the investigation is not yet
complete.

Inaccuracies in the eigenvalues and eigenfunctions of
the nonrelativistic Hamiltonian because of the numeri-
cal techniques used should be quite small. Summations
in [ have been carried to /=12, and summations in k
include all k for which | k| =< (80)!/2x/a; these limits have
been found to be adequate for convergence in nonrela-
tivistic calculations. A program limitation that the
number of distinct k in the summations for the rela-
tivistic matrix elements be less than or equal to ten,
however, has caused convergence errors in these matrix
elements which may be as large as 10 or 209, of their
value, for points of low symmetry. These errors have
been estimated, however, for all points of interest, and
they should cause no appreciable change in the band
structure, because the relativistic contributions to the
energies, though important, are only a small fraction of
the total energies.

-Comparison with Experiment

As was suggested in the Introduction, a calculated
energy-band structure such as this one can often be
modified in the light of experimental information to
obtain a more accurate description of the one-electron
energies of the material. In the case of PbTe, a definite
indication of the character of the bands is given by the
reported Pb Knight shift?® in p-type PbTe, which im-
plies that the valence band edge has s-like character
about the Pb nuclei. This, in turn, implies that the
closely spaced Lgt and Lg~ levels at about —0.58 Ry
should be interchanged. (The Lg+ functions arising from
the L, single-group state are s-like about the Pb; the
Lg¢~ functions arising from the Lo state, on the other
hand, are s-like about the Te and p-like about the Pb,
containing no s-like character about the Pb.) Investiga-

E,RYDBERGS E,eV
re-
-0.3+ A4,A5 T -4
4.5
-0.4-4+ Ire - A6
L4-,L5- T -6
A6 Le
-0.5+ 1
e L6~
FT L6+ +-8
-0.6-+ A6
re L4+,L5+
- +-9
A4,A5
~o7d L6+
re- A6 +-10

F16. 2. Revised energy bands in the (111)
direction near the forbidden gap.

% I. Weinberg and J. Callaway, Nuovo Cimento 24, 190 (1962).
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TaBLE V. Charge distributions for representative eigenstates of the nonrelativistic Hamiltonian. Although the relativistic corrections
mix these somewhat, their charge distributions correspond roughly to those of the relativistic eigenstates, especially to those of the
Hamiltonian without the spin-orbit term. The /' ®*®dv has been separated into its contribution from the region outside the spheres
(“plane wave”) and from within each sphere (“Pb” and ‘“Te”). The contributions from within each sphere have been further separated
by the quantum number for angular momentum about the center of the sphere, in order to indicate the atomic-like character of the eigen-
functions. (Note, however, that there is not a one-to-one correspondence between the figures given here and the makeup of eigenfunc-

tions in terms of the appropriate atomic functions of Pb and Te.)

1=0 =1 =2 1=3
Energy Plane wave Pb Te Pb Te Pb Te Pb Te Remainder

L({1,1,1)

Ly +0.149 0.452 0 0 0.090 0 0 0.341 0.110 0 0.007
Lo +0.151 0.452 0 0.039 0.327 0 0 0.106 0.063 0 0.013
Ly -+0.016 0.543 0.009 0 0 0.316 0.080 0 0 0.040 0.013
Ly —0.394 0.311 0 0 0.555 0 0 0.125 0.006 0 0.002
Ly —0.465 0.484 0 0.124 0.309 0 0 0.064 0.018 0 0.001
Ly —0.406 0.177 0.365 0 0 0.411 0.025 0 0 0.019 0.002
L3 —0.604 0.202 0 0 0 0.735 0.060 0 0 0.001 0.003
Ly —0.995 0.282 0.464 0 0 0.246 0.006 0 0 0.002 0.001
Ly —1.253 0.142 0 0.805 0.048 0 0 0.001 0.004 0 0.000
AGGHD ’

As —0.040 0.571 0 0 0.043 0.017 0.131 0.201 0.021 0.012 0.004
A —0.140 0.617 0.051 0.020 0.094 0.051 0.064 0.047 0.023 0.032 0.002
As —0.315 0.304 0 0 0.496 0.067 0.022 0.091 0.004 0.014 0.002
Ay —0.334 0.353 0.094 0.014 0.226 0.232 0.000 0.033 0.027 0.020 0.001
Ay —0.499 0.239 0.212 0.037 0.136 0.337 0.014 0.016 0.002 0.001 0.006
As —0.615 0.197 0 0 0.073 0.687 0.024 0.003 0.012 0.001 0.003
A —0.875 0.178 0.351 0.224 0.022 0.209 0.004 0.001 0.008 0.002 0.001
I (0,0,0)

T2 4-0.068 0.416 0 0 0 0 0.242 0.338 0 0 0.003
M +0.105 0.662 0.260 0.054 0 0 0.000 0.000 0 0 0.025
Ty —0.086 .0.834 0 0 0 0 0 0 0.092 0.075 0.000
T2’ —0.127 0.609 0 0 0 0 0.160 0.226 0 0 0.006
T'is —0.192 0.241 0 0 0.576 0.125 0 0 0.013 0.045 0.000
Tis —0.622 0.161 0 0 0.118 0.696 0 0 0.022 0.003 0.001
I —0.698 0.142 0.622 0.232 0 0 0.000 0.000 0 0 0.005
I —1.339 0.197 0.160 0.641 0 0 0.000 0.000 0 0 0.002
X(0,2,0)

X4 —0.041 0.231 0 0 0.216 0.516 0 0 0.032 0.003 0.003
Xy —0.097 0.178 0 0 0.462 0.307 0 0 0.020 0.031 0.002
X3 —0.345 0.722 0 0 0 0 0.124 0.153 1] 0 0.000
X —0.725 0.280 0 0 0.180 0.530 0 0 0.008 0.002 0.000
X —-0.814 0.161 0.731 0.054 0 0 0.002 0.050 0 0 0.001
X —0.865 0.395 0 0 0.202 0.402 0 0 0.000 0.000 0.000
X1 —1.223 0.113 0.036 0.821 0 0 0.028 0.001 0 0 0.001
K, +0.115 0.566 0 0 0 0 0.072 0.217 0.083 0.056 0.006
K3 +0.124 0.357 0 0 0.397 0.075 0.060 0.040 0.012 0.052 0.007
K; —0.109 0.272 0 0 0.112 0.530 0.004 0.042 0.033 0.001 0.005
K, —0.147 0.388 0.002 0.038 0.346 0.091 0.064 0.037 0.002 0.029 0.002
Ky —0.218 0.191 0 0 0.431 0.260 0.028 0.076 0.001 0.007 0.005
K —0.269 0.457 0.007 0.007 0.058 0.302 0.048 0.090 0.029 0.000 0.002
K1 —0.627 0.271 0.203 0.032 0.150 0.297 0.014 0.031 0.001 0.000 0.002
Ky —0.695 0.240 0 0 0.153 0.576 0.015 0.006 0.006 0.003 0.002
K3 —0.767 0.351 0 0 0.197 0.443 0.004 0.003 0.001 0.000 0.001
K —-0.914 0.241 0.532 0.003 0.017 0.188 0.003 0.012 0.002 0.002 0.001
K1 —1.224 0.107 0.005 0.854 0.017 0.000 0.012 0.001 0.002 0.000 0.002

tion of the effective masses by kep perturbation theory
also indicates that the Lg* state should be the top of
the valence band and the Lg state the bottom of the
conduction band. This ordering of the levels at L is also
required in order for the deformation potential calcu-
lated by Ferreira®® (see below) to agree with experi-
ment. There seems to be no experimental evidence that
the other levels at L or the levels calculated for the
other directions of k should be appreciably altered. Thus
it seems clear that the energy bands in the (111) direc-
tion near the forbidden gap should be those pictured in
Fig. 2 (rather than those of Fig. 1) and the other levels
those shown in Fig. 1.

The experimental data most easily compared with
this revised energy band structure are the optical data
for PbTe found by Cardona and Greenaway.*! For con-

#L. G. Ferreira, Ph.D. thesis,” Department of Electrical
Engineering, Massachusetts Institute of Technology, 1964 (to be
published).

(1;‘61&3' Cardona and D. L. Greenaway, Phys. Rev. 133, A1685

venient comparison with this data, the allowed transi-
tions between the energy levels at the points L, X, and
' are shown with their energies in Fig. 3. These are to
be compared with the energies of the maxima of eF?
(e2 is the imaginary part of the dielectric constant),
which should be roughly proportional to the joint
density of states for the transitions. These maxima, as
obtained by Cardona and Greenaway, are tentatively
identified in Fig. 3. The identifications give agreement
between the experimental and theoretical energies to
within 0.1 eV for all but the two largest energies, which
differ from the experimental values by about 0.3 eV.
The good agreement with experiment found in the levels
identified is an encouraging sign, but it cannot be taken
as conclusive. The number of possible transitions is
sufficiently large and covers a sufficient range of energies
that, for several of the experimentally observed transi-
tions, it would be possible to make more than one
identification without shifting the theoretical levels by
more than the expected error of the calculation. A con-
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Fic. 3. Allowed optical transitions between levels of the cal-
culated bands at L (revised), X, and I'. The experimental energies
of Cardona and Greenaway are tentatively identified.

clusive test would require calculation of the densities of
states and the matrix elements for the optical transi-
tions between the energy levels.

A further, and perhaps more conclusive, check on the
validity of the calculation comes from the use of the
calculated wave functions in perturbation calculations
for the various electronic properties of the material.
The correction which was made to the calculated levels
at L is not one which should cause large mixing of the
wave functions for the various levels. Therefore, the
calculated wave functions should be approximately
correct, and perturbation calculations using these wave
functions as an approximation to the correct wave func-
tions should give reasonable results. This procedure has
been used by Ferreira®® to calculate the properties of
strained PbTe, and his calculated deformation potential
agrees quite well with the experimental deformation
potential obtained from studies of PbTe under hydro-
static pressure. It has also been used by Pratt and
Ferreira®? in a k-p calculation for the effective masses
and g factors for PbTe. Their results are shown in Table
VI, together with the experimental effective masses for
PbTe, and the agreement is seen to be quite good. These
calculations would seem to indicate, at least for the
levels at L near the energy gap, that the calculated
wave functions are a good approximation to the actual
one-electron wave functions for PbTe, which, in turn,
points strongly toward the accuracy of the calculation
as a whole.33:34

2 G. W. Pratt, Jr., and L. G. Ferreira, Proceedings of the Inter-
national Conference on the Physics of Semiconductors (Dunod Cie,
Paris, 1964).

3 The calculation by Pratt and Ferreira has also led to the very
significant conclusion that the interaction between nearest bands
alone is not necessarily sufficient for a kep calculation. This is
especially true for PbTe, where this approximation gives very poor
results for the effective masses, but where inclusion of the next
nearest interacting band in the calculation gives quite good agree-

ment with experiment.
%1t has come to our attention since the completion of this

CONKLIN, JOHNSON, AND PRATT

TaBLE VI. Effective masses and g-factors obtained by Pratt

- and Ferreira using the calculated wave functions and the cal-

culated energies, shifted slightly to give the 0°K gap of 0.2 eV.
Experimentally determined low-temperature effective masses are
given for comparison.

(my/m) (m1/m) gn g1
Valence 0.034 0.426 31.4 2 " Calc.
0.0434+0.006 0.274 cee v Exp.2
Cond. 0.031 0.238 —29.2 2 Calc.
0.030-£0.005 0.165 cee Exp.b

a P, J. Stiles, E. Burstein, and D. N. Langenberg, J. Appl. Phys. Suppl.
32, 2174 (1961).

b K, F. Cuff, M. R. Ellett, and C. D. Kuglin, J. Appl. Phys. Suppl. 32,
2179 (1961).

It is of interest that the calculation shows no indica-
tion of the secondary valence band maximum at T'
which has been proposed to account for some of the
experimental measurements of PbTe. There is a
secondary maximum in the (110) direction of % space,
but it is unlikely that the constant energy surfaces of
such a maximum would have the desired spherical sym-
metry of a k=0 maximum. The large g factor calculated
by Pratt and Ferreira, however, is in agreement with
tentative explanations of anomalous oscillatory mag-
netic effects in PbTe.

CONCLUSIONS

It has been shown that the inclusion of the relativis-
tic terms in the Hamiltonian can be done in a straight-
forward manner in the context of the APW method.
When these terms are included in the calculation of the
energy bands and wave functions for PbTe, the re-
sulting band structure requires only slight modification
to bring it into agreement with the available experimen-
tal data. Furthermore, the wave functions obtained
from such a calculation are sufficiently accurate to be
used in perturbation calculations for electronic proper-
ties of the material which give good agreement with ex-
perimental measurements of these properties. This may
be ranked, not only as a success for the techniques em-
ployed, but for the energy band approximation itself.
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work that L. Kleinman and P. J. Lin have arrived at a band struc-
ture for PbTe which is very similar to that reported here, by use
of a pseudopotential calculation. Their work is reported in the
Proceedings of the International Conjference on the Physics of Semi-
conductors (Dunod Cie, Paris, 1964). K. F. Cuff, M. R. Ellett,
C.D. Kuglin, and L..R. Williams have also arrived at an ordering
of the energy levels at L, based on a ke p analysis of experimental
data, which agrees with that proposed in this paper. Their work is
reported in the proceedings of the same conference. Their value of
the effective g factor agrees to within a factor of 2 with that
obtained by Pratt and Ferreira (Ref. 32) using the results of this
calculation.



