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The Kondo theory of the resistance minimum has been extended to show the following: (1) The resistance
anomaly is not affected by nonmagnetic scattering. (2) The magnetoresistance shows a logarithmic field
dependence at strong fields and low temperatures. (3) The anomalous scattering affects the superconducting
properties of the alloy in nearly the same way as the normal scattering. So the theory based on normal scat-

tering is still qualitatively correct.

I. INTRODUCTION

ECENTLY, Kondo! gave a very clever explanation
of the resistance minimum phenomenon in many
dilute alloys of magnetic metals. It has long been sus-
pected that the resistance anomaly must be somehow
connected with the spin-dependent scattering of the
conduction electrons by the magnetic moment of the
impurities.? However, many efforts to explain the phe-
nomenon in terms of the s-d exchange interaction have
been unsuccessful because it was thought that the tem-
perature dependence of the scattering cross section was
due to the partial ordering of the spins.*~* Kondo
showed, instead, that the s-d scattering cross section as
calculated from the first two orders of the Born approxi-
mation contains a temperature-dependent term like
In7. This result gives a very satisfactory fit to the ex-
perimental data. The anomalous term arises as a con-
sequence of the sharpness of the Fermi surface, and the
argument of the logarithmic function is simply the ther-
mal broadening of the Fermi level. Therefore, the resis-
tance anomaly is a one impurity spin effect rather than
a many-spin collective effect.

Historically, a phenomenological model for the resis-
tance anomaly was first proposed by Korringa? who
postulated that the electron-impurity scattering under-
goes a resonance when the electron has nearly the Fermi
energy. It has been speculated whether collision broad-
ening of the electron energy levels may smear out the
resonance and thus cause the resistance anomaly to dis-
appear. This effect has not been noticed experimen-
tally.® In this paper we carry out a completely renor-
malized version of the Kondo theory to include the
scattering by nonmagnetic impurities. The result shows
that the resistance anomaly is unaffected by collision
broadening. In fact, the anomalous scattering depends
only on the sharp variation in electron population at the
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Fermi energy but not on the sharpness of the Fermi
surface.

The magnetoresistance of these alloys has been care-
fully studied theoretically by Yosida” and Dekker.* We
have calculated the next order term, and the result
shows that at low enough temperatures and high
enough fields the anomalous scattering gives rise to a
InH term. This effect should be noticeable by a careful
analysis of the experimental data.

It is known that dissolved magnetic impurities reduce
drastically the superconducting critical temperature of
the solvent metal.® The theory of this effect based on
the s-d scattering is qualitatively successful.’ Recently,
Merriam et al.l% observed that the depression of the
critical temperature of indium by manganese impurities
depends sensitively on the mean free path of the elec-
trons. When an inert impurity such as lead or tin is
added to reduce the mean free path, the effect of man-
ganese tends to disappear. The authors interpreted this
result on the bases of Korringa model with collision
broadening. We have analyzed this problem using the
Kondo idea and shown that the effect of the anomalous
scattering on the critical temperature is independent of
the mean free path. Hence, it appears that the phe-
nomenon observed by Merriam et al. is not connected
with the scattering mechanism. Furthermore, the
anomalous scattering affects the superconductivity in
nearly the same way as the normal scattering. Hence,
all the conclusions in the Abrikosov and Gor’kov paper
remain qualitatively valid.

II. RESISTANCE ANOMALY

We studied the resistance anomaly of a simple model
described by the following Hamiltonian

H=H+H+H", (2.1)

where H, is the free-electron term, H’ the s-d interaction
term, and H” the other interaction such as phonon and
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nonmagnetic impuritiy scatterings. Explicitly, in units
with =1,

Ho=st ekas*Cks, (2'2)
H' = — N1 3 > [Si%(curt *oxr — cwn *et)
+Sj+0k'¢ *Cit +Si 7k *thjei(k_kl) Ri, (2-3)

In these expressions cy;*, cxs are the creation and de-
struction operators for an electron in the momentum
state k and spin state s; e;=£#k%/2m is the energy of this
state measured from the bottom of the band; R; and S;
are the position and spin of the jthion;2J is the strength
of the s-d interaction; and N is the total number of lat-
tice sites in the sample. We shall use Greek letters
&, k', etc. to denote both the momentum and the spin
states of the electrons and write H’ as

Hl = ZKK' H’K'KCK'*CK .
It is clear that

H'vtg=—N"1J 22; Sj%ei k0 Ri

(2.4)

etc. The concentration of magnetic impurities is assumed
to be so low that their collective effect is always ignored.
We define the thermal Green function!!

Ge(1)=(Tcx(7)c*(0)), (2.5)

where
c(r)=e TWI—H) oruI—H) | (2.6)
N=2" cx*ce, (2.7)

u is the chemical potential or Fermi energy, and 7" is the
ordering operator for r such that

Gu(r)=(ce(n)c*(0)) >0
= (CK*(O)CK(T)> 7<0.

The bracket denotes thermal average. This Green func-
tion can be expanded into a Fourier series

Ge(7)=(1/B)2n Gelwn)e 7, (2.8)

where B is the inverse temperature in energy units,
wp=(2n+1)7/B, and % is an integer. In general G,(w.)
has the form!'2

Gelwn)=[es—p—Zc(wn) —twn ™", (2.9)

where Z(w,) is the self energy due to interactions. In the

1t See, for example, L. P. Kadanoff and G. Baym, Quantum
Statistical Mechanics (W. A. Benjamin, Inc., New York, 1962).
2 This equation is obtained from solving the Dyson equation

Gx (wn) = Gx(m (‘*’n) +Gx(0) (a’n)zx (wn) Gy (wn) )

where G,©® (w,) is the zero-order Green function. The validity of
this equation for magnetic impurity scattering in the first Born
approximation was proved by Abrikosov and Gor’kov (A. A.
Abrikosov and L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 39, 1781
(1960), [English transl.: Soviet Phys.—JETP 12, 1243 (1961)7]).
Although the proof seems to be valid only for classical spins, it
can be generalized to the case of spin operators provided that the
correlation between different spins is ignored. This essentially
assumes that the various spins scatter the electrons independently.
Under this assumption the proof can be extended with no difficulty
to the next order Born approximation.
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present problem we may write
Z(wn) =2 (wn)+2"(wn) , (2.10)

where 2,/ (w,) arises from H' and Z,”(w,) from H"'. The
latter quantity is assumed to be known and the first
quantity is to be calculated.

The diagrams of the first three orders of Z,/'(w.) are
shown in Fig. 1. The lines denote electron Green func-
tions, and the crosses represent the impurities. These
diagrams are explicitly evaluated as follows:

EK,<T) = 5(7') <HKK/>+Z 4 <THM”(T)HK’K’(O)>GK’ (7)
8
- Z <THKK"/(T)Hx"s’/(T,)Hx'xl(o»

’ XGor(r—1)Gu()dr . (2.11)

The quantity (TH'(r)H'¢«(0)) and the third-order
product are Green functions for the impurity spins.
For k=kt and «’=Kk’| the second-order product is

(N2 2 KTS7(7)S+(0))
= N-1cJ{TS—(r)SH0)), (2.12)

where ¢ is the concentration of magnetic impurities and

(TS~()SH(0))=(S-S+) >0
=(S+5-) r<0.

The average is taken over the random orientation of
S. The correlation between different spins is ignored.
Since the different components of S do not commute, the
r-ordering is sometimes not trivial. This is best illus-
trated by evaluating a third-order product. For k=k1,
K'=k'|,’=k"], we get a term

<THKK"(T)H/x”x’('rl)Hx’n(O)>
= N—2cJ{TS~(1)S*(+')S+(0)).

Then, for 7>7'>0, the spin product equals
(§78251)=(S=5H)+(§2575%)=55(5+1),
while for 7/>7>0 the product equals
(S25=S+y=—1S(S+1).

Thus, the dynamical property of the spin operator mani-
fests itself in the third-order terms. This dynamical
effect is the cause of the In7T" divergence in resistivity.

We may now evaluate all the spin 7T-products and
obtain an explicit expression for the self energy. It can
be easily shown that the self energy is the same for both
spin states of the electron, and we may drop the spin
subscript henceforth. Thus,

2 (1) =N"T2%S( S+ 1Y Gu(r)—N"2T%S(S+1)
s

X 2 G (7—7")Gw (7')dr'+ N2J3%S(S+1)
e ),
B
X2 G (1—7)Gw (7)d7". (2.13)
e ),
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Fic. 1. The dia-

X %
grams for the mag- )f KN //’l'\\\
netic scattering con- ! ’ \ -, 1 S
tribution to the sef & + &% t oL 4 »

energy of conduction 0 T O T T
electrons.

To evaluate the 7’ integrals, it is convenient to intro-
duce the spectral representation of the Green functions

dw
Gulr)= f el fDAks) >0

dw
=—/_2__e—wrf(w)A(k,w) <0, (214)

where

fl@)=[epo 1T
and
A(k,w)=Tx(w)/{[otu—e— Ax(w) I

+ETe(@) I} (2.15)

In the expression for 4 (k,w) the energy shift Ax(w) and
level width T'x(w) are related to the Fourier components
of the total self energy by

Ax(w)=3[2((1/){w+18})+2((1/3){w—1i8})]
Ti(w) = (1/9)[Zx((1/9){w+18})
—2u((1/9){w—14s})] (2.16)

B
Ek(wn)=/ Ze(r)etendr.
0

In general A and T are weakly dependent on k, so we
may regard them as functions of w only and drop the
subscript k. Putting Eq. (2.14) into Eq. (2.13) we can
easily integrate over 7/. We then take the Fourier com-
ponent of the result and obtain

do’ AR ")
2 (wn) = —N"1J2S(S+1) {Z —

K/ 21 dwp—w’

do' [ dw” 1
+A7~1] Z / - / — A (k',wl)A (k",w”)
A 2 !

w —w

><l:1~2f(w’)_ 1—2f(w:'):|} @

twn—w'’ W —w

The sums over k' and k”” are worked out as follows.
Since A (k’,w’) peaks strongly at ex=2u+w’, and A and
T are independent of k’, we may write

> A4 (k',w')%_’N(w/)/ A(K w')dep
K’ 0

=2rN(o'), (2.18)

where

N(o")=mQQ2m(u+w’)) 2/ 272 (2.19)
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is the density of state at the energy «’ from the Fermi
level, © is the volume of the sample. Notice that Eq.
(2.18) is only valid if the level width is small compared
with the conduction band width, so that the limits of
integration may be replaced by infinity. It will turn out
that the level width tends to diverge when the tempera-
ture approaches absolute zero. In this case the finite
width of the band must be considered. In fact, the con-
duction band width provides a natural cutoff of the
divergence at 0°K.

We go back to the calculation of 2’(w,). The result
up to now is

N(w')dw
2/ (wn) = — N-1cJ25(S+1) {/ i)——

twn—w
—I—2N‘U/N(co')dw'/N(w")dw"
1 1-2f(o)

77 g 77
W —w Wy w

} . (2.20)

We use Eq. (2.16) to compute the contribution of level
width by magnetic scattering

T (w)=2rN"1cJ2S(S+1)N (w)
—2f(w)

x{1—2N-IJ/N( — dw’}. (2.21)

We may ignore the temperature-independent part of the
integral in the above expression because it does not lead
to any temperature effect. Then we have

I"(w)=Tq (w)[1+47g(@)], (2.22)
where
IVo(w)= 2w N"1cJ2S(S+1)N(w) (2.23)
and
w )N (o
g(w)=N"1 / f-(——,z———(—)dw'. (2.24)
The total level width is then
T'(w)=T"o(w)[1+4Tg(w) J+T"(w) . (2.25)

The conductivity is related to I'(w) by the relation!®

2ne? 1 9f(w)
S AP
m T'w) dw
2ne? 1

m Ty'(0)+T"(0)

RO 3f(w)
X[l I‘J(O)-{—I‘”(O)/ (w) o dw:l, (2.26)

18 G. Rickayzen, in Lecture Notes on Many-Body Problems from
the First Bergen International School of Physics, 1961, edited by
C. Fronsdal (W. A. Benjamin, Inc., New York, 1962),pp 85-109;
K. Baumann and J. Ranninger, Ann. Phys. (N Y.) 20,157 (1962)
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where
n=(2mu)%23r2.

The integral appearing in Eq. (2.26) was evaluated by
Kondo

/ g(w)af(w) dw= —%[mﬁ— / f Ing|e’ —w|

af (@) af(")
dw I’

dwdw’ ] , (2.27)

where z is the valence of the metal and + is of the order
unity and its value depends on the band structure and
the dependence of the exchange constant J on the
energy. The integral is small and independent of T,
so it is ignored. The resistance is therefore

p=po’ (14 (327 /u) (T /vu))+o",

po = 3maxmcI2S(S+1)/2¢e*nu

(2.28)
where

is the resistivity due to normal magnetic scattering, and
o' =mT"(0)/2ne

is due to nonmagnetic scatterings. If 7<O0, p tends to
rise when T is lowered. When combined with the phonon
contribution, the resistance shows a minimum. The re-
sult is in complete agreement with Kondo. However,
we have shown by this more elaborate calculation that
the resistance anomaly is unaffected by other impurities.
This is because the anomalous scattering depends not
on the sharpness of the Fermi surface but on the sharp
change in electron population at the Fermi energy.

It is seen from Eq. (2.28) that the resistance tends to
diverge at 7 — 0. This is not a serious objection to the
theory because, as we argued before, when the level
width is large the finite width of the conduction band
becomes important. It is easy to show that this cutoff
actually makes the final result convergent. In practice
the cutoff effect shows up only at extremely low
temperatures.

III. MAGNETORESISTANCE

We may carry out the complete analysis of the scat-
tering problem in the presence of a magnetic field. The
only change we need to make is to add a Zeeman term

—gusH 32; Si* 3.1)

to the Hamiltonian. Here H is the applied field assumed
to be in the z direction, g is the gyromagnetic ratio of
the impurity spins, and up is the Bohr magneton. The
paramagnetic susceptibility of the conduction electrons
may be ignored. The presence of the Zeeman energy
term modifies the spin averages, e.g.

(TS—()S5H(0))=e=»7(S=S*) >0

=ew7(§tS™) 7<0, 3.2)

H. LIU

where wo=gusH and
(§75H)=S5(S+1)—((5)*)—(S?).

We illustrate the method by calculating the magneto-
resistance in the first Born approximation. The calcula-
tion of the next order term is briefly sketched, and the
result presented at the end of the section.

To the first Born approximation the self energy of a
spin-up electron is

Zut’ (1) =cJ{(S%)8(r)+ N-1cJ?

Xg [((S)?)4(S=5H)er G (7). (3.3)

The difference between Gwt(7) and Gy (7) is ignored.
Putting in the spectral representation of Gi(r) and
summing over k’, we obtain

Ser’(1)= 6T (S3(r)+ N1 [ N@)(1—f()

Xee [ (S9)2)+ (S St)ew0]dw. (3.4)
We then take the Fourier transform and evaluate the
discontinuity of Zwt(w,) across the real frequency axis.
This gives
(@)= 20N 16T N @)((5?)
+N(wtwo)(S™SH)(flwtwo)/ flw))ef+].
Since weKp, we may take
N(wtw))=2N(w).
In a similar manner, we find for a spin-down electron
I/ (w) =27 N"1cJ2N (w)[{(S?)?)
H (ST (flo—wo)/ flw))ePe].

The conductivity is then
o(H)=e’n/m[(1/Twt(0))+(1/ T (0) ],

Tt (0)=Tw'(0)+I"(0),
etc. It is straightforward to verify that
((S*(®*)=S(S+1)—S coth}BwoB,(Bwo) ,
(§75+)=(coth3Bwo—1)SB.(Bwo) ,
(S+S—)=(cothBwo+1)SB,(Bwo) ,

(3.5)

(3.6)

3.7
with

(3.8)

where B,(Bwo) is the Brillouin function. Using these rela-
tions we find that

Tit'(0)=Tw'(0) = 3mu~"czJ?

X[LS(S+1)—SB:(Bwy) tanhifwy]. (3.9)
Hence the resistance is
p@(H)=py/[1—(S+ 1) B(6wo)
X tanhiBwo |+o”"(H). (3.10)

The superscript on p indicates that the result is of the
second order in J. The above expression for magneto-



ANOMALOUS ELECTRON SCATTERING A 1213

resistance is in agreement with that of van Peski- The anomalous part of the resistivity is calculated in
Tinbergen and Dekker* except that we ignored the cross a similar way, but the algebra is much more compli-
term between the spin-independent scattering and the cated. We show here the calculation of one of the terms
s-d scattering. ~in Zx(7), namely,

8
N=2cJ? 3 [ {ST(1)SH(r)S%0))Gin (1= 1" )Giot (r')dr’
0

K'k’’

T B
=N-%J% ¥ {(s—s+5z> / =Gy (1) G (7— 77)dr 4 (S+S-S7) / ewo<r—f'>Gk,(T')Gkn(T—T')dr'}. (3.11)
0 T

klkll
There are altogether four terms like this in Zy4’(7). The contribution of this term to I'y'(w) is

1= () flotw)ePen l-f(w’):’

1
o' —w—wy fw) W —w

N-%J3 / N(w')dw'{(s—s+s->[

+<s+s—Sz>[ 1) | Jete ﬂwl)]}. (3.12)

o' —w—wy  flo) o'—w

The terms containing f(w’) are the anomalous terms we want to find. In the resistance calculation this term is
integrated over w with — 8 f(w)/dw as the weighting factor. Hence, we need to evaluate the integrals

—N / I / fD¥e) dw,:ﬁ[lnii { / / lnﬁ]w’-w——wgla]; (:,I) o (w)dw’dw]

dw o —w—wy  4u dw

(3.13)

SR CICER. I | VN U on |

It is particularly interesting to consider the first integral when Bwe>1. In this case it equals approximately
(32/4u) In(wo/vu). So the anomalous resistence contains a term which goes like InH.
The complete expression for the magnetoresistance is as follows:

o(H) =o' (1 (37 /) In( T /y))[ 1 — (S-+1)~1B.(Be) tanhdo] .
LSS T f Gl Bon)uto"(H), (3.14)
JTRN

where
G(u,)={((S?)?) csch?}u[ 3u cothu—1]In|u+v|

+3(S=) csch?o[u csch?3u— (u—+v) csch?2(u+v)—32 sinhv cschiu cschi(u+o) [In|u|+In|u+v]]. (3.15)
When Bwe>>1, it is easy to verify that

/‘°° G(14,B00)du=22{(S?)2) InBuwo.

Hence the second term in Eq. (3.14) is
—po' (627 /w)({(59)%)/S(S+1)) Infws. (3.16)

We estimate the size of this term by taking z=1, J=0.2 €V, u=5 €V, and g=2. Then at 1°K and under 20 kG
of field, the term amounts to roughly 59, of py’. This is of the same order of magnitude as the resistance anomaly.
For alloys that show resistance minimum, this term gives rise to a reduction in negative magnetoresistance at high
fields and low temperatures.

IV. EFFECT ON SUPERCONDUCTIVITY

In this section we consider the effect of anomalous scattering on the critical temperature and energy gap of a
superconductor containing paramagnetic impurities. The calculation proceeds in very much the same way as in
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the classic paper of Abrikosov and Gor’kov.? We shall refer many details to their paper. One defines a matrix Green

fonetior (T W) — (Tl 0)
. Tys(r,7 )¢ *(’,0 —{TYs(xr,7 W_s(r',0
Go(r,x'; T)=< ( ) . (4.1)
(TY—s*(x, T Wp*(0,0))  —(TY—e*(1,7)¢—e(r',0))
This Green function may be Fourier expanded both in space and in time
. 1 .
Gg(l',l'/; T)=_ Z g Gks(wn)eik'(r—r’)e—-iwn‘r’ (42)
B n
and Gy,(w,) has the form
“ G:(wn) —'Fx(wn)
Gelwn)= < ) , (4.3)
FHwn) Gl—wn)
with Gt (wn) =Gt (wn), Fit(wn) = — Fiy(w,). The self energy is also a matrix
“ zx(l) wn) —'Zx(2) wn)
2 (wn) =< ( ( ) . (4.4)
EK(Q)*<wn) zx(l)(_wn)
The quantities G and $ are related by
N Gk_l“_iwn_zx(l)(wn) A"+E"(2)(w”)
[Gx(wn)]—1=< . ) ) (45)
—“Ax""zx(2)*(wn) Ek_ll:‘i"zwn—zx(l)(_wn)
where
4
An=g<ﬁl’s(r)¢—s(r)>=lg 22k Fx(wn) . (46)

As before the self energy contains a magnetic scattering part £,/(w,) and a nonmagnetic scattering part £,”(w,).
For simplicity we consider H” to be due to nonmagnetic scattering centers. The diagram for £,/(7) is in Fig. 2

and the diagrams for £,/(r) are in Fig. 1. Explicitly
2 (1) =N"1u? T Giro(7) 4.7)
and

B
2/ =E(THe/(NH e (0))Ge(r)— T / (TH oo (D) H ! (1)l (0))Cor (r—1)Co()dr,  (4.8)
K KK 0

where ¢’ is the density of nonmagnetic impurities and % is the strength of the electron-impurity scattering potential.
Resolving G (1) and Gy (7—1’) into Fourier series, we can evaluate the 7’ integration and subsequently take the
Fourier components on both sides. The result is

2ks”(wn) =N"u? Zk’ ék’x(wn) ) (49)
N 1 GK' (wn)éx" ((’-’m)
2,/(60;,) = Z(Hxx”Hx’x,>Gn’(wn) I Z Z L(K,K’,K”)—-—‘———*———- ’ (4 10)
&’ B m k'’ 1 wm—-w,,)
where
L(K:K,’KH) = <[H"K”,’HK"K'/]HK'K/>+ <[Hxx’,ny'x”,]Hx”n’> . (4:11)

Since the spins are oriented at random, there is no loss of generality by choosing k=%1; then
(Hitin Hotet ) =4N"1cJ2S(S+1)  (Hutws'Hyurt )=3N"1cJ2S(S+1)
Lk1,k'tk"1)=0 Lkt k'1,k"|)=L(ktk'|,k"1)=Lkk | k’|)=4N"2J3S5(S+1). (4.12)
Separating the various components of £, we obtain
Ze®(wn)=N7"[c'u?+cI*S(S+1)] e Gulwn)§N 2T (S+1) i (1/B)Z 1/ i(0m—n))
X[3G1(wn)Grr+(wm)+Fir (wn) Fier*(wn) ]

2x®(wa) =N —3cT2S(S+1)] X Fir(Ba)+4N2T35(S+ 1) X (1/8) L m1/i(0m—wn))
X [Gk’ (‘%)Fk” (wm)+Fk’(wn)Gk” ( ’""-’m)] , (413)
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Fic. 1. The diagram for the non- Phe X=~ ~

magnetic impurity scattering con- 4 \\
tribution to the self energy of G/ L*Y
conduction electrons. o T

where the spin indices on the Green functions are
dropped, and it is understood that all the functions re-
fer to the same spin state. These equations are to be
solved self-consistently to determine the effect of scat-
tering on superconductivity.

To approximately solve these equations we employ
the following trick.}* Since the self energy is a function
of the frequency only, we may make the following
substitution:

Ek(l) (wn) =— 'iwn(l - Z(wn)) )

(4.14)
zk(2)(wn) = — A+ A(wn)Z(wn) )

where A=Ay and Z(w,) are to be solved. With these
substitutions we find from Eq. (4.5)

A 1215

Inverting this matrix we find

G ( ) €k+iwn
k\Wn)= it ? “ )
Z(clon) &+ nA-(l— [)A( )| (4.16)
Filwn)= o

Z(wn) Ek2+wn2+ [ A(wn) I 2’

We substitute these results into Eq. (4.13). The sums
over k’, k” are carried out by use of the relations

< 1 1 - wN(0)
- wn) &2t wn? wa) |2 (wn? wa)|? 12’
Z(ln) + -!:IA( M2 (a4 | Alwn) D @17)
> -

k :O ’
Z(wn) @2twa?+ | Alwa) |2

where N(w) was defined in Eq. (2.19). If we define the
following quantities

1/r1=7NIN(0)[c'u?+cT2S(S+1)],

G—iw, Alw,)
[Gk(wn)]“‘=Z(wn)( . o ) , (415)  1/7a=aN-IN(O)['u?—3cJ%:S(S+1)], (4.18)
—a%en) Etien 1re=(1/r) = (1/r)= $x NN Q)T *S(S+1),
where then we can write the result of the above manipula-
&=[Z(wa) T (ex—n). (4.15) tions as
1 1 3z 1 3wmwn— Alwm) Alwn)
I—Z(wﬂ) = l’ )
T1 (wn2+A2(wn))1/2 drogu ™ w,,(wm—-w,,) ([wn2+Az(wn)][wm2+A2(wm)])”2 4 19)
1 A(ws) 3nzJ 1 @A (W) —WmA(wn) )
A—Alwn)Z(wn)=—— f .
T2 [wnz"‘AZ(wn)]l/Z drsp ™ Wn—wa (["-’n2+ A2(wn)][wm2+A2(w7n)])1/2
We eliminate Z(w,) from these equations to obtain
3mzJ 1 46mwnA(wn) - Alwm) A2(wn) — wn?Alwn
A=A(wn)[1‘= ]_ T2 5 WnA(wn) (0m) A2(wn) — w2 Awm) (4.20)
Ts[wn2+A2(wn)]1/2 drogp ™ (wm_wn)wn ([")m2+Az(wm)][wﬂz'i'Az(wn):l)Uz

One can see from this result that the nonmagnetic scat-
tering effect does not enter the energy-gap equation.
Therefore, even when the anomalous scattering term is
in cluded, the nonmagnetic scattering still has no effect
on the gap and the critical temperature. We can find
an iterative solution for Eq. (4.20). For the zero order,
we ignore all terms proportional to A(ws). This gives

A= A(w,) 114
( )[ 7oL wn2 4 A% w,) 172

Wm

X[I—E,ZZJ;<wm—wn>[wm2+A2<wm>:1”J} - @20

¥ D. Markowitz and L. P. Kadanoff, Phys. Rev. 131, 563
(1963).

We discuss two limiting cases, namely near absolute
zero and near the critical temperature.
Near the critical temperature Eq. (4.21) reduces to

Wm

1 /1 3wz

AzA(“’"){l Fe\ s F lwm|<wm—wn>>} '

The sum in the parentheses may be evaluated by trans-
forming it into an integral

1 @ 1 = 1-2(z)

g™ |wm[(wM""wn) 2r J_ stiws

dz.

As before we ignore the part of the numerator which
does not depend on the temperature. The lower limit
of the integral should be cutoff at —pu, the bottom of the
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band, so
® . o 9
/ U dz=—Inu-+ f In(z+4wn) f<Z)dz
—p 3 Fi0n o 0z
Xn(kT/u).
Thus
33J kT
A= Aw,) [H— (1+— ln———)} . (4.22)
Ts|Wn ® M

We solve this equation for A(w,), put it in Eq. (4.16)
for Fy(w,), and then substitute it in Eq. (4.6). After
summing over k and cancelling A, we find the equation
for the critical temperature to be

7gN(0) 1
B ;30 n ,wn'+1/73,’

where 1/7/=1/7,[14(327/u) In(kT./u)]. This result
may be reduced to Eq. (22) of Ref. 9 except that 7,
is replaced by 7,’. Since 7,” depends only slightly on the
temperature, it may be regarded as a constant. Hence,
the inclusion of the anomalous scattering term does not
produce any new effect.

Near absolute zero, we estimate the effect of anomal-
ous scattering by putting A(w,)=A in Eq. (4.21). The
sum over # may be evaluated by the same procedure

as near 7. The result is that
/ 3zJ A
14 ln——>} . (4.24)
rfod+ M)A u

(4.23)

A A(wn) {1 1

Since A=2kT., we may also write

AA(w,) [1+ (4.25)

T

Again this is the same result as in Ref. 9 except that 7,
is replaced by 7.
The conclusions of this section are

(1) The effect of anomalous scattering on supercon-
ductivity is insensitive to the presence of nonmagnetic
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impurities. So the mean free path effect in indium-
manganese systems as observed by Merriam ef al. is
perhaps not related to magnetic scattering.

(2) The reduction in critical temperature is deter-
mined by the same scattering time 7,” as the reduction

in energy gap.
V. DISCUSSION

In rare-earth ions there is a strong spin-orbit coupling
in the 4f shell. As a result the effective s-f interaction
constant is (g—1)J instead of J, where g is the gyro-
magnetic ratio. It is generally believed that J is not
much affected by alloying. Since the factor (g—1) is
negative for light rare-earth metals and is positive for
heavy rare-earth metals, then depending on the sign of
J, we expect the resistance of the dilute alloys of one
group to increase with lowering temperature and that
of the other group to decrease. Therefore, a systematic
study of the resistivity of dilute rare-earth alloys should
furnish the most direct experimental test of the anoma-
lous scattering theory. As a by-product of this measure-
ment we can also settle the question about the sign of
s-f interaction in rare-earth metals.

Dilute magnetic alloys have another outstanding
property, namely their large and negative thermoelec-
tric power.!®* We shall not elaborate on the theories of
this effect except to point out that the model we used in
this paper does not explain this phenomenon. The nor-
mal scattering gives a very small thermoelectric power.
The contribution of the anomalous scattering is smaller
than the normal scattering term by roughly the same
ratio as their contributions to the electrical resistivity.
Hence, although the anomalous scattering gives rise to a
remarkable effect on the resistivity, its effect on the
thermoelectric power is totally insignificant. Recently
Kondo explained this effect by invoking a complex s-d
scattering potential.l®
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