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Anomalous Electron Scattering in Dilute Magnetic Alloys
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The Kondo theory of the resistance minimum has been extended to show the following: (1) The resistance
anomaly is not affected by nonmagnetic scattering. (2) The magnetoresistance shows a logarithmic field

dependence at strong fields and low temperatures. (3) The anomalous scattering affects the superconducting
properties of the alloy in nearly the same way as the normal scattering. So the theory based on normal scat-
tering is still qualitatively correct.

I. INTRODUCTION

ECENTI Y, Kondo' gave a very clever explanation
of the resistance minimum phenomenon in many

dilute alloys of magnetic metals. It has long been sus-
pected that the resistance anomaly must be somehow
connected with the spin-dependent scattering of the
conduction electrons by the magnetic moment of the
impurities. ' However, many eGorts to explain the phe-
nomenon in terms of the s-d exchange interaction have
been unsuccessful because it was thought that the tem-
perature dependence of the scattering cross section was
due to the partial ordering of the spins. ' ' Rondo
showed, instead, that the s-d scattering cross section as
calculated from the 6rst two orders of the Born approxi-
mation contains a temperature-dependent term like
lnT. This result gives a very satisfactory 6t to the ex-
perimental data. The anomalous term arises as a con-
sequence of the sharpness of the Fermi surface, and the
argument of the logarithmic function is simply the ther-
mal broadening of the Fermi level. Therefore, the resis-
tance anomaly is a one impurity spin e8ect rather than
a many-spin collective effect.

Historically, a phenomenological model for the resis-
tance anomaly was first proposed by Korringa' who
postulated. that the electron-impurity scattering under-
goes a resonance when the electron has nearly the Fermi
energy. It has been speculated whether collision broad-
ening of the electron energy levels may smear out the
resonance and thus cause the resistance anomaly to dis-
appear. This eBect has not been noticed experimen-
tally. ' In this paper we carry out a completely renor-
malized version of the Kondo theory to include the
scattering by nonmagnetic impurities. The result shows
that the resistance anomaly is unaffected by collision
broadening. In fact, the anomalous scattering depends
only on the sharp variation in electron population at the
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ment of Physics, Iowa State University, Ames, Iowa.' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' J. Korringa and A. N. Gerritsen, Physica 19, 457 (1953).' A. D. Brailsford and A. W. Overhauser, Phys. Chem. Solids
15, 140 (1960).

4T. van Peski-Tinbergen and A. J. Dekker, Physica 29, 917
(1963).' S. H. Liu, Phys. Rev. 132, 589 (1963).' E. W'. Collings, F. T. Hedgcock, W. B. Muir, and Y. Muto,
Phil. Nag. 10, 159 (1964).

Fermi energy but not on the sharpness of the Fermi
surface.

The magnetoresistance of these alloys has been care-
fully studied theoretically by Yosida~ and Dekker. 4 We
have calculated the next order term, and the result
shows that at low enough temperatures and high
enough 6elds the anomalous scattering gives rise to a
lnH term. This eGect should be noticeable by a careful
analysis of the experimental data.

It is known that dissolved magnetic impurities reduce
drastically the superconducting critical temperature of
the solvent metal. ' The theory of this effect based on
the s-d scattering is qualitatively successful. ' Recently,
Merriam et cl.' observed that the depression of the
critical temperature of indium by manganese impurities
depends sensitively on the mean free path of the elec-
trons. When an inert impurity such as lead. or tin is
added to reduce the mean free path, the eGect of man-
ganese tends to disappear. The authors interpreted this
result on the bases of Korringa model with collision
broadening. We have analyzed this problem using the
Kondo idea and shown that the effect of the anomalous
scattering on the critical temperature is independent of
the mean free path. Hence, it appears that the phe-
nomenon observed by Merriam et a/. is not connected
with the scattering mechanism. Furthermore, the
anomalous scattering affects the superconductivity in
nearly the same way as the normal scattering. Hence,
all the conclusions in the Abrikosov and Gor'kov paper
remain qualitatively valid.

II. RESISTANCE ANOMALY

We studied the resistance anomaly of a simple model
described by the following Hamiltonian

&=&o+EP+EI",

where Bo is the free-electron term, H' the s-d interaction
term, and EP' the other interaction such as phonon and

' K. Yosida, Phys. Rev. 107, 396 (1957).' B.T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Letters
1, 92 (1958).

A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.
39, 1781 (1960) )English transl. : Soviet Phys. —JETP 12, 1243
(1961)g.' M. F. Merriam, S. H. Liu, and D. P. Seraphim, Phys. Rev.
136, A17 (1964).
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Z„(oi„)=Z„'(oi„)+Z„"((u„), (2.10)

nonmagnetic impuritiy scatterings. Explicitly, in units present problem we may write
with 0=1,
Pio= ~k8 &kCks Clrsq (2.2)

H =- N J g&' Pkk' LSj (Ck't Ckt Ck'g Cki)

+5,+Ckq*Ckt+5, Ck t*Cki]e'&k k" i. (2.3)

In these expressions c~,*, c~, are the creation and de-
struction operators for an electron in the momentum
state k and spin state s; e&

——k'/2m is the energy of this
state measured from the bottom of the band; R, and S,
are the position and spin of the jth ion; 2J is the strength
of the s-d interaction; and E is the total number of lat-
tice sites in the sample. We shall use Greek letters
K K etc. to denote both the momentum and the spin
states of the electrons and write H' as

K K
O

(TH„„-'(r)H„-„'(r')H„„'(0))

XG„(7 r') G„(—r') dr'. (2.11)

where Z„'(oi„) arises from H' and Z„"(oi„)from H". The
latter quantity is assumed to be known and the erst
quantity is to be calculated.

The diagrams of the first three orders of Z.'(to„) are
shown in Fig. 1. The lines denote electron Green func-
tions, and the crosses represent the impurities. These
diagrams are explicitly evaluated as follows:

Z„'(r) = —|'(r)(H„„')+P„.(TH„„.'(r)H„.„'(0))G. (r)

It is clear that
H'= Q„„H'„„c„*c„. (2.4) The quantity (TH'„„(r)H'„„(0))and the third-order

product are Green functions for the impurity spins.
For x=kt' and x'=k't the second-order product is

yP, — iP 1JQ .S.—zgiik —k') Rg'

etc. The concentration of magnetic impurities is assumed
to be so low that their collective e6ect is always ignored.

We de6ne the thermal Green function"

(N 'J)'r. (TS ( )5+(0))
=N 'cJ'(TS (r)5+(0)), (2.12)

where c is the concentration of magnetic impurities and

where
G.( )=(T .( ) .'(o)), (2.5) (TS (r)5+(0))=(5 5+) r)0

=(5+S ) r(0.
~ (r) —e r(ust H)~ er—(est H—)—(2.6)

' See, for example, L. P. Kadanoff and G. Baym, QNaetlm
Statistical 3fechumcs (W. A. Benjamin, Inc. , New York, 1962).

"This equation is obtained from solving the Dyson equation

G.(~.) =G."'(~ )+G."'(~.)&.(~ )G.(~.),
where G„(')(~„) is the zero-order Green function. The validity of
this equation for magnetic impurity scattering in the erst Born
approximation was proved by Abrikosov and Gor'kov (A. A.
Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 39, 1781
(1960), LEnglish transl. : Soviet Phys. —JETP 12, 1243 (1961)j).
Although the proof seems to be valid only for classical spins, it
can be generalized to the case of spin operators provided that the
correlation between diBerent spins is ignored. This essentially
assumes that the various spins scatter the electrons independently.
Under this assumption the proof can be extended with no difhculty
to the next order Born approximation.

X—
K C» CK) (2.7)

p, is the chemical potential or I'ermi energy, and T is the
ordering operator for v- such that

G„(r)= (c,(r)c.*(0)) r) 0
= —(c„*(0)c„(r)) r(0.

The bracket denotes thermal average. This Green func-
tion can be expanded into a Fourier series

G.(r) =(1/P)E- G.(~.)e *'""' (2 g)

where P is the inverse temperature in energy units,
o~„=(2n+1)vr/P, and e is an integer. In general G„(oi„)
has the form"

G„(oi )= Les —p —Z„(o„)—i~„]-', (2.9)

where Z„(oi„)is the self energy due to interactions. In the

The average is taken over the random orientation of
S. The correlation between different spins is ignored.
Since the different components of S do not commute, the
~-ordering is sometimes not trivial. This is best illus-
trated by evaluating a third-order product. For x= k&,
x'=k'&, «"=k"&, we get a term

(TH„„„(r)H„„„,(r )H„,„(0))
=N 'cJ'(TS (r)5~(r-')5+(0)) .—

Then, for 7.& ~'&0, the spin product equals

(5 5'5')=(5 5')+(5'5 5')= lS(5+1),
while for r'& ~)0 the product equals

(5'5—S+)= —-', 5(S+1) .

Thus, the dynamical property of the spin operator mani-
fests itself in the third-order terms. This dynamical
efI'ect is the cause of the lnT divergence in resistivity.

We may now evaluate all the spin T-products and
obtain an explicit expression for the self energy. It can
be easily shown that the self energy is the same for both
spin states of the electron, and we may drop the spin
subscript henceforth. Thus,

Zk'(r) =N ' Jc (5+51)P Gk. (r) 1V 'J'cS(5+1)—

X Q Gk-(r r')Gk (r')dr'+N —'J'cS(5+1)
g/gl r

Gk" (r r')Gk (r')dr'. (2.13)—
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where
n= (2m@)'"3m'.
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where coo ——gp~B and

&5-5+)=5(5+ 1)—&(5*)')—&5').

af(M) 3s kT
g(co) Cko = ——ln

Bo) 4p yy
inP

J
ar' —cu

f

~f(~) ~f(~')
X dred(o', (2.27)

BQ) Bco

where z is the valence of the metal and y is of the order
unity and its value depends on the band structure and
the dependence of the exchange constant J on the
energy. The integral is small and independent of T,
so it is ignored. The resistance is therefore

The integral appearing in Eq. (2.26) was evaluated by
Kondo

We illustrate the method by calculating the magneto-
resistance in the first Born approximation. The calcula-
tion of the next order term is brieRy sketched, and the
result presented at the end of the section.

To the 6rst Born approximation the self energy of a
spin-up electron is

Zg)'(r) = cJ(S*)b(~)+1V 'cJ'-
&&Z L&(5')')+&5 5+)e""3G'( ) (3 3)

The difference between G~t(r) and Gq g(r) is ignored.
Putting in the spectral representation of G~ (r) and
summing over ir', we obtain

p=po'(1+(3sJ/p) ln(kT/yp))+p", (2.28) Zqt'(r)=cJ (5')8(7)+'JV 'cJ' 1V—(w)(1 —f(u))

III. MAGNETORESISTANCE

We may carry out the complete analysis of the scat-
tering problem in the presence of a magnetic field. The
only change we need to make is to add a Zeeman term

—g~~& Z~ S~' (3.1)

to the Hamiltonian. Here H is the applied field assumed
to be in the z direction, g is the gyromagnetic ratio of
the impurity spins, and p~ is the Bohr magneton. The
paramagnetic susceptibility of the conduction electrons
may be ignored. The presence of the Zeeman energy
term modihes the spin averages, e.g.

(TS (r)5+(0))=e""(5—5+) r) 0—

=e""(5+5 ) r(0, (3.2)

where
po' 3~x——mcJ'S(S+1)/2e'ep

is the resistivity due to normal magnetic scattering, and

&"=mr" (o)/2«2

is due to nonmagnetic scatterings. If J(0, p tends to
rise when T is lowered. When combined with the phonon
contribution, the resistance shows a minimum. The re-
sult is in complete agreement with Kondo. However,
we have shown by this more elaborate calculation that
the resistance anomaly is unaffected by other impurities.
This is because the anomalous scattering depends not
on the sharpness of the Fermi surface but on the sharp
change in electron population at the Fermi energy.

It is seen from Eq. (2.28) that the resistance tends to
diverge at T—& 0. This is not a serious objection to the
theory because, as we argued before, when the level
width is large the hnite width of the conduction band
becomes important. It is easy to show that this cutoG
actually makes the 6nal result convergent. In practice
the cuto6 e6ect shows up only at extremely low
temperatures.

0 (H) =e'e/mL(1/rqt(0))+(1/rqg(0))],
with

r, (o) = r, '(o)y r,"(o),
etc. It is straightforward to verify that

((S*(')=S(S+1)—S coth~PuroB, (Peso),

(5 S+)= (coth-,'P(uo 1)SB,(P—a)0),

(5+S )= (coth-', Peso+1)SB.(P(oo),

(3.7)

(3.8)

where B,(P~O) is the Brillouin function. Using these rela-
tions we 6nd that

ryg'(0)=rgg'(0)=3m. p 'csJ'
)($5(5+1)—SB,(PMp) tanh2Ps)0). (3.9)

Hence the resistance is

u"'(&) =~o'E1 (5+1) 'B—.(P~o)

&& tanh-,'P(ooj+ p"(H) . (3.10)

The superscript on p indicates that the result is of the
second order in J. The above expression for magneto-

We then take the Fourier transform and evaluate the
discontinuity of Zz t(~„) across the real frequency axis.
This gives

rgt'(~) =2m% 'c J' XL(a))((S')')

+&(~+~o)&5 5')(f(~ +~ )0/f(~))~'"'3 (3 5)

Since ~0&(p, we may take

1V(~+~0)=lv(~) .

In a similar manner, we find for a spin-down electron

rgb'((o) = 27rS 'c JS(a))[&(5')')
+&5'5 )(f(~ ~o)/f(~))~ '—"3 (3 6)

The conductivity is then
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the classic paper of Abrikosov and Gor'kov. ' We shall refer many details to their paper. One defines a matrix Green
function

&rP, (r,.)P,*(r',0)&
—(rP, (r,~)ti, (r', 0)&

&2'4-. '(r, )0.*(r' 0)& —&2'4-.*(r, )f-.(r' 0)&&

This Green function may be Fourier expanded both in space and in time

(4.1)

(4 2)

and G&„(co„)has the form

f G„((o„) —F„((o„))
G.(~.)= I

(F„~(co„) G,(—co„))
(4.3)

with G&q(&u„)=G&q(&v„), F~q(~„)=—F&q(&u ). The self energy is also a matrix

i ~ ~'&( ) -~ ("( -)i
Z„(cv„)=/

&Z„("*(a)„) Z„o&(—M„))
(4 4)

The quantities G and Z are related by

~&
—y —&~a—&."'(~~)

LG.(~-)3 '=
—6,—z."&*(co.)

6„+z„('&(co.)

ep p+—i~. z„&'—&( cv„)—

~ =gQ. (r)4' .(r)&= Z-Z& F.-(& ) ~ (4.6)

As before the self energy contains a magnetic scattering part Z„'(~„) and a nonmagnetic scattering part Z„"(~„).
For simplicity we consider H" to be due to nonmagnetic scattering centers. The diagram for Z„"(~) is in Fig. 2

and the diagrams for Z„(~) are in Fig. 1. Explicitly

Z&„"(r)=cV—'c'O' P&, G&;,(r)

~.'( ) =ZP'H- '(.)H".'(0))G"( )—2 &TH„„"'(r)H„-„'(r')H„'(0)&G„"(r r')C„(r')d~', —(4.g)

where c is the density of nonmagnetic impurities and e is the strength of the electron-impurity scattering potential.
Resolving G„(r) and G„(r r') into Fouri—er series, we can evaluate the 7' integration and subsequently take the
Fourier components on both sides. The result is

Z&„"((o„)=1V 'c'u' g&, G&, ,(co„),

, „G"(~-)G"(~-)
Z, '(cu )=Q&H„, 'H„,'&G„(co„)——Q Q I.(s,a',c")

(4.9)

(4.10)

where
L(„,„-)=&PH,.„,H.„., jH...&~&PH..„H...„~H„...&. (4.11)

Since the spins are oriented at random, there is no loss of generality by choosing ~= k); then

(4.12)

(H& t&, g H&, tgg )= 43iV 'cJ25(5+1) &H&g&, g H&, g& t )= 32% &cJ'5(5+ 1)

L(kl', k' f k"1') =0 L(kl', k'l', k"J)=L(kl' k'l, ,k"1') =L(kl', k'$,k"1)=-', 1V 'cJ'5(5+1) .
Separating the various components of Z, we obtain

Z&,"&(cu )= IV 'Qc'I'+cJ'5(5+1) j Q&, G&,(co ) ,X cJ'25(5+—1)g &; &(1/P)P (1/i(co —cv„))

)& L3G,(~„)G,-(~„)+F~.(~„)F,-"(~„)1
2&, ('&(cu ) =IV 'fc'u' ~~cJ'5(S+1)7 g&, ~ Fq~(B )+—'1V 'cJ'S(S+1)g&,~&,i~(1/ii)g~(1/i(co~ —~„))

XLG. ( .)F.-( .)+F'( .)G,-(—„)J, (4.»)
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FIG. i. The diagram for the non-
magnetic impurity scattering con-
tribution to the self energy of
conduction electrons.

where the spin indices on the Green functions are
dropped, and it is understood that all the functions re-
fer to the same spin state. These equations are to be
solved self-consistently to determine the eRect of scat-
tering on superconductivity.

To approximately solve these equations we employ
the foQowing trick."Since the self energy is a function
of the frequency only, we may make the following
substitution:

Zg&'&((u ) =—is)„(1—Z(s)„)),
z],"'(M )= —b,+d (N„)Z(M„),

where h=d, 22 and Z(or ) are to be solved. With these
substitutions we find from Eq. (4.5)

f 22 2M~ D((d~)
[G2(~-)j '=Z(~-)l, , (4.15)—6*((v ) 22+us„

Inverting this matrix we find

1 b,(~.)
&a(~ )=

z(~.) 4'+~.'+
I ~(~ ) ('

(4.16)

We substitute these results into Eq. (4.13). The sums

over k', k" are carried out by use of the relations

2rA.(0)

Z(~-) 22'+~-'+
I ~(~.) I

' (~-'+
I
~(~-) I')'"

(4.17)

—0,
Z((i0„) 22'+Gl„'+

I 6(co„)I

'

where X(co) was defined in Eq. (2.19). If we define the
following quantities

1/2.1=2' 'E(0)[c'u2+ cJ2S(S+1)g,
1/2.2=2rS 'E(0)[c'N2 —2cJ'S(S+1)), (4.18)

1/2.,= (1/2-1) —(1/2.2) = -',2' 'X(0)cJ'S(S+1),
where

22= [Z(~-)3 '(22—/)
then we can write the result of the above manipula-
tions as

1—Z((o.)=—
(~ 2+g2(~ ))1/2

1 A(a&„)
6—6(a)„)Z(co )= ——

2+ g2(~ )j1/2

3(o (o —h(cu )A((u„)37rsJ
«./ ~.(~ —~-) ([~-'+~'(~ )j[~ '+~'(~ )j)'"

(4.19)

We eliminate Z(ar„) from these equations to obtain

1 32rzJ 1 4co ~0„6(a)„)+A(co )62(co„)—co„26(a) )6=h((o„) 1+ ——— P . (4.20)
2,[a) 2+62((V„)]'/2 42,/2 (O) —(O )O)„([10 2+62(a) )][(u„2+62((O )])'/2

One can see from this result that the nonmagnetic scat-
tering eRect does not enter the energy-gap equation.
Therefore, even when the anomalous scattering term is
included. , the nonmagnetic scattering still has no eRect
on the gap and the critical temperature. %e can find
an iterative solution for Eq. (4.20). For the zero order,
we ignore all terms proportional to A(cv ). This gives

%e discuss two limiting cases, namely near absolute
zero and near the critical temperature.

Near the critical temperature Eq. (4.21) reduces to

1 t/ 32rzJ or

A=A((o.) 1+ I
1—

/P " l~-l(~--~.)&

The sum in the parentheses may be evaluated by trans-
forming it into an integralA=A(o) ) 1+

2+g2(~ )j1/2
1 co„1 " 1—2f(z)

/Ez.

p "
lcv l(o)„—co„) 22r „z+ko„3xsJ

X (4.21)
p m ~ & ) ~ 2+g2 ~ ) 1/2( L (

As before we ignore the part of the numerator which

'4D. Margowitz and L. p. Kadanog, phys. Rev. &Q, 563 does not dePend on the temPerature The lower limit
(1963). of the integral should be cutoff at —

/2, the bottom of the
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band, so

Thus

f(s): " 8f(s)
dz = —inp+ ln(s+i(o„) ds

o 5+ZM~ Bs

=in(k T/p, ) .

LIU

impurities. So the mean free path effect in indium-
manganese systems as observed by Merriam et aI,. is
perhaps not related to magnetic scattering.

(2) The reduction in critical temperature is deter-
mined by the same scattering time v, ' as the reduction
in energy gap.

V. DISCUSSION

1 f 3sJ kT~6= A(to„) 1+
~
1+ ln

~

. (4.22)

We solve this equation for d, (to„), put it in Eq. (4.16)
for F&(to„), and then substitute it in Eq. (4.6). After
summing over k and cancelling 6, we find the equation
for the critical temperature to be

orgy(0) 1
1=

P, " ito„i+1/r, ' (4.23)

3sJ
6—h(co„) 1+ 1+ In— . (4.24)

L~ s+gs(~ )$1/s

Since 6—kT„we may also write

~h(a)„) 1+ (4.25)
&L~ sygs(~ )]1/2

where 1/r, '= 1/r, (1+(3sj//s) ln(kT, //s) j. This result
may be reduced to Eq. (22) of Ref. 9 except that r,
is replaced by ~,'. Since w,

' depends only slightly on the
temperature, it may be regarded as a constant. Hence,
the inclusion of the anomalous scattering term does not
produce any new eGect.

Near absolute zero, we estimate the eGect of anomal-
ous scattering by putting h(to )=6 in Eq. (4.21). The
sum over m may be evaluated by the same procedure
as near T,. The result is that

In rare-earth ions there is a strong spin-orbit coupling
in the 4f shell. As a result the effective s fin-teraction
constant is (g—1)J instead of J, where g is the gyro-
magnetic ratio. It is generally believed that J is not
much affected by alloying. Since the factor (g—1) is
negative for light rare-earth metals and is positive for
heavy rare-earth metals, then depending on the sign of
J, we expect the resistance of the dilute alloys of one
group to increase with lowering temperature and that
of the other group to decrease. Therefore, a systematic
study of the resistivity of dilute rare-earth alloys should
furnish the most direct experimental test of the anoma-
lous scattering theory. As a by-product of this measure-
ment we can also settle the question about the sign of
s finterac-tion in rare-earth metals.

Dilute magnetic alloys have another outstanding
property, namely their large and negative thermoelec-
tric power. "We shall not elaborate on the theories of
this eftect except to point out that the model we used in
this paper does not explain this phenomenon. The nor-
mal scattering gives a very small thermoelectric power.
The contribution of the anomalous scattering is smaller
than the normal scattering term by roughly the same
ratio as their contributions to the electrical resistivity.
Hence, although the anomalous scattering gives rise to a
remarkable effect on the resistivity, its effect on the
thermoelectric power is totally insigni6cant. Recently
Kondo explained this effect by invoking a complex s-d
scattering potential. "
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