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Theory of Tunneling Across Semiconductor Junctions
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The theory of tunnel diodes is reviewed, and a method developed for calculating the direct tunneling cur-
rent. The formulation follows Fredkin and Wannier, but since the crystal momentum representation is used,
the Anal details resemble work of Keldysh and of Kane. The method is applicable when the Geld is not as-
sumed constant throughout the junction region. The calculated transmission probability for an electron
between states both sufficiently far from an energy extremum in the Brillouin zone agrees with the usual ex-
pressions; but in the case that either the initial or anal state nears a band extremum, the transmission prob-
ability is found to go continuously to zero.

I. INTRODUCTION: THE TUNNEL DIODE PROBLEM

~ 'HE framework of semiconductor tunneling theory
was given by Esaki' in his original announcement

of the tunnel diode. One pictures two fairly homogene-
ous regions of degenerate-doped semiconductor of oppo-
site type separated by a junction typically 100- to
200-A. wide. The breakdown voltage, at which the
current characteristic departs from the form I=ID
X/exp(qV/tskT) —1j typifying diffusive transport
across the junction, is observed to be slightly positive
instead of large and negative. The usual quasiclassical,
independent pa, rticle theory of semiconductors is pre-
sumed adequate for each region by itself. When the
current is sufFiciently small, the distribution functions
F~(n,k) and Fr.(e,k) for the right and left regions are
very nearly the equilibrium Fermi distributions. The
current density crossing the junction is formally

Jr. Ir, =Z
~ 4vr3

cjE.(k)
rPk Fr, (ts,k)

ak
X (1 Frr)F r,„I—r (tr, k) (1.1)

* Permanent address: Physics Department, Johns Hopkins
Vniversity, Baltimore, Maryland.' L. Esaki, Phys. Rev. 109, 603 (1958).' In the general case there may be more than one such final
state, and the quantity (1—J&z)I'I, z should be summed over
these states.

plus a similar expression for J~ z,. Here Fr, rr is the
quantum-mechanical transmission probability that an
electron incident on the junction from the left will

appear on the right, and the exclusion principle factor
(1—Fz) is the statistical probability that the state in
which it may appear is unoccupied. ' Thus the problem
of semiconductor tunneling theory reduces to a quan-
tum-mechanical calculation of the transmission proba-
bility. The present paper is the first of a series directed
a,t the analysis of this problem.

Section II surveys the semiconductor tunneling cal-
culations made before the discovery of the Esaki diode.
Section III discusses the mathematical definition of the
probability I' which is appropriate for the experimental
case of Esaki diodes.

The middle part of the paper contains a number of
mathematical preliminaries. Section IV establishes no-

tation and important properties of the complex crystal
momentum representation (CMR). Section V mentions
a few details of previous tunneling calculations so that
their relation to the present calculation will be more ex-
plicit. Section VI discusses a "junction potential"
operator which replaces the physically less realistic
uniform field operator of previous calculations as the
source of interband transitions. The explicit representa-
tion of this operator in the CMR is one of the important
results of this paper.

Fina, lly, in Sec. VII the mathematical approach de-
veloped in the preceding sections is worked out in detail
for the simple semiconductor model used in nearly all
previous calculations. The final formula contains a, sig-
nificant correction which is a direct consequence of the
replacement of the completely uniform field by the more
rea, listic junction potential.

It is intended in a future paper to extend the work
to other semiconductor models, to consider phonon-
a,ssisted tunneling, and to compute directly observable
quantities.

II. INTERNAL FIELD EMISSION

In the first quantita. tive theory of the tunnel diode, ' '
a transmission probability was found by a simple
intuitive a,daptation of the theory of "internal Q.eld
emission" or the Zener effect. The history of this theory
will now be reviewed. '

In 1934, Zener' presented a theory of interband
transitions in a one-dimensional semiconductor due to a
uniform external field F. By analogy with the WKB
method he proposed

~=«p —2

where k is the imagina, ry wave vector associated with a
crystal energy in the gap, and the limits of integration
a,re the classical turning points in a deformed band

' E. O. Kane, J. Appl. Phys. 32, 83 (1961).
4 P. J. Price and J. M. RadcliGe, IBM J. Res. Develop. 3, 364

(1959).
~ Fox a, complete bibliography up to 195S, see W. Franz, in

ElandbNch der I'hysi k, edited by S. FlOgge (Springer-Verlag,
Berlin, 1956), Vol. XVII.' C. Zener, Proc. Roy. Soc. (London) 145, 523 (1934).



THEORY OF TUN N ELI N 6 ACROSS SEMICOiN D UCTOR JUNCTIONS A1269

F= exp (ma—E,'/4A. 'F) . (2.3)

An alternative form was later presented by Shockley
and co-workers. ' In the almost-free electron case, there
is a relation between energy gap and the effective mass
ms~ at either band edge,

anz/A = 2rr (m*/2E, )'~'. (2.4)

If this relation is used, (2.3) becomes'

F=- exp —(z-ms*"'E @'/2v2iiF) . (2.5)

Formula (2.5) has been fa,vored over (2.3) for two
reasons: First, "the parameters us~, E, and F appear to
the same powers as the corresponding parameters in the
formula for field emission from a potential well. Second, '
one supposes it is less restricted to the almost™free or
small-gap limit.

One difficulty with the Zener formula is that (2.1) is
not as firmly based as is the usual WEB method. "
Houston" proposed a somewhat different definition of
the interband transition probability for a one-dimen-
sional semiconductor in a uniform external field. He
considered the time development of a state which at
t=o is an eigenstate of both crystal momentum and
band index. The state remains an eigenstate of crystal
momentum, and the eigenvalue cycles through the
Brillouin zone at the uniform rate dk/dk=F/5. Proba-
bility amplitude leaks into all other bands, but the rate
is greatest for the two adjacent bands. Over the course
of a cycle the probability rate is greatest when the k
vector is at the band edge. As long as the probability
remaining in the initial band is nearly one, the proba-
bility per cycle going into another band is nearly in-
dependent of time. "Houston defined this quantity to
be the interband transition probability.

Houston gave without derivation a probability for-
mula with a prefactor of 4rr' to the exponential (2.3). A

' The expression actually given by Zener is too large by a factor
of 2. The error is possibly typographical, because the 6nal ex-
pression for the transmission probability is correct.

SK. B. McAfee, E. J. Ryder, W. Shockley, and M. Sparks,
Phys. Rev. SB, 650 (1951).

The exponent actually given in Eq. (1) of Ref. 8 is too large
by a factor of 2, but in the numerical Eq. (3) of the same paper the
exponent is given correctly.

"W. Franz, Ergeb. Exakt. Naturw. 27, 1 (1953)."Cf. the discussion in Sec. V of the actual stationary states and
the remark in footnote 20. A mathematical analysis of the WEB
method for Bloch electrons is given by P. N. Butcher, D. M. Hum,
and E. R. Pike, Proc. Roy. Soc. (I.ondon) A280, 185 (1964).

"W. V. Houston, Phys. Rev. 57, 184 (1940).' In three dimensions, the path in 4 space is not cyclic except
for special 6eld orientations, and it is not clear how the analysis
might rigorously proceed.

picture. From the theory of Hill's equation, he deduced
that in the almost-free electron case, '

(2.2)

where a is the crystal lattice constant, E, the energy
gap, and m is the free-electron mass. The resulting
transmission probability is

later calculation by Homilius'4 of the Houston proba-
bility in the almost-free case showed the correct pre-
factor to be (z/3)s. Homilius also" preferred the form
(2.5) for the exponential. The opinion that this form was
the more suitable away from the almost-free limit was
given substance by Keldysh, " who calculated the
Houston probability using properties of complex Bloch
waves' which were not peculiar to the limit of vanishing
energy gap. This established

~m%1/2g(' 3/2

I= — exp
3 2&2AF

as the formaula for "field emission" in a one-dimensional
semiconductor. The range of its validity was clarified
in a paper by Kane, "where the matrix calculation"
appearing in the almost-free theory was presented in
the language of k y perturbation theory. Thus, the
formula (2.6) is actually applicable to the case of two
bands whose mutual "interaction" is so strong that all
other bands may be ignored.

V( —oo) =0; V(+oo)= Vo. (3.1)

This model is physically more realistic.
Fredkin and Wannier observed that in their model the

transmission probability can be defined as in the theory
of free-"particle tunneling or of scattering. They con-
sidered a stationary state describing a beam incident on

"J. Homilius, dissertation, Miinster (unpublished). J. Homilius
and W. Franz, Z. Naturforsch. 9a, 5 (1954). This work also con-
siders soluble three-dimensional cases.

'~ J. Homilius and W. Franz, Z. Naturforsch. 9a, 205 (1954)."L. V. Keldysh, Zh. Eksperim. i Teor. Fiz. 33, 994 (1957)
LEnglish transl. : Soviet Phys. —JETP 6, 763 (1958)g. Due to a
computational error Keldysh obtained a prefactor of x2 instead of
(z/3)'. The error was corrected in W. Franz, Z. Naturforsch. 14a,
415 (1959).

'7 Cf. Sec. IV below."E.O. Kane, J. Phys. Chem. Solids 12, 181 (1959).
~9 R. Peierls, Ann. Physik 4, 121, 125 (1930).
"The Houston dehnition actually appeared in a qualitative

form at the beginning of Zener's paper, but Zener in fact used the
de6nition (2.1). He did not establish their equivalence, and evi-
dently the two defInitions are not equivalent because they lead to
different expressions.

D. R. Fredkin and Q. H. Wannier, Phys. Rev. 128, 2054
(1962).

"This approach was also implicit in the calculation of Ref. 4.

III. THE TRANSMISSION PROBABILITY

Both the Zener and the Houston definitions" of
interband transition probability are based on the Inodel
of a particle in superposed one-dimensional periodic
and linear potentials. Fredkin and Wannier" proposed
adding to the periodic crystal potential not a uniform
field but rather a "junction potential. ""By this is
meant a potential which depends only on one position
variable and which approaches unequal 6nite limits as
that variable goes to &~. More specifically, let the
potential be V (r) = V(x), where
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the junction and analyzed the distribution of the inci-
dent probability Qux. Outside the junction this sta-
tionary state must be a linear combination of Bloch
waves. On the left, these waves must be of crystal energy
E, to the right E—Ve. If I'r, ~(e,ko) is to be calculated,
one imposes the boundary condition that the only
Bloch wave with velocity toward the junction is on the
left with quantum numbers rc and ko. As will be dis-
cussed at the end of Sec. VI, the possibility of more
than one outgoing wave on each side cannot be im-
mediately discarded. If the incident wave has unit
amplitude and the ith transmitted wave has amplitude
T;, the total transmission probability may be defined as

Pr, z(e,ko) =g
I
2', I' det[Bko/Bk;] . (3.2)

This equation applies only to those kp with velocities to
the right, i.e., with BE„(ke)/Bk,)0. The transmission
probability is a priori zero for half of the Brillouin zone.
The case of an initial or final velocity parallel to the
junction must be studied by letting the velocity com-
ponent toward the junction approach zero. An example
in one dimension appears in Sec. VII.

Since the definition (3.2) ignores interference terms
in the probability current, it implicitly assumes that in
some sense the electron mean free path is much greater
than the junction width. , so that an incident packet
formed from these scattering states will be able to
divide into reRected and transmitted packets before
colliding with another electron from the quasiclassical
gas on either side of the junction.

It is supposed' that a reciprocity law holds, and con-
sequently, the expression for net current can be reduced
formally at least to an integral over energy which in-
volves the distribution functions F& and IiI, only as the
factor (Fir —Fr). Fredkin and Wannier give a proof for
the one-dimensional case.

IV. COMPLEX BAND FORMALISM

This section reviews parts of band theory" which will

be used later in the paper. The analysis is one-dimen-
sional and possible complications due to band inter-
section in real k space will not be discussed.

The Hamiltonian Bo consists of kinetic energy and a
potential of period Q. Its eigenvalue spectrum consists
of bands which are doubly degenerate because of time-
reversal symmetry. The Bloch eigenfunctions

(x I rsk) =e'"*u (k x) (4.1)

are an orthogonal basis for the Hilbert space of one-
particle states. Analytic continuation off the real k axis
gives Bloch functions which formally satisfy the
Schrodinger equation with a complex energy "eigen-
value" but which are not bounded at infinity and hence
are outside the space. Since the cell-periodic u„(k,x)

dxe'"' —"'*u (—k x)u (k' x) (4.2)

5(x—x') =P„dkGe 'e'"—~' "&u—(—k, x')u„(k,x),
(4.3)

where G is an arbitrary reciprocal lattice vector and
Go ——2m' '. The equations defining the crystal momen-
tum representation (CMR) are

(uk If&=f-(k) = dxe-'"~u (—k x)f(x) (4.4)

(xIf)= f(x)=P„ dkGp 'f (k)e'"u„(k,x) . (4.5)

For complex k, the state
I
uk) is strictly speaking

outside the Hilbert space, but complex Bloch states can
be used in the sense that integrals over the Bloch basis
can be deformed off the real k axis. This gives the inte-
grals appearing in field-emission theory an intuitive
interpretation. ' It also simplifies the treatment of states

I f) whose distribution (rikI f) over the Bloch basis is
both discrete and continuous, in particular the I'redkin-
Wannier scattering states discussed in Sec. III. Intro-
duction of delta functions or Stieltjes integrals is
avoided by defining (rik

I f) for complex k and prescrib-
ing how the inversion contour is to pass around any
poles.

The derivation of complex Bloch expansions may be
patterned after standard Fourier transform theory.
Thus, introduce for any f(x) in the space the auxiliary
states

fr, (x) =0; x)0 and fg(x) =f(x); x)0
= f(x); x&0 =0; x&0.

Then the integral defining (uk I fi,) converges for k just
above the real axis, that for (uk

I fz) just below. The
inversion formula (4.5) can be used to recover fr, (x)
and fbi(x), provided the contour is deformed off the
real axis, over singularities in the case of (ek

I fr), under
in the case of (ekI fir). Therefore, the representation
(4.5) can be used for f(x) itself, with the definition

f-(k) = (~k
I f~)+(~k I f~) (4.7)

remain bounded, most properties of complex Bloch
waves are better studied as properties of the u„(k,x).

The Bloch functions for one real Brillouin zone, Z, are
an orthonormal basis for the one-particle Hilbert
space, '4

(nk I
~'k') =g, G,B„„,B(k'—k+G)

"K. I. Blount, in Solid State Physics, edited by I'. Seitz and
D. Turnbull (Academic Press Inc. , New Vork, 1962}, Vol. 13,
pp. 305—373.

'4 These formulas assume the cell-periodic functions have been
normalized in the unit cell. This normalization is given by
Eq. (A.5) or Eq. (A.S) of Appendix A.
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and the rule that the inversion contour pass'over those
singularities of the CMRf„(k) representing left-hand
asymptotic behavior and under the singularities repre-
senting right-hand asymptotic behavior. "

The complex CMR of the adjoint state may be derived
from the complex conjugate of Eq. (4.4),

function is the Bloch state luke), then"

le, ks+Ft) exp —i

X [~ (ko+Fr) Fx—..(ko+Fr)f~r (5.1)

(fink) = dxe'""u„(kx)f*(x) . (4 8)

The integral for (f~ l
nk) converges above the real axis to

(uk*i f~)* Thu. s the prescription for (fiuk) is to use

f *(k*) and go around the singularities in the opposite
way. This can also be seen directly by taking the com-
plex conjugate of Eq. (4.5):

is the state at time t (I.n this equation and the re-
mainder of the pa,per we set 5=1.) Since this state
moves through k space at a uniform rate, the amplitude
of the CMR of a stationary state is constant along the
real axis. These stationary s'tates will be called "Kane
functions" and clesignated by the letter Q, following
Kane. ' "Their CMR is"

(uk i Q; E)=Q (E~:,k) =

f*(*)= Vl x)=2 dkGo '(flak)(uk I*) expi dk'F 'l Z—E (k')+FX (k')$ . (5.2)

dkGs
—'e—'"'u„(—k x)f e(k*) . (4.9)

The complex conjugate of Eq. (4.5) can also be
written as

J'*(x)= (x I
&

I f)=2 dkGo '(x
I &k)(&k I

&
I f)

dkGs 'e'" u (k x)f *(—k*) (4.10)

where E is the time reversal operator. Hence, the CMR
of the time-reversed state is f„*(—k*), and the singu-
larities are treated in the usual way. "

"The choice of a particular Brillouin zone Z is arbitrary; the
integrand in (4.5) is periodic and the integral is simply to be taken
over one period. The zone boundary is presumed chosen not at a
singularity.

"This paragraph has described a correspondence between time
reversal and reflection across the imaginary axis; the preceding
paragraph has described a similar correspondence between taking
adjoints and reflecting across the real axis. Both relations are
apparent also from the properties of the cell-periodic functions,
discussed in Appendix A. Cf. especially Eq. (A.6) and Eq. (A.4).

'7E. N. Adams, J. Chem. Phys. 21, 2013 (1953). See also
Appendix B below.

V. UNIFORM APPLIED FIELD

This section reviews some details of the one-dimen-
sional quantum mechanics of a particle in superposed
periodic and linear potentials, in order to clarify the re-
lation of the field emission calculations discussed in
Sec. II to the present theory of Esaki diodes. The sta-
tionary states in the periodic potential alone are pre-
sumed known. The linear potential operator —Fx can
then be divided in.to in-band and interband parts. "

Consider first a Hamiltonian consisting of IIO plus the
in-band part of the linear potential. If at t=o the wave

The eigenvalues E for each band form a "Stark ladder"
with AE=IiQ. The particular form of the periodic po-
tential affects only the position of each ladder in abso-
lute energy.

In coordinate space the Kane functions are identical
in shape but displaced from each other by one cell. The
Kane functions for one band form a complete ortho-
normal basis for that band. Thus they are rather like
Wannier functions, which also have uniform probability
distribution over the Bloch states of a band and are
displaced from each other by one cell. But whereas the
Wannier functions are localized to one cell, the Kane
functions are localized to the region where F+Fx is an
energy in the eth band. " In an Appendix, Kane"
showed how these functions begin to die ofI' going away
from this region, but his method breaks down for x
halfway into the gap separating the region where
F+Fx is in the uth band from the region where it is in
the adjacent band. The difhculty in Kane's method
stems from the fact that the inversion contour cannot
be deformed into the upper half-plane any further than

q, the branch point connecting the bands. In itself, this
fact suggests that ultimately the Kane functions fall
off as e ~~*i. Indeed, the proof of such exponential be-
havior given by Blount" for Wannier functions applies
to Kane functions as weH.

"In Eq. (5.1), X„„(k)is the notation of Adams (Ref. 27). In
the notation of Appendix 8 this quantity is (Nk~ ~is/Sk jgk).

'9 The normalization constant in Eq. (5.2) differs from Kane's
because Kane chose the reciprocal CMR relations (5.4) and (5.5)
differently. Of course this analysis assumes the band does not
intersect the adjacent bands in real k space.' These remarks on the x representation of the Kane states may
clarify the apparent impossibility (in the CMR) of a simple,
rigorous generalization of the Kane states to three dimensions
except for a few special lattices and field orientations. Wannier
functions of course are easily generalized to three dimensions."E.I. Blount, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, :1962'), Vol. 13,
pp. 331—332.
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The situation is not so well understood when the
interband part of the linear potential is also included in
the Hamiltonian, but some remarks can be made. If a
state is inks) at 1=0, it is always an eigenstate of
crystal momentum with eigenvalue ks+Ft, but it does
not remain an eigenstate of band index. If a state is

iQ; n,E) at t= 0, pro-bability amplitude leaks into all
other Kane states in general, but presumably most
strongly into those of approximately equal eigenvalue
and band index. "The one-dimensional stationary states
again each belong to a "Stark ladder"; there is always
a corresponding state shifted in energy by I&'0 and in
position by 0."

VI. THE JUNCTION POTENTIAL OPERATOR

The junction potential operator, U, introduced at the
beginning of Sec. III is simple enough in the x represen-
tation, but in the CMR it requires some attention. At
first, the analysis will be one dimensional. Suppose a
sta, te i f) is specified by its CMR, (n'k'i f)=f (k').
Then the CMR relations (4.4) and (4.5) give

(ukl Vlf)=E- dk'Go 'f- (k')(ukl Vlu'k'), (6 1)
2

where

CxV(x)e'i"' —"&'u (k',x)u„(—k, x) .

which by means of (A.3) and (A.5) of Appendix A may
be written

Cg=Q '(u, k*—Gi's'k') . (6.5)

After substitution of the Fourier expansions in

Eq. (6.2), the x integration is done trivia, lly to give
2n8(k" —k+0+k'). After the k" integration Eq. (6.2)
becomes

(ski Viri'k')=Pg 0 '(ri, k*—Gig'k') V(k —G —k') .
(6.6)

The periodicity of (ski Vir'ik') as a function of k' is

manifest in this expansion as a sum of functions identi-
cal in shape but shifted by reciprocal lattice vectors.
The V factor contributes poles of residue iVO at k--G.
The matrix element does not have these poles for e/n'
because of the orthonormality of the cell-periodic func-
tions. The k' contour in the m'=n integral must be de-

formed o6 the real axis to pass over the pole of the
matrix element in the zone of integration, because the
k" contour went under the k" origin. Boundary con-
ditions on the junction potential different from (3.1)
would correspond to a diGerent treatment of the poles
in (ski Vi e'k').

Since the CMR of the operator, V is explicitly ex-
hibited in Eq. (6.6), it may be formally divided into
in-band part, P and interband part U. Thus the part in

the eth band is

(6 2) (ukiy. iuk')=Pg n (u, k-e Ciuk-')V (k a k-') .—

V(k")= dxe ""V(x) (6.3)

will have a pole at the origin of residue —iVO. With the
boundary conditions (3.1) on the junction potential
operator, the inversion contour must pass below the k"
origin. The Fourier series

u„(—k, x)u„.(k', x) =gg Cge'g'

has coefhcient

(6 4)

Cg —— de 'e 'g*u (—k, x)u„.(k',x),

N This situation was considered by Kane (Ref. 18) in his cal-
culation of Eq. (2.6), the Houston probability. He filled a band
at t= 0 by occupying the complete set of Kane states instead of
the complete set of Bloch states.

"Even in one dimension there is apparently yet no definitive
analysis of the form of the eigenfunctions, probably because it is
not clear that they have any physical significance. For the view
that they do describe observable eRects in semiconductor tunnel-
ing, see A. G. Chynoweth, G. H. %annier, R. A. Logan, and
D. E. Thomas, Phys. Rev. Letters 5, 51' (1960) and the first two
references of that Letter.

» Eq. (6.1), the singularities due to f„(k')are pre-
sumed understood, but those due to (nki Vie'k') must
be deduced from Eq. (6.2).

The structure of Eq. (6.2) may be brought out by
Fourier analysis. The Fourier transform

(6.7)

The generalization to three dimensions is formally
trivial. The sum over G becomes a triple series, and the
V factor is nonzero only if the real part of (k—6—k')
is perpendicular to the junction plane.

Previous tunneling calculations have assumed that
k„the crystal momentum component parallel to the
junction plane, is conserved in the tunneling process.
i rom Eq. (6.6) this is evidently not strictly true except
for those special geometries where the Houston defini-

tion and the Kane functions can be treated rigorously.
Consider the tunneling state described in Sec. III, with
left-incident wave at (u,ks). The junction potential
operator mixes in states along a line in k space through
ks and perpendicular to the junction plane. When re-

duced to a single zone, this line becomes, in the general
case a large number of parallel segments. The trans-
mitted waves can be located in k space by noting.
where these segments intercept the energy surface

E„(k)=E„(ks)—Ve. Thus, the old problem of the non-

periodic path in k space, which plagued the field-

ernission theory, appears in the present method as the
problem of umklapp tunneling processes.

VII. THE TRANSMISSION PROBABILITY
FOR THE STANDARD MODEL

This section contains a calculation of the tunneling
probability (3.2) for the simple case of a one-dimen-
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EE—E,(k)]P(k) = dk'(2s) 'P(k')

sional semiconductor with a small direct gap. The According to Eq. (6.7) for P, the CMR Schrodinger
details of the calculation are deliberately made to follow equation is
closely the field-emission theory discussed in Secs. II
and V.

E—Vp= E,(ki) (7.3)

and hence ~r~=1 by flux conservation. The time-
reversed state E~p) is then not independent but is
r*~p). From Eq. (4.10),

P( k*)=rP—*(k) . (7 4)

But if E is sufliciently large there will be a (conjugate
pair of) complex ki satisfying (7.3). Then P(k) will have
a pole at k, in the upper half-plane, and P (z) will asymp-
totically die away to the right of the junction like
e'"*u (ki,z), an unbounded solution of the Schrodinger
equation. Even if E is small enough so there is no out-
going pole, P (z) is not identically zero once V(z) reaches
Vs because P„is nonlocal; how fast it dies away depends
on how far up the inversion contour can be moved
before striking a branch point.

A. The Completely Re6ected State

Let the periodic potential be such that there is a
"conduction band" with lower edge at E=O and a gap
of width E, below it, and suppose, Vo)E, as indicated
in Fig. 1. When only the in-band part of the junction
potential is added to the Hamiltonian, band index may
be retained as a quantum number labeling the eigen-
states. Crystal momentum no longer commutes with
the Hamiltonian, but the eigenstates may be labeled by
the k vector of the incident Bloch wave. Thus,

~ P; asks)
is an eigenstate of Hs+P with eigenvalue E=E (kp)
for which

P(z) (z ~
nks)+r(z

~
ri, —kp) (7.1)

as ~x~ ~oo with z of opposite sign from the velocity
t.(ko).

If e=c, the conduction band, then the states of
interest are those incident from the left, i.e., those with

U (ke) = (8/r)k)E(kp) )0. (7.2)

The CMR wave function (cd p; eke) =p(k) has poles at
&ko of residuesiQ ' and irQ ', respectively, and the in-
version contour passes over them. "If E& Vo, there will

be no real k~ for which

yP. (ke —G
~

k') V(k—G—k') (7.3)

with the contour passing over k'=k. '"' This integral
equation shows immediately that as k approaches a
branch point, p(k) becomes infinite like the normalized
cell-periodic function. " At k=&ko the equation is
finite because the pole in p(k) is smoothed out by the
zero in E—E,(k). If there is an outgoing pole, the equa-
tion is infinite there, but this infinity may be canceled

by rewriting Eq. (7.5) as

LE—E,(k) —V,~P(k) = dk'(2 )- P(k )

&(Pg(k~ —G
i
k') V(k —G—k') (7.6)

with the contour now passing under k'=k.

B. Approximate Solution for P (k)

Suppose for definiteness that the band gap is at the
center of the Brillouin zone. The important part of the
function p(k) is near the positive imaginary axis below

the singularity representing right-hand behavior
because this region might be regarded as containing the
information about P(z) in the junction. For this region
the most convenient form of the integral equation for

P(k) is

LE——',Vs—E,(k)$P(k) = dk'(2z) —'P(k')

)&P,(k*—Gik) V(k —G—k'), (7.7)

in which the principal value is taken at k'=k. The
situation is shown in Fig. 2.

For the states of interest E will be small enough that
ks«Ge '. Furthermore, actual tunnel diode junctions are
in the range of 20 to 40 lattice periods wide so that in

real directions V(k) is localized to a few percent of the

I'IG. 1. Deformed
band diagram of an
Esaki junction.

f Vo

J' 4111

Pre. 2. Singulari-
ties of P (k') and
path of integration
for Eq. (7.7).

s
~

q~

'4 Cf. the rules derived in Sec. IV above. Strictly speaking, p (k)
is periodic with period 2n/0 and hence also has poles at &ko+G.

"Henceforth, the band index will be omitted from the round
bracket symbol for the inner product of two cell-periodic functions.' This singularity of the cell-periodic functions is discussed in
Appendix A. Cf. Eq. (A.S) and Ref. 41.



zone width Gp '. In these circumstances one may expect
the (nonperiodic) solution of

PE—-', Vp —E,(k)]P (k)

dk'(27r) '(k*i k') U(k —k') p(k') (7.8)

to be very close to the actual CMR wave function in the
important region of k spa, ce shown in Fig. 2.

The integral operator in Eq. (7.8) may be expanded
as a differential operator by successive partial integra, -

tions. The details are presented in Appendix C. If the
assumed junction field F(x)= —d V/dx is symmetric
about x= 0, this expansion is

t E—-,'V, —E,(k)]P(k)
=F,(.k~x~P)+"
=Fpfi(cl/Bk)+X (k)]P(k)+R(k) (7.9)

where
iV = r'Pl VpI, (kp)]

—'o, (kp) e" (7.15)

dkF; PZ E.(k) —,'V,].——(7.16)

The quantity I,(kp) is given by the expression

C. Normalization of the Approximate Solution

The normalization constant N in Eq. (7.11) must be
chosen so this approximate solution matches onto that
exact solution whose residue at kp is iQ '. This may be
done by putting the approximate solution into the inte-
gral equation (7.8) and calculating the residue of the
first iterate.

In order to compa, re directly with previous tunneling
papers, the uniforrq, Geld formula (7.12) is used andX„taken identically zero. The resulting normaliza, tion
1S

where
Fp —F(0), —— (7.10) I,(kp) =

+" due'"sinN
(kp"

~

kp+2NW ')e'~— (7.17)
2' 1 Q

The solution with the remainder R(k) neglected is where

where
V(k) = (Vp/ik) sin(-', kW)/-,'kW,

W= Vo/Fo

(7.12)

(7.13)

According to Eq. (C.11) of Appendix C the remainder
R(k) on the right side of (7.9) is

P(k) = )Y expi dk'fE, (k') FX„(k')—+-', Vp L~']Fp—
(7.11)

Comparison with Eq. (5.2) shows this CMR wave
function to be proportional to the Kane function of
eigenvalue E for the linear potential Fox+-', Vp. The
expression (7.11) must be a poor approximation near
&kp or q because it does not ha, ve the correct singular
behavior there.

If the field is constant for the entire width of the
junction, the Fourier transform of the.junction potential
1S

~f&'2Vo '$E, (ko+2n'W ') —E (ko)] (7 18)

and the contour is deformed over the origin.
When ~qW~))1 it is reasonable to repla, ce (kp ~kp

+2uW ') by (ko*
~
kp) = 1.Two cases will be considered"

in approximating the quantity 6, namely,

k,R'&&1,

k,R«&j. .

The corresponding approximations are

(7.19a,)

(7.19b)

6=2o, (VpW) 'u'; kpW))1, (7.20a)

6=4(3m eVoW') 'u' kpW(&1, (7.20b)

where ~, is the velocity at kp and m, * is the effective
mass at the band edge. For cases of practical interest,
a final simplification in (7.17) can be ma, de:

R(k) = dk'2Vp(irW) ' si(k'W/2)D, '(k'), (7.14)
8 slIlQ= g$ ~

This approximation requires

(7.21)

where si is the standard sine integral and D,' is de6ned
in (C.7) of Appendix C.

If the approximate solution (7.11) is put into (7.14),
it is seen that the a,pproximation is poor when k is less
than 8' ' from the singular points &kp and q. If
~qW~)&1, then there is a strip above the real axis in

which (7.11) is a good solution to Eq. (7.8). In x space
this may be interpreted as meaning that if the range of
the nonlocal potential, g is much less than the width of
the junction, from inside the junction the wave function
cannot see that the constant Geld eventually drops to
zero,

exp(VoW/oc)'"&)1; koW&)1, (7 22a)

exp(4m *VpW')'i'&)1 kpW«1. (7.22b)

With these approximations the integral can be done
exactly to give

I,(kp)= —v "'(27riVoW)'". k W))1 (7.23a)

I,(kp) = 3'~'4 'i'7r—'I'(2/3) (m.*VpW') '".kpW(&1.

(7.23b)

"Case u of this paper is the only case considered by Fredkin
and Wannier in Ref. 21. The condition l7.19) is included in
Eq. (58) of that paper.
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When these expressions are substituted in (7.15), the
normalization constants become

~
X~'= (2v-Wv Vp 'Q-') kpW))1, (7.24a)

i%i'=rrkpW(2trWv, Vp 'II '); kpW«1, (7.24b)
where

n=3.8(m,*VpW') "' (7.25)

I'IG. 3. Alternative
contours for the
CMR calculation of
the projection of a
left-incident scatter-
ing state onto a right-
incid. ent completely
rejected state.

I ~-
-k~ k

which is typically close to unity. This means that the
penetration of the electron into the junction is signifi-
cantly decreased when the incident Bloch wavelength
is longer than the junction width. This result has not
explicitly appeared in previous tunneling theory,
although it js perhaps implicit in the work of Fredkin
and Kannier.

D. Formula for the Transmitted Amplitude

%hen the interband part of the junction potential
operator is added to the Hamiltonian, the new sta-
tionary state ~B; ckp) with incident wave (x~ pkp) will,
in general, have nonzero CMR, B (k)=(tsk~B), in all
bands. The Schrodinger equation is

PE- E„(k)]B„(k)
= (11k j Vj B)=Q„' dk'(2tr) 'B„.(k')

XP, (~, k*—G~ ~'k') V(k —k' —G), (7.26)

corresponding to Eq. (7.5) for P(k). In addition to the
poles at B,(&kp), B„(k)will be singular at B„(kt),
where E.(kt)=E, (kp) —Vp and kt(0, as discussed in
Sec. VI. The residue at k» is —iTQ ', and the inversion
contour passes under ki.

One possible approach to the calculation of the
transmitted wave amplitude T would be to work
directly with Eq. (7.26). All bands other than v and c
could be ignored and P(k) used as a first approximation
to B,(k). One could next calculate an approximate ex-
pression for B„(k)off the real axis, and finally the
residue of its pole at k~.

Instead the transmitted wave amplitude will be cal-
culated by following the work of I'"redkin and %annier.
This will bring out the similarities between the scattering
formulation and the older 6eld-emission formulation.

Consider the right-incident eigenstates of Hp+tak with
small positive eigenvalues. These are ~p; vk) with k
small and positive. The CMR, (P; vk

~
vk'), as a function

of k' will have poles at +k and —k of residues iQ ' and
ir*Q ', and the k' contour is to pass over these poles.
The reflection coeAicient r will of course depend on k.

The projection of the left incident eigenstate of
Hp+ V onto such a right-incident completely reflected
state is

(P; vk(B; ckp)= dk'Gp —'

The contour for Eq. (7.27) is shown in the upper part
of Fig. 3. But this contour is equivalent to the two
shown in the lower part of the figure, and the integral
around the little circle is T(P; vk~ vki). When k ~—ki
this integral has a pole of residue ir*TQ ' and the other
term remains finite. Therefore, (p; vk~B; pkp) as a
function of k has this same residue ir*TQ ' at —k&.

From this and the eigenvalue equation for (P ~, one has

(p v kl
~

+ Bp rlt~ B; pkp) = —v. ( —kr)ir*T&

(7.28)
which may be rewritten as

7'= —irnLv. (k,)g-'(p;. ,
—k,

~
U~B; ckp) (7.29)

by use of the eigenvalue equation for
~

.B)."This formula
for the transmitted wave amplitude is the analog of the
formula for the scattering amplitude in the integral
equation treatment of simple potential scattering. In
the first Born approximation,

2=-;,IIP.„(k,)q-(P;., -k,
~
U[P;.k,). (7.30)

A formula of this type has been used in several previous
tunneling calculations. Fredkin and %annier" discuss
the error using (7.30) instead of the exact formula

(7.29).

E. The Transmission Probability

In order to use Eq. (7.30) for the transmitted wave
amplitude it is necessary to calculate the matrix element

~=(P; v, -k,
~ V~P;.k.).

The procedure of Appendix C for the in-band part of
the junction potential can be paralleled for the inter-
band part. The 6rst approximation is

dkG;(P;. , —k, ~vk)X„,(k)(ck~P; ~k,).
(7.32)

Furthermore, the approximations of Secs. VII.B and
UII.C for the conduction band can also be applied to
the valence band with the results

(p; v, —ki
~
vk) =cV, expi

X dk'tt F..+PX.. ', Vp+ F!—iFp
' (7.3—3)-

3tt Equation (7.29) is given without: derivation as Eq. (40) by
g(P; vk

~

vk')(vk'~B; ckp), (7,27) Fredkin and ttvaniuer in Ref. 2].,
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corresponding to Eq. (7.11) and other expressions
identical to Eqs. (7.24) except for the replacement of
s, (kp) by r„(k&).

When Kqs. (7.11) and (7.33) are substituted into
Eq. (7.32) and X„—X„.„omitted, as may certainly be
done when the crystal has inversion symmetry, the
formula for the transition matrix element becomes

dkGo 'Ae~VcX, c expi dk'(E, —E„)Fs'.
(7.34)

This integral appears in the Houston" formulation of
field emission; and in the Keldysh" approximation it is

where

M ——F 0Ã,T,e (7.35)

)t =s-rn*"'E,sl'/2v2hF & ('7.36)

which is the exponent appearing in Eqs. (2.5) and (2.6).
If this expression is used in (7.30), the transmission
probability (3.2) becomes

+= (1/36)F '0411V~I'I's/~l'(v s ) 'e ". (7.37)

The normalization constants are given by Eq. (7.24).
If (7.24a) is applicable to both the initial and final
states, then P is precisely as in Kq. (7.6).ss But when
either the initial or the final state becomes so close to
the band edge that the Bloch wavelength becomes
longer than the width of the junction, the transmission
probability goes to zero linearly in wave vector with a
slope given in Eq. (7.24b).

This interesting result has the satisfying consequence
that I' is a continuous function of initial wave vector
instead of dropping abruptly to zero when the velocity
reverses and becomes directed away from the junction.
It suggests that the general problem mentioned in
Sec. III of velocities parallel to the junction will simi-
larly resolve itself.

A similar situation arises in the problem of a free
particle tunneling through a one-dimensional barrier.
When either initial or final kinetic energy goes to zero
the exact transmission probability goes to zero even
though the Q'KB exponential expression may not; the
difhculty is that the usual connection formula breaks
down. 4'
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APPENDIX A: CELL-PERIODIC FUNCTIONS
FOR COMPLEX CRYSTAL MOMENTUM

The u„(k,x) appearing in Kq. (2.1) may also be con-
sidered as elements of the space Ls(Q) of functions
defined only for one cell. Rounded brackets (i) will be
used for inner products in this space, to distinguish
them from inner products (i) of one-particle wave
functions. For each k the

u„(k,x) = (x in, k)

are the eigenfunctions of

H (k) =e '" H e"-*

(A.1)

(A.2)

Although the Bloch functions themselves are periodic
in k space with period Gs ——2s./0, the in, k) are not.
Instead,

in, k+G) =.-'0*in, k) . (A.3)

The in, k) also differ from the Bloch functions in that
now analytic continuation off the real k axis does not
require extension of the space but rather introduction
of non-Hermitian operators Hs(k) whose eigenstates
are not mutually orthogonal. Instead there is orthog-
onality to the eigenstates of the adjoint operator

LHs(k))t=Hs(k*) . (A.4)

Thus the analytic continuation of the orthonormality
relation is

(n'k*ink) = dxu„."'(k~,x)u (k,x)=5„„.(A.5)

dxu„(—k, x)u (k,x)=8 (A.S)

4' A derivation is in the Supplement to Ref. 16, A complete and
rigorous proof is in W. Kohn, Phys. Rev. 115, 809 (1959),
Eq. (4.39). The three-dimensional case is discussed on p. 365 of
Ref. 23.

Each cell-periodic function is normalized to unit pro-
jection onto the function at k* in the same band, rather
than to unit norm. It can be shown" that this requires
normalization constant infinite like an inverse fourth
root at a complex k where two bands join.

Time reversal E is in the x representation equivalent
to complex conjungation. Since EHOK '=IIO,

KH (k)K-'=He( —k*) . (A.6)

Phases may be chosen so that

Kink)=u„'(k,x)=u. (—k*, x)= in, —k*) . (A.7)

The orthonormality relation (A.5) then is also
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APPENDIX B: THE POSITION OPERATOR

Although the position operator x in the CMR is well
known, the derivation will be included here so there will
be no doubt about how it operates on the c0224p/ex Bloch
expansions introduced in Sec. IU.

If the expansion (4.5) is multiplied by some power
x" of the position operator and partially integrated, it
becomes

g"f(x) = dkG2 'x" 'e'"'i(1)/4)k)fg„f„l„j
z

G —igm —lstkt: Q f 24 j ~ (B.i)

If the contour Z can be taken so that P„f„g„is dif-
ferentiable along it, then the integrated term is evalu-
ated only at the endpoints. These cancel by periodicity
in k space. When P„f„u„is m times differentiable, the
expansion becomes

x f(x)= dkGO 'e'"'(i8/Bk) $+„f„l„f.
From this equation the CMR of x

~ f) is easily seen to
be

Next some auxiliary functions dependent on the
actual solution P(k) to (7.8) are defined for a given k as

Ds(k') = $(k*ik+k')P(k+k')
—(k'~ k —k')P(k —k'))/2ik', (C.5)

DA(k) =L.(km~k+k)P(k+k)
+ (k*~ k—k')P(k —k')]/2. (C.6)

The successive derivatives of (C.5) and (C.6) are de-
fined in the manner of

D,s(k ) dDs/dk (C.7)

At the k' origin the odd-numbered derivative functions
are zero, since (C.5) and (C.6) are both even. The even-
numbered derivative functions have the value

D2„s(0)= (ck —
~

x'"+'~ P) /( 2m+1)i2m (C.8)

D A (0)= (ck
~

x m
~
P)/$2 (C9)

after use is made of the formula (B.3) of the preceding
Appendix for the matrix elements of the position
operator.

With these definitions, Eq. (7.8) may be rewritten as

APPENDIX C: EXPANSION OF THE P(k) EQUATION S(k')Ds(k')+A (k')DA(k') jlr 'dk'. (C.10

This equation may be expanded by successive partial
integration. The integrated term due to the even-
numbered integrations is zero, and the term due to the
(2es+1)st integration is

V(k) =A (k)+ik 'S(k) (c.i)
(/k [x2m+I) p) d2m (gk~ g2m~ p) d2m

P(0)+
(2212+1)! dx' 2' I

which corresponds to separating the junction Geld into
antisymmetric and symmetric parts. Then successive
integrals of A (k) and S(k) are defined in the manner of

V(0) .
dg2

By direct comparison the complete series of these terms
is the same as the series that would result from expand-
ing V(x) in a Taylor series and using the known in-band
part of powers of the position operator (Appendix B).
(The manipulations could be performed on the exact
Eq. (7.7), but the complexity seems unwarranted. )
Even if the assumed V(x) is analytic along the real axis
so that the entire expansion exists, the series is neces-
sarily not convergent. It is, therefore, important to
notice the exact remainder term which appears in this
derivation.

For example, suppose the junction field is symmetric,
so that A (k) =0. Then the result of the first integration
of (C.10) is

S(k')dk'.Sl(k) = (C.2)

The number of times the integration converges at ~
depends by the Riernann-Lebesgue theorem on the
successive differentiability of the assumed junction po-
tential. It is straightforward to establish that at the
origin the odd-numbered A;(k) and S;(k) have the
values

1 d'"V(0)
A2 +1(0)=.

g2ec 2~ t /am
(C3)

1 d'"F(0)
S2~, (0)=-

P~ 2m! de
(C 4) L&—l V —&.(k)]P(k) = —~(0)( k I*IP&

This Appendix gives the details of the expansion of
Eq. (7.8). First some auxiliary functions related to the
shape of the junction potential must be defined. The
Fourier transform (6.3) is separated into real and imagi-
nary parts,

where F(x)= —d V/dx is the junction field. 42

4' More accurately, A I(0) is

fF (x') P( x') gdx'. — —
v(a') 0

+ S1Dlsdk'/2r. (C.11)

In Sec. VII.B, the second term is neglected as an ap-
proximation when k is not near a singularity of p(k).


