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Frequency Dependence of the Two-Magnon Ferrimagnetic Resonance Linewidth
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The Sparks-Loudon-Kittel (SLK) two-magnon linewidth theory is modified in a way that takes into ac-
count a more reasonable model of the scattering center due to magnetic inhomogeneities. The inverse-
square frequency dependence of the linewidth at high frequencies given by SLK is eliminated, and a weak
frequency dependence similar, but not identical, to that found by the theories of Geschwind and Clogston
and of Schlomann is obtained. Experimental data ranging over a factor of about ten in applied Geld divided

by magnetization ( ~ frequency) gives excellent agreement with the modified SLK theory.

INTRODUCTION considering a more realistic model of the two-magnon
scattering process.

The SLK two-magnon linewidth theory' predicts
that DH co

' for spherical samples in the high-field
limit of la,rge applied fields with respect to 4~M. The
co ' frequency dependence is not expected for sa,mples
of geometries other than spherica, l. The mea. surements
we have made indicate tha. t the linewidth is very nearly
independent of frequency for this case of spherica, l

samples at high fields. In the low-field limit, where the
uniform precession comes near the top of the magnon
band, a strong frequency dependence has been ob-
served. ' These results are explained below, where we
see that the co ' frequency dependence arises from the
dipole angle factor 3 cos'of, —1 in the scattering Hamil-
tonian. This factor arises from the spherical symmetry
of the model used for the scattering center. When this
spherical symmetry is destroyed by any of several
possible means, the dipole factor must be replaced by
a more general factor. This results in a nearly frequency-
independent linewidth in the high-6eld limit.

I

'HERE exists a considerable body of work' on
the ferrimagnetic resonance linewidth due to

magnetic inhomogeneities (e.g. , porosity, variations of
density or magnetiza, tion, anisotropy in polycrystals)
in the sample under investiga, tion. The effects of these
inhomogeneities have been analyzed in deta, il' '7 and
the dependence of the linewidth on porosity and ani-

sotropy in the case of polycrystalline samples' ' and on
surface imperfections' in the case of single crystals has
been well documented. The frequency dependence for
low frequencies'" has also been investigated and is in
reasonable accord with experiment. The only serious
Qaw in the theory is the frequency dependence at high
frequencies. The weak frequency dependence found. by
the classical theories of Geschwind and Clogston' and
of Schlomann' (GC—S) is borne out experimentally.
However, the quantum-mechanical calculation of
Sparks, Loudon, and KitteP (SLK), which roughly
agrees with the classica, l calcula. tion for low frequencies
(strictly speaking for large ratios 4zr3f/H, where 4zr3f
is the saturation magnetization, and H is the applied
field), yields an inverse square frequency dependence
at large frequencies (small 4zrM/H) which is de'finitely

not observed. ' We have therefore undertaken the ex-
a,mination of this point and resolved the difhculty by

EXTENSION OF THE SPARKS-LOUDON-KITTEL
MODEL

First we shall review the SI K theory7 of linewidth
induced by surface roughness, voids between poly-
crystalline grains or nonmagnetic inclusions. The model
of a spherical cavity in an infinite medium is taken for
the scattering center. The standard transition proba-
bility result' is used for the probability per unit time TP
of a transition in which a uniform precession magnon
u is annihilated and a 0&0 magnon is created.
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where m; denotes the number of magnons in state i and
the sca.ttering Ha, miltonian is

1
fc= —— dl'H~ ' M,

2

696 ' L, I. Schiff, Qzfuntznn Mechgszzcs (McGraw-iHill Book Com-
pany, Inc. , New York, 1955).
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where HD is the demagnetizing field of the cavity. This where n is the total volume of all pits,
demagnetizing field is determined by

M;=ALII —(4n./3)M], co =yH

—Py= —4~%' MH(r —R). (3)

The solution is

r LM(r')8(r' —R)]
y(r) = — dr'

=ys(r)+0v(r),

(4)

where the surface, Ps(r), and volume, Pv(r), terms are

8(r' —R)M(r') r'
ys(r) = — dr

8(r' —R) V.M(r')
yv(r) = — dr' (Sb)

where the caret denotes a unit vector. In the volume
term the small cavity approximation is made, with
M(r)-exp(sk r),

V @=V [H.+4~MH(r —R)]=0; V&&H.=0,

where R is the radius of our model cavity and the unit
step function 8(x) =0 for g(0 and 1 for x)0. AVith

H& ———7'p, we ha, ve

(for spherical samples), 8 is the value of Hq when k =0,
and MI,

——M, and is obtained below from Eq. (10). The
correction factor M„/M;, which is important at low fre-
quencies, arises" from using the true dispersion relation,
Eq. (10), in the 5 function in Eq. (1) rather than the
approximate one previously used. ' It has been assumed
that the pits scatter independently; thus the total
linewidth is given by the number of pits times 1/yT„;&
for a single pit. The frequency dependence arises only
from the factor G. A graph of (3cos'„He—1)'/cosH„as a
function of cose„ is shown in Fig. 1. The zero of the
function at cos'0„=3 is at the value of coso„ for the
uniform precession for a spherical sample in the high-
field limit. Changes in the applied field give rise to
small changes in cose„, but the corresponding changes in

(3 cos'8„—1)' are large since we a,re near a zero of this
function. This is the reason for the strong' 'frequency
dependence. If there were no zero at cos'8 =3, the
linewidth would be very nearly independent of fre-
quency. The dispersion relation" is given by

hMI,
——L(Dk'+ AM-)(Dk'+AM /I'M~ sin'8$)]'" (10)

where co =ay&. Setting k=o and cuj, =co„=yH, we

easily find

ev(r) =—
V' M(r') V M(r')

dr' + dr', (6)
11 space & & cavity 1 —I'

cosO~ =
3 (3—n)

in which the integral over the cavity is neglected. The
surface and volume terms make equal contributions to
HD. The results are, r " expanding M in magnon
variables,

%=16m'R'(pM/V) P(3 cos'Hq —1)

GsLK=cx'/(3)'"=1/(3)'"LM /M ]' (12)

and gives rise to the inverse square frequency
dependence.

where oe=4rrM/II. For small a (high frequencies) the
factor G~LK then becomes

j&(kR)
a„tuI.+c.c., (7)

kR

where V is the sample volume, 2@=spectroscopic split-
ting factor times the Bohr magneton, M is the satura-
tion magnetization, OI,

——the angle between the applied
field and the wave vector k, jq(kR) is the first spherical
Bessel function, a~ and u are magnon creation and
annihilation operators and I denotes the uniform pre-
cession mode. From Eq. (1) it. is found'" that the
linewidth is

hII sLK ——2~'M (v/V)GsLK(cosH»M),

[s
[c'

.-::; NOT EXPERIMENTALLY .:;'' .:;-:-'.

'-.:ACCESSIBLE FOR
='='SPHERES

with

(3 cos'8 —1)' M

Gs LK (cosH~, M) =
cos~u

0 .2
cos 8„

.6 .8

FIG. 1. Plot of the angular factors for both the original
and modified SLK model.

!.0
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Book Company, Inc. , New York, 1964).
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Phys. Chem, Solids 1, 129 (1956).
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(3 cos'81,—1+c)'
(13)

c'+c+1

the integral in the denominator being a norma, lizing
factor which averages linearly over magnetic field.
Thus, Eq. (8) still gives the linewidth if we replace
GsLK by the modiGed function

ra„(3 cos'8 —1+c)'
Gss=-

(o; (c'+c+1) cosO
(14)

Notice that the factor cv /cosO&cv, coines from energy
conservation and not from the geometry of the model.
It is a density of degenerate states factor and is ex-
pected to remain for any model. A graph of

(3 cos'8„—1+c)'/(c'+c+1) cos8

is shown in Fig. 1." The zero at cos'8„=~ has dis-
appeared and consequently so has the inverse square
frequency dependence. This approximation cannot, of
course, be expected to give the exact dependence of

' The value c=2.44, the experimental value, is used.

Now the factor (3 cos'8 —1)' in Eq. (9) which gives
rise to the zero of GzLK at cos'8„=3 comes directly
from the (3 cos'8& —1) factor in the Hamiltonian Eq. (7)
and is very strongly model-dependent. It arises only
for a model with complete spherical symmetry. The
order of magnitude of the other factors in Eq. (7),
however, are expected to be less sensitive to the par-
ticular model used. This spherical symmetry of Eq. (7)
can be destroyed in any of several ways: (1) The actual
pits have quite irregular shapes, not spherical in general.
(2) For surface pits, the shape would be more closely
approximated by a hemisphere, rather than a sphere,
and they lie on a surface rather than in an infinite
medium. (3) When two or more pits appear close to-
gether the spherical symmetry is destroyed. (4) I i the
polycrystalline case, when a void lies near the surface
of the sample, the spherical symmetry is destroyed.
The arithmetic becomes quite complicated when any
nonspherical symmetry model of which we have thought
is introduced. However, some general considerations of
nonspherical models can be made.

We consider a simple model which gives the observed
weak frequency dependence. The model takes into ac-
count the fact that even for a nonspherical cavity the
dipole contribution to the demagnetization is expected
to be rather large. Therefore, we keep the dipole term
and replace all higher order multipoles by an average
value which we take to be constant (c). Specifically, in
the square of the Hamiltonian in Eq. (7) we replace

(3 cos'8~ —1+c)'
(3 cos'Oi, —1)'—&

d cos'Oi(3 cos'Oi —1+c]'

linewidth on cos'0, but the order of magnitude, the
absence of a zero at cos'8„=-', , and the general weak
frequency dependence for n(&1 are expected to be
correct.

The following consideration shows that this approxi-
mation is not unreasonable: Consider as a model for a
surface pit, or a cavity between polycrystalline grains,
or a nonmagnetic inclusion, a cavity of arbitrary irregu-
lar shape in an infinite medium. The demagnetization
field is still described by Eq. (5) if the spherical surface
r'= R, refiected in 8(r' R) a—nd 8(r' R), is —replaced by
the actual irregular surface of the cavity. The small
cavity approximation in which the integral over the
volume of the cavity in Eq. (6) is neglected in the
volume term Pv, can be applied to our irregularly
shaped cavity as well as to the spherical cavity. Thus,
the demagnetization field arising from pi is the same
as for a spherical cavity and gives rise to a factor
(3 cos'Oi —1). In the spheri. cal case this volume term
accounts for' one-half the total demagnetization field,
i.e., for one-half the Hamiltonian. The surface term Ps
for the irregular cavity consists of many higher order
multipole terms in addition to a dipole term. The ap-
proximation made in the model is then to replace the
spherical result (3 cos'Oi, —1) in the surface contribution
by a constant. '4

Since Eq. (14) does not have a zero for cos'O„near
3, the model predicts a linewidth nearly independent of
frequency for spherical samples at large applied fields.
The detailed comparison with experiment will be given
in the next section. Before proceeding to the experiment,
however, we should examine how the above considera-
tions compare with the classical theories. This may be
done quite easily for the results of Geschwind and
Clogston by looking at Eq. (7) of Ref. 2, which reduces
to the following for a spherical sample'5

5 9+(3—~)'-
Gac = 6' (4&~/~*) (1/cosO„) 1+- . (15)

6 3—n

The factors &u„/&u, cosO arise from the density of states
and therefore should be present in any theory. The
third factor is just that arising from the Hamiltonian
implicit in the problem. Since Schlomann's' analysis
yields the same result as GS, a similar comparison is
possible and in fact is most obvious from his Eq. (47b)
which is of a similar form to our Eq. (1), i.e., an effective
Hamiltonian matrix element times a 5 function in
frequency. The 5 function yields the density of states
factors ~„/~, cosO so that the essential difference in the
calculation is again in the form of the implicit Hamil-
tonian. Unfortunately, since the Hamiltonian is not
explicit it is difhcult to compare it to ours on a physical
basis.

"For the case of surface pits, which are approximately hemi-
spherical, @y will also contain an appreciable nondipolar part
which we also consider to be contained in the constant term.

"The symbol J is used in Ref. 2 for what we here call G.
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EXPERIMENTAL RESULTS AND COMPARISON
%ITH THEORY

Since the frequency factors in the two-magnon relaxa-
tion theory under consideration here always enter in the
ratio of magnetization to frequency

(0;=4sM/H=co„/a) ),

5.0-

2.5-

2.0-
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TTRIUM IRON GARNET

THIUN FERRITE

we Inay conveniently study the linewidth as a function
of a by tv o different experiments, firstly by linewidth
measurements directly as a function of frequency, and
secondly, measurements as a function of magnetization
(changing the magnetization by varying the tempera-
ture). Both these measurements have been made on
single crystal spheres of yttrium iron garnet whose
surfaces have been suSciently roughened to insure
dominance of the two-magnon process (AH=15 Oe at
10 kMc/sec and room temperature). In addition, the
frequency dependence has been measured on a crystal
of lithium ferrite (dH=310e at 10 kMc/sec). ' The
frequency measurements extend from 8 to 35 kMc/sec
and the temperature measurements from 77 to 530'K
which corresponds to changes in 4~31 from the order of
2500 to 700 G.

The data are plotted in Fig. 2 in a manner which
allows easy comparison between the present theory and
the classical theory (GC—S). Since in both these theories
the linewidth reaches a constant value as n ~ 0 we plot
G/G =0 to obtain the theoretical curves. The experi-
mental points are then plotted by using the relation

(16)

The value of E is found by extrapolation from the
datum of smallest n. Since the value of G/G o is very
close to the same for both theories in this range we have
a valid one-point normalization of the data. The fre-
quency dependence is then clearly observed in Fig. 2
from the plot of G/G 0 as a function of o, '. The curve
for the Ggg is obtained by using c=2.44 and the fit to

' Some polycrystalline measurements have previously been done
over a smaller range of n and yield similar results if one takes into
account the eGects of both anisotropy and porosity. See Refs. 5
and 9.
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FIG. 2. GGq 8 and Gsa as a function of o. ' together
with the experimental data.

the data is seen to be very good, '~ much better than
the fit to GG& s which has previously been used. The
reason that the discrepancy of the fit to GG&. s was not
previously observed is that for the work on yttrium
iron garnet a ' varied from only 1.2 to 2.6 which results
in a maximum deviation from GGC 8 of only about
15%, which is not very large compared to experimental
error and is of the order of observed deviations found
in Ref. 9. For the work on manganese ferrite, the cor-
rection due to finite crystal linewidth was large enough
to swamp out appreciably the difference between Ggs
and GGt.- g. In the experiments reported here, n ' runs
from 0.75 to 7.2 and the deviation from Goo s is
obvious.

CONCLUSION

Ke have shown that the calculation of two-magnon
scattering by the theory of Sparks, I oudon, and Kittel,
modified by considering a more realistic model of the
scattering center, eliminates the inverse square fre-
quency dependence previously found and gives a result
for the frequency dependence in accord with experi-
ment. Although it has not been possible to calculate a
rigorous Hamiltonian in this case, the approximation
used is certainly justified on the basis of the known
structure of polycrystalline samples.

"This value for c is roughly twice the root-mean-square value
of the dipole term and suggests that the other higher order multi-
poles might be important.


