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The variation of electrical resistivity of 99.9999%-pure gallium has been investigated as a function of size

in oriented single crystals for current Qow along the C axis. The crystals were in the form of wires of square
cross section and their dimensions varied from 1 to 0.1 mm. Analysis of the data based on the free-electron
model, assuming diffuse scattering at the boundaries, yields a value of 8.11X10 n 0-cm' for (pbfb)o „;,and
indicates that at O'K the mean free path of the charge carriers in the bulk metal is considerably in excess of
& cm. The temperature dependence of the size eGect seems to be in fair agreement with a theory due to Blatt
and Satz. Within the accuracy of our measurements the ideal bulk resistivity at low temperatures varies as
T, indicating that the electron-electron collisions may be contributing to the resistive processes. For low

values of a longitudinal magnetic 6eld, all the crystals showed a large decrease in resistance followed by an
increase due to bulk magnetoresistance, both at 4.2' and at 1,2'K. For the same two temperatures these
crystals also displayed a rather large magnetoresistance in transverse magnetic 6elds. Magnetomorphic ef-

fects for transverse fields were evidenced by the fact that the field dependence of magnetoresistance was less
than quadratic for all crystals until the cyclotron radius of the charge carriers acquired a value much
smaller than the cross-sectional dimensions of the specimens. The resistance of all the crystals was found to
be a complicated function of the measuring current. Calculations based on certain simplifying assumptions
show that for thin wires in which boundary scattering is predominant, the resistance decreases monotonically
as a function of the current and is due to the trapping of the charge carriers in the magnetic field generated

by the current. The details of the experimental curves can be reproduced reasonably well if the fall in re-
sistance due to the trapped particles is superimposed on the magnetoresistance caused by the self field.

I. INTRODUCTION

~~OR a free-electron gas the resistivity of a metal in
bulk can be written as

p b
——(P/ne') (1/l b), (1.1)

where n is the number of electrons per unit volume, e

the charge, P their average momentum, and lb the mean
free path. From Eq. (1.1), it is clear that pblb is an in-
trinsic quantity of the metal whose determination by
experimental means is of great interest. It not only
serves as a check on the electronic theories, but also
provides valuable information about the electronic
structure of the metals and enables us to determine the
mean free path of their charge carriers. pblb can be ob-
tained from the resistivity of a metal provided that a
specimen can be prepared in which the mean free path
of the charge carriers is known. This can be achieved by
using specimens in the form of wires or 61ms which are
so thin that the scattering of electrons at the surfaces of
the specimen, a process which is normally negligible in
comparison with electron scattering within the volume
of the metal, now plays a dominant role. The resistivity
of the metal is increased above its value in the bulk and
from this increase one can determine the ratio of the
bulk free path to the thickness of the film or the diam-
eter of the wire. This was first realized by J.J.Thomson'
in 1901 who gave an approximate expression for the
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increase in resistance of a thin 61m. Thomson's ideas
were conirmed by Patterson' who measured the resis-
tance of thin Bi 61ms. The value of lb, 10—' cm, obtained.
from these experiments was considered inconceivably
high in those days, and therefore further experiments of
this nature were abandoned.

Interest in the determination of mean free paths by
means of the size e6ect was revived in the early thirties
when quantum mechanics and the Pauli exclusion
principle predicted a high degeneracy for a gas of elec-
trons in a metal. For a Fermi gas, Eq. (1.1) becomes

pbl b Pt/rte', ——

where I'f now stands for the momentum of an electron
at the I'ermi surface. A high degeneracy means that the
variation of rt in Eq. (1.2), and hence of pblb with tem-

perature, is negligible. The change of resistivity as a
function of temperature in a metal would therefore be a
direct measure of the change in the mean free path of
its electrons. In particular, it was realized that at very
low temperatures, the electrons would be scattered

mainly by impurities so that the eRect of surface scat-
tering on the resistivity shouM be readily observable in
small specimens prepared from very pure metals.

Until. recently, all size-e8ect measurements showed
that commercially available "pure" metals had a high
concentration of impurities, and therefore in order to
see the e6ects of boundary scattering dimensions of the
order of 10 ' cm were required. Specimens of this size
could not be obtained in the form of single crystals.
Evaporated 6lms or extruded wires on which most of

' J. A. Patterson, Proc. Cambridge Phil. Soc. 11, 118 (1901).
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whence
l.=d/n

P~ =
P bib/lg =P b+n(P btb/d),

and this is of the same form as Eq. (1.3).a is a param-
eter whose value depends on the metal concerned, and
whose calculation requires (a) a supposition about the
character of the surface scattering, (b) an assumption
about the existence of a bulk mean free path, and(c) a
knowledge of the geometry of the Fermi surface. The
problem of how the electrons are scattered by the sur-
face of a metal is very difIicult. Theoretical papers on
this question do not go beyond, introducing a coefFicient
of specular reflection p, according to which a fraction p
of the incident electrons are reflected specularly whilst
the remainder are diffusely scattered in all directions.
This is the simplest way of covering the whole range of
cases lying between p=0 for which the surface is per-

' B. N. Alexandrov, Zh. Eksperim. i Teor. Fiz. 43, 339 (1962)
(English transl. : Soviet Phys. —JETP 16, 286 (1963)g.

'L. Tisza, Naturwiss. 19, 86 (1931).

the experiments were conducted were always poly-
crystalline. It was also doubtful whether their be-
havior was the same as that of the bulk metal. Recently,
however, size-effect measurements have received further
impetus because metals of a much greater degree of
purity have now become available. At low ternpera-
tures, the mean free path of electrons in these metals is
so large that the effect of boundary scattering can be
detected in single crystal wires of 1 mm diam. Recent
measurements by Alexandrov' have revealed mean free
paths of 1—2 mm in single crystals of Al, In, Pb, Sn,
Zn, Cd, and Bi at 1.5'K. Of course, once having de-
termined the quantity p&l& from size-effect measure-
ments on very pure metals, it then becomes possible
to use the bulk resistivity as a tool for studying the
eRect of impurities, lattice imperfections, and thermal
agitation upon the carrier mean free path.

It is an empirical fact that the results of size-effect
measurements on cylindrical wires of diameter d can be
represented by

Ps(~) =Pb(T)+(~/d) (1.3)

where pq(T) is the resistivity of the wire and pb(T) the
bulk resistivity. The term A/d, where A is a tempera-
ture dependent parameter, characteristic of a given
metal, takes into account the additional contribution
to resistance by the surface scattering of electrons.
Tisza' was the first to give a simple explanation of Eq.
(1.3) in terms of the mean free paths characterized by
different scattering mechanisms. Assuming that they
are additive, we would have

1/lg ——1/lb+1/l, ,

where lq is the effective mean free path in the wire, and
l~ and l, are the free paths for the bulk metal and sur-
face scattering, respectively. Now l„which must depend
on the diameter, can be written as pg = L(1—P)/(1+P) )(p bib/d) when d/lb((1 . (1.7)

MacDonald and Sarginson' have shown that Eq. (1.6)
also holds for a wire of square cross section if d repre-
sents the side of the wire, but Eq. (1.7) has to be modi-
fied to

(1—p) pblb 1
ps=/ /

X
k1+p) d 1.116

for —((1.
lg

A theory of surface scattering for circular wires
assuming an arbitrary Fermi surface and diffuse scat-
tering has been formulated by Alexandrov and Kaganov'
and by Bate, Martin, and Hille, ' but has not been

~ A. N. Friedman and S. H. Koenig, IBM J. Res. Develop. 4,
158 (1960).' R. B. Dingle, Proc. Roy. Soc. (London) A201, 545 (1950).' R. G. Chambers, Proc. Roy. Soc. (London) A202, 378 (1950).

D. K. C. MacDonald and K. Sarginson, Proc. Roy. Soc.
(London), A203, 223 (1950).

9 B. N. Alexandrov and M. I. Kaganov, Zh. Eksperim. i Teor.
Fiz. 41, 1333 (1961) /English transl. : Soviet Phys. —JETP 14, 948
(1962)j.

' R. T. Bate, B. Martin, and P. F. Hille, Phys. Rev. 131, 1482
(1963).

fectly rough and p= 1 for which it is perfectly smooth.
The wavelength of electrons at the Fermi surface of
most metals is of the order of a few angstroms, whereas
even in optically polished surfaces the asperities are a
few thousand angstroms. Under such conditions it is
difIicult to imagine how a surface could appear smooth
to an electron moving with the Fermi velocity. It is
therefore generally assumed that the scattering by a sur-
face is diffuse and p=0. Only for Bi is there evidence
that the carriers may be specularly refIected, at least
in part. '

The problem of the existence of a mean free path is

extremely complicated and can be justified only under
certain restricted conditions. Although a free path can
always be defined for scattering by randomly distrib-
uted impurity atoms, its concept for scattering by
lattice vibrations is strictly valid only when tempera-
tures are higher than the Debye temperature and the
high-frequency modes are fully excited. For the purpose
of electrical conductivity, however, it is generally con-
sidered reasonable to assume that a mean free path can
be defined for all temperatures and that the tempera-
ture variation of the path is the same as that of the
electrical conductivity. On account of the complications
involved, the possible variations of the free path as a
function of its position on the Fermi surface has always
been ignored in all theoretical calculations of size eRects.

A detailed analysis of the conductivity of small
cylindrical wires has been worked out by Dingle' and
by Chambers~ for an isotropic metal assuming a spheri-
cal Fermi surface. According to these authors the resis-
tivity for a wire of diameter d is given by

p&= pb+4(1 p)(pblb/d) —when d/l»)1 (1.6)
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worked out in a form which could be applied to a real
metal.

The above discussion clearly indicates that Eq. (1.5)
is still the most convenient expression for comparison
with observations. For the general assumption of a
spherical Fermi surface and diRuse scattering, it is
identical with Eq. (1.3) which is invariably employed to
represent the experimental results. The resulting straight
line whose slope is p&/& intersects the resistivity axis at
p&', it is thus possible to obtain /~.

Since p~l~ is invariant for a given metal, the slope of
this straight line should be independent of the ternpera-
ture at which the observations are taken. In actual
practice, however, this is not so. It turns out that the
slope steadily increases as a function of the temperature.
This was 6rst noticed in Hg and Sn by Andrew" and
subsequently in indium by Olsen, "who suggested the
following simple explanation.

At very low temperatures the normal electron phonon
scattering is essentially a small angle event of the order
of T/0& where 0~& is the Debye temperature. In order
to remove the momentum given to the electrons by the
electric field a large number of such collisions may be
necessary. In the bulk. metal, therefore, this would not
be very effective in causing resistance. In thin speci-
mens, on the other hand, it requires only a few col-
lisions to deflect the electrons to the surface where
diffuse scattering can cause an increase in resistance.
As a result, the decrease in resistivity as a function of
temperature is less rapid in small specimens than in the
bulk metal. This mechanism has been treated theoreti-
cally by Luthi and ryder, "Blatt and Satz, '4 and Azbel'
and Gurzhi. "Blatt and Satz derive an explicit rnathe-
matical relation which is easy to compare with experi-
ments. Assuming Mathiessen's rule to be true for differ-
ent scattering mechanisms, they give the following ex-
pression for the size and temperature-dependent resis-
tivity of a thin wire.

p&(T) =p +p (T)+(~/d)+L~7rfp (T)j"'
&(L(T/OD)(psls/d) j'~' for d/l&&1. (1.9)

In this equation, p„is the residual bulk resistivity, p, (T)
is the temperature-dependent bulk resistivity of the
ideal metal characterized by a mean free path, /, , 3
is the slope of the resistivity as a function of 1/d at
T=O'K, and 0'& the Debye temperature. At low tem-
peratures, electron-phonon collisions are by no means
the only events responsible for the ideal resistivity
p, (T). Contributions due to other processes are possible
and these are taken into account by introducing a frac-
tion f in the last term of the equation. One of these

"E R. Andrew, P. roc. Phys. Soc. (London), A62, 77 (1949)."J.L. Olsen, Helv. Phys. Acta Bly 713 (1958)."S.Luthi and P. Wyder, Helv. Phys. Acta BB, 667 (1960).
F. J. Blatt and H. G. Satz, Helv. Phys. Acta BB, 1007 (1960).

'5 M. Ya. Azbel' and R. N. Gurzhi, Zh. Eksperim. i Teor. I iz.
42, 1632 (1962). LEnglish transl. : Soviet Phys. —JETP 15, 1133
(1962)j.

additional processes may be the so-called umklapp or
reversal events. If, in a metal, the zone boundary is
close to the Fermi surface, then it is also close to its
mirror image in the periodically extended zone scheme.
Thus, a low-energy phonon with appropriate momen-
tum can bridge the small separation, causing an elec-
tron to undergo a Bragg reRection. This is called an
umklapp process. Contrary to the normal processes,
umklapp processes nearly reverse the direction of the
electron's velocity and therefore may play an important
role in the temperature-dependent resistance at low
temperatures.

The last term of Eq. (1.9) is usually only 5—10% of
p;(T), and it is not possible to distinguish between a d
or d 'f' dependence on the wire diameter for the limited
range of d '(0—100 cm ') usually used for size-effect
measurements. The effect of this term, therefore, is to
change the slope of the straight line represented by Eq.
(1.5), which now becomes temperature-dependent. It is
clear that Eq. (1.9) provides us with a method of de-
termining the ratio of normal events to any other scat-
tering events which may be present. This has been
applied to In" Hg'4 and Ais, for which the values of f
obtained are 0.04, 0.14, and 1, respectively.

In this paper we describe the results of the variation
of size on the resistivity of single crystal wires of gallium
in which the C axis coincided with the axis of the wire.
The results have been analyzed on the basis of the
theories outlined above.

Results are also given for the measurements of mag-
netoresistance of these crystals for longitudinal fields up
to a maximum of 1400 G and transverse fi.elds up to
400 G.

In a subsequent paper, similar results for the A- and
the 8-axis crystals will be discussed. A preliminary
account of these measurements has already appeared in
print "'

II. EXPERIMENTAL DETAILS

Specimen Preparation

The single crystals of gallium were prepared from
99.9999+% pure metal supplied by the Aluminum
Company of America, Pittsburgh 19, Pennsylvania.
They were in the form of wires with a square cross sec-
tion, and were grown in Lucite molds by injecting liquid
gallium into channels of appropriate size. The potential
leads were grown as an integral part of the crystals in
order to avoid the strain and damage which might have
resulted from later attaching leads of a different metal.
Figure 1(a) shows the bottom plate of a typical mold
with four spacers which form the necessary channels.
In order to obtain a square cross section, the width of
the central channel running across the length of the
mold was made the same as the thickness of the spacers

"M. Yaqub and J. I'. Cochran, Phys. Rev. Letters 10, 390
(1963).

rr J. F. Cochran and M. Yaqub, Phys. Letters 5, 307 (1963).
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FIG. 1. The construction of the mold and the resulting specimen.

by placing a wire of the right diameter in between the
spacers, which were then pressed firmly against the wire.
The mold was then completed by placing a second
piece of Lucite of the same dimensions as the first on
top of the spacers, and was held together by means of
bolts passing through both plates. Grooves cut into the
lower plate at L on either side provided the crystals with

heavy ends which served as terminals for the current
leads. A hole, centrally situated with respect to the
outer plates, was drilled at S and was just the right
size to take the nozzle of a 2-cc hypodermic syringe
used to fill the channels. The mold was now dismantled
and thoroughly cleaned with distilled water and pure
alcohol. It was then reassembled without the wire and
filled with molten gallium.

On account of its high purity, the liquid showed no
tendency towards solidi6cation several degrees below
its melting point, which is 29.8'C. The liquid could
therefore be injected at normal room temperatures.
After filling the mold, a seed. crystal of the desired
orientation was carefully placed at one of the ends
marked L in Fig. 1(a) and the liquid was made to
touch it by pressing on the piston of the syringe. This
immediately started the process of solidification, which
could be easily watched through the transparent mold
because the solid phase appeared darker in color than
the liquid. The velocity of growth is controlled by the
rate at which the heat of solidification at the phase
boundary can be conducted away. For a surrounding
temperature of 24'C, it took approximately one hour to
grow a typical crystal. The resulting crystal, shown in

Fig. 1(b), had a square cross section to within 0.001
cm, with two mirror surfaces where the molten metal
was in contact with the Lucite plates, and two matt sur-

faces where it was against the spacers. The spacers of
the first three of the six crystals listed in Table II were

of Lucite, and of the remaining three were of paper.
During growth, the liquid-solid boundary had a char-

acteristic shape for the three principal axes of the orthor-
hombic lattice. For growth along the C axis, the
boundary was either a line perpendicular to the direc-
tion of growth or an acute angle with its apex projecting
into the liquid. For growth along the 3 axis, the inter-
phase boundary was nearly a right angle, and along the
8 axis an obtuse angle which appeared nearly supple-
mentary to the acute angle of growth along the C axis.
This was of great practical importance in detecting
changes of orientation that sometimes occurred during
growth and in the initial stages of crystallization, when,
by merely looking at the boundary, it could be ascer-
tained whether the crystal had started to grow in the
desired orientation or not. When the process of crystal-
lization was completed, the bottom plate of the mold
was carefully removed, without disturbing the position
of the crystal with respect to the other plate. The
orientation of the crystal was then checked with an
x-ray back reaction Laue photograph of the heavy
current terminals at both ends. The Lucite plates were
originally very carefully machined and the central part
of the thin crystal was abvays kept exactly parallel to
their edges. The edges thus acted as reference planes for
determining the orientation of the crystal. Crystals
whose wires did not coincide with the crystallographic
axes to within a degree were rejected. In Fig. 2 are shown
back reQection photographs of three typical crystals
used in the measurements. The x-ray beam in (a), (b),
and (c) is parallel to the A, 73, and (. axis, respectively.
The photographs are reproduced here in order to show
the sharpness of the spots which indicate a high degree
of perfection of the crystals, and also to label the dif-
ferent axes unambiguously. There seems to be some
confusion in the literature about labeling the 2 and the
8 axis (Barrett" ).

The crystal was then transferred from the rest of the
mold and mounted on a single-crystal rectangular plate
of gallium (10 cm&&2.5 cm&(2 mm) in such a way that
the corresponding crystallographic axes in the specimen
and the plate were parallel. They were electrically in-
sulated from each other by a layer of thin tissue paper
held in position by a thin coating of GE-7031 varnish.
This procedure guaranteed the specimen to be strain
free on cooling to helium temperatures. Current was led
to the specimen by means of thick copper wires which
were soldered to the heavy ends.

In order to calculate the resistivities, the average
cross-sectional area of the crystals had to be deter-
mined accurately. It was computed, after all the elec-
trical measurements had been made, by weighing a
known length of the crystal to the nearest hundredth
of a milligram and using a value of 5.907 g/cc as the
density' of the metal at 20'C. Dimensions thus ob-
tained agreed to within a few percent with the diam-

"C. S. Barrett (private communication).
'9T. W. Richards and S. Soyer, J. Am. Chem. Soc. 43, 274

(1921).
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(a) (b) (C)

Fro. 2. Laue back reQection photographs of three oriented crystals. (a) Incident x-ray beam parallel to the A axis.
(b) Incident x-ray beam parallel to the j3 axis. (c) Incident x-ray beam parallel to the C axis.

eter of the wire used in assembling the mould. In cal-
culating the resistivities at different temperatures,
appropriate corrections for changes in lengths were
applied using Powell's" thermal expansion data between
293' and 77'K, and Barrett's (see Ref. 42) x-ray values
of the lattice constants at 2.35' and at 77'K (see
Table I).

Resistance Measurements

Conventional techniques were employed to measure
the resistance. The current was supplied from heavy-
duty car batteries, and was maintained constant to
0.1% by means of a homemade regulator designed to
operate over a range of 0—100 A.

The potential drop across the specimen was measured
using a Lindek circuit. Potential differences of 10—'pV
could be readily detected, and an emf of 1 pV could be
measured to 1%.This accuracy increased with the emf
until it reached 0.04% which was the precision of the
standard resistors used in the Lindek circuit.

In order to eliminate the effect of thermal emf's in the
circuit, the potential across the specimen was measured
for a particular value of the current in both directions,
and the two values of the resistances were averaged. In
actual practice thermal emfs never exceeded 0.5 pV.

Cryostat and the Measurements of Temyerature

The specimen, together with the plate on which it
was mounted, was suspended by means of a thin walled
stainless steel tube in a glass helium Dewar surrounded

by liquid nitrogen. The cryostat was pumped through a
Walker'-' pressure regulator by means of an oil rotary
pump with a displacement of 300 cu ft per minute. For
temperatures down to the lambda point, the bath was
stirred by a 36-mW heater at the bottom of the cryostat.

'0 R. W. Powell, Proc. Roy. Soc. (I,ondon) A209, 525 (1951)."E.J. Walker, Rev. Sci. Instr. 30, 834 (1959).

The vapor pressure of He was measured by means of a
mercury manometer down to 10 mm of Hg, and below
this pressure by an oil manometer. The pressures were
then converted into temperatures using the T58 scale.
Above the lambda point, corrections were applied for
the hydrostatic pressure of liquid helium measured from
the center of the specimen. It was estimated that the
uncertainty in the values of temperatures quoted for
small currents through the specimen are approximately
&0.005'K. The lowest temperature which could be
attained in this cryostat was 1.2'K. This high value
was due to a large heat inAux caused by conduction
along the two pairs of No. 22 copper wires used to lead
the current of the specimen. These were necessary in
order to investigate the dependence of the resistance on
the measuring current. Currents up to 50 A could be
passed through these wires without altering the tem-
perature more than 0.01'K. During the course of meas-
urernent, it was found that the 6eld generated by the
current through the specimen strongly infiuenced the
value of its resistance. To study this effect in detail it
became necessary to keep the return current leads as
far away from the specimen as possible. In practice,
the 6eld at the surface of the specimen due to the return
current was never allowed to exceed 3% of the field due
to the current through the specimen itself.

Magnetic Fields

The eGect of a longitudinal magnetic field on the re-
sistance of these specimens was studied by means of a
superconducting solenoid surrounding the specimen in
the helium bath. The solenoid was wound on a Bakelite
cylinder 10 in. long and 3 in. in diameter with 7200
turns of unannealed niobium wire of 0.004 in. diam. It
was capable of producing a maximum 6eld of 1380 G,
which was uniform to one percent over an axial length
of 2.8 in.
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TmLE I. Thermal expansion data used to calculate specimen dimensions at various temperatures,
a=hL/Lat is the linear expansion coellicient per degree centigrade Ls4 is the length at 24 C.

Crystal
orientation

A axis
B axis
C axis

Temperature between
0 and 30'C per

degree centigrade

gal=1.15X10 '
ay)=3.15X10 '
ay=1.65X10 5

Length correction 5L
for a temperature change

from 24'C to 77'K

(nL/Ls4)A= —2.16X10 '
(AL/L24)B —6 06X10 '
(AL/Ls4)o= —3.16X10 '

Length correction d,L
for a temperature change

from 24'C to 2.4'K

{hL/L24) g = —2.41X10 '
(aL/Lg4)s= —6.99X10 '
(hL/Ls4)c= —4.11X10 '

A transverse field was applied to the specimens by
means of a pair of Helmholtz coils designed according
to a method described by Garrett. "Each coil was 10 in.
in radius and the pair produced a field of 17.4 G/A up to
a maximum of 500 G. These coils formed a fourth-order
system in Garrett s notation, with a uniformity of 1/o
over a spherical volume of 6 in. diam.

R,= lim (V/I),
I ~p

(3.1)

where V is the potential and I the current.
Ep was determined for each specimen at seven difer-

ent temperatures between 4.2' and 1.2'K and 6tted to
the expression

(3 2)

Since it was difficult to obtain an accurate value of the
residual resistance E„directly from the observations,
the following procedure was adopted. An approximate
value for E„wasfirst obtained by plotting Ep as a func-
tion of temperature and extrapolating the curve to
T=O'K. We then plotted a graph of logipt E(T)
against logypT for a number of values of R, close to the
extrapolated value and on either side of it, and Anally

selected the value of E„which made this graph most
nearly a straight line. This is illustrated in Fig. 3 which
represents the observations for crystal C6'. In this way
we not only obtained the best value of E„,but also
were able to set a limit to the uncertainties involved.
In Table II, we tabulate the results of our measure-
ments for the six C-axis crystals. All the values of resis-
tivity at O'C and 7'7'K in this table agree with one
another and indicate that the crystals were free of de-
fects. Our values for these two temperatures agree with

sm M. 1VV. Garrett, J. Appl. Phys. 22, 1091 (1951).

III. RESULTS

The Mean Free Path of Electrons and the
Temperature Dependence of Resistivity

The resistance of the crystals was found to be strongly
dependent on the measuring current. This eGect and its
implications will be discussed in detail in a later
section.

In this section the resistances are the limiting resis-
tances defined by

I i [

I.5

I.O
I

I-
O

O

F 0.5

I 1

0 . 0.2

MS

Rr=l965 MICRO OHMS
ri R, = I97.0 MICRO-OHMS

I l l I l

0.4 0.6
LOglo T

Fn. 3. Temperature dependence of the resistance
of the C6' specimen.

~ M. Olsen-Bar and R. W. Powell, Proc. Roy. Soc. (London}
A209, 542 (1951).

those of Powell" and Olsen-Bar and Powell" who ob-
tained resistivities of 51.3&10 ' and 10.5&&10 0-cm
for O'C and 77'K, respectively.

For a given temperature the resistances were fitted to
Eq. (1.3) by the method of least squares. The calculated
slopes and the bulk resistivities given by the intercepts
at 1/d=0 are listed in Table III. These results are also
displayed in Fig. 4 for T=4.2' and O'K, along with the
most probable straight lines. The much larger scatter
in p„than in p4.2 is presumably due to the fact that at
lower temperatures the variation of the resistance as a
function of the measuring current becomes much Inore
pronounced and therefore it is more difficult to obtain
reliable values by extrapolating the resistance to zero
measuring current. The calculated values of the slope
and the bulk residual resistivity for the lower straight
line in Fig. 5 are 7.27&(10—"0-cm' and —3)&10 "
O-cm, respectively. Since a negative value for resis-
tivity is impossible, it is safe to assume that within the
accuracy of our measurements it is zero and this shows
that at T=O'K d/lb«1 for all the crystals. From Eq.
(1.8), we know that for wires of square cross section,
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TABLE II. Characteristics of the crystals used in this work. The crystals have a square cross section with d as the side of the square.
The specimens are labeled with a C to designate the direction of current fIow relative to the crystalline axes; the subscript is the speci-
men number; the superscript indicates that batch of gallium from which the specimen was grown. For temperatures between 1.2 and
4.2'K, the resistivities of these specimens were Gtted to an expression of the form p(T) =p„+nT"Q-cm.

Specimen symbol

Length
between
potential
probes at
O'K (cm)

d
at O'K

(cm)

1/d
at O'K p at O'C p at 77'K p at 4.2 K
(cm 1) (10 'Q-cm)a (10 'Q-cm) (10 'o Q-cm)

pratO K
(10 'o Q-cm) cx X10n

C12
C22

C41
C62
C61

0

+
0

7.55
6.83
6.84
4.80
4.48
4.06

0.102
0.0513
0.0373
0.0206b
0.0171
0.0115

9.82
19.50
26.80
48.54
58.63
87.00

51.9
~ ~ ~

52.0
51.3
53.6
52.2

10.46
10.46
10.64
10 46b
10.60
10.55

12.7
20.9
26.5
43.1
51.4
73.1

6.45 ~0.15
15.3 ~0.12
18.9 +0.10
34.7 ~0.1
40.9 +0.7
63.9 ~0.1

4.7 ~0.7
0.50~0.12
2.84 ~0.6
2.21 ~0.4
4.15 +0.4
2.21 &0.03

1.81 ~0.1
3.28 +0.16
2.29 +0.1
2.51~0.1
2.24 +0.1
2.60+0.1

a The specimens were not in good thermal contact with the ice bath; consequently these resistivities correspond to temperatures ranging from 1 to 5'C.
b This specimen was accidentally destroyed before its dimensions could be measured; d was therefore deduced from its resistance at 77'K using a value

of 10.46 &(10 6 Q-cm for the resistivity.

the slope is psls/1. 116 for free electrons. Therefore, we and Satz, which can be rewritten as
have

pdP') =»(2')+H0 &2&/d)

+e(0.811/d)' ']&(10 "Q-cm, (3.3)
(psls)o ——8.11&&10 "0-cm'

for current Qowing along the C axis.
If we substitute the appropriate values of the Fermi where the appropriate values of p~)~ and the slope

momentum and the number of electrons per unit volume have been substituted from our observations. Here
for gallium in 1.2 (see Appendix 8), we obtain

pyle= 4.42 X 10 0-cm e —
t ~8f p( T)j

lr(sZ'/e~)2l3)( 1010/3 (3.4)

This indicates that, for conduction along the C axis,
gallium contributes only 0.04 electrons per atom instead
of all the 3 available outside the closed 3d shell.

Although the accuracy of our measurements does not
allow us to determine a precise value for the bulk resis-

tivity at T=O'K, we can set an upper limit of 8X10—"
0-cm from the scatter of points in Fig. 4. This means
that the mean free path of electrons in the bulk metal
~1 cm. Roberts, '4 from measurements of ultrasonic
resonance in gallium, also concludes that the mean free
path of electrons at 1.5'K is of the order of 1 cm.

From column 3, Table III, we And that the slope A

steadily increases with temperature. In order to test
the validity of Olsen's" explanation for this increase, we

compare our results with Eq. (1.9) derived by Blatt

From Eq. (3.3), it is clear that a plot of L10' ps(T)—(0.727/d) j against (0.811/d)' ' should give a straight
line whose slope is e and whose intercept at 1/d= 0 gives
the bulk resistivity. Figure 5 shows the results of this
calculation for different temperatures. The straight
lines in this 6gure have been drawn by calculating their
slopes by the method of least squares. The agreement,
which is extremely good at 4.22'K, gets steadily worse
as the temperature is lowered. This may be partly due
to the fact that the lower the temperature the lower is
the accuracy with which we could obtain limy p(V/I).

The bulk resistivities and the slopes obtained from
these calculations are tabulated in columns 4 and 5 of
Table III. Here ps(T), the bulk resistivity at a given
temperature, is the sum of two terms and can be written

TAnLz DI. Calculated slopes and the bulk resistivity given by the intercepts at 1/d= 0.

pd, versus 1/d

Intercept at
1/d =0 Slope A

(10 "0-cm) (10 "0-cm')
Slope

o.nr~ Calculated by using
10"pq—

~

versus (0.811/d)'" p~(T) =2.5T 'X10 "0-cm
d j

Intercept at
1/d =0 Slope

py(10 '0 0-cm) &cale

4.22
3.56
3.02
2.60
2.26
1.80
1.20
0

5.17
3.47
2.46
1.76
1.28
0.81
0.30—0.32

0.787
0.762
0.754
0.738
0.733
0.726
0.720
0.727

4.44
2.84
2.02
1.38
0.95
0.62
0.28

0.33
0.21
0.12
0.09
0.06
0.02—0.02

0.20
0.14
0.10
0.076
0.052
0.032
0.016
0.000

24 B.W. Roberts, Phys. Rev. Letters 6, 453 (1961).
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as
Pb(T) =P'P')+P. , 4.22'K

where p;(T) is the ideal resistivity which is temperature-
dependent, and p„is the residual resistivity due to im-
purities and lattice defects.

Although there is no direct way of separating these
two terms from the above data, we can utilize the fact
that the ideal resistivity, for a limited region of tempera-
ture, is expected to follow a power law in temperature,
which means that a plot of log/pb(T) p„)—, with a
correct value of p„,against logT should give a straight
line. In Fig. 6, therefore, we have plotted these two
quantities for the two arbitrarily chosen values 0 and
5)&10 "0-cm for p„.Since it is impossible to imagine a
process which would enhance the temperature de-
pendence of the ideal resistivity as the temperature falls,
it is clear that within the precision of our measurements
the residual resistivity is zero. A conservative upper
limit of 2)&10—"0-cm would imply a mean free path of
4 cm as a lower limit for scattering by impurities or

x 60xlo
O

O

I- 40

(0
tLI
lK 20

0
20 40 60

lra (CM I)
80 loo

FIG. 4. Resistivity of C-axis wires as a function of the reciprocal
of the specimen dimension d at a constant temperature. —4.2'K
O—O'K.

lattice defects. Figure 6 also shows that the ideal resis-
tivity of gallium varies at T'4 between 2.26' and
4.2'K.

Theory predicts that for normal electron-phonon
collisions the ideal resistivity should be proportional
to T' at low temperatures, and this is very nearly true
for most pure metals. For gallium, both Olsen-Bar and
Poweliss and Weisberg and Josephs" have established a
variation proportional to T4' for a temperature range
of 5 to 20'K. Peierls" originally pointed out that in a
pure metal the resistivity, at suflciently low tempera-
tures, should be governed by electron-electron collisions
and a T' variation should describe the ultimate be-
havior of the ideal resistivity. Pines" has pointed out
that the conditions for observing this contribution would
be most favorable in a metal which has an impurity

"L.R. Weisberg and R. M. Josephs, Phys. Rev. 124, 36 (1961)."R.E. Peierls, Qttantttnt Theory of Solids (Oxford University
Press, London, 1955).

'7 D. Pines, Eternentary Estcitations il Solids (W. A. Benjamin
Inc., New York, 1963).

~lo
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O

6'K

2'K
60'K
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1.80'K
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0 IO I5

x= (0.8 l l/d)

20 25

Fro. 5. A comparison of our results with Eq (3.3.).
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Fzo. 6. The temperature dependence of the bulk resistivity p&.
The circles assume the residual resistivity to be zero and the
squares assume it to be 5X10 "Q-cm.

concentration of the order of 10 ' and is strongly aniso-
tropic. Both these conditions are well satisfied in these
gallium crystals and therefore it is reasonable to assume
that the T' temperature dependence is due to elec-
tron-electron scattering becoming more dominant than
the normal electron-phonon collisions. It is interesting
to note that the last three points at the low tempera-
ture end of Fig. 6 lie on a straight line which follows an
exact T' dependence. This, however, is of no great
significance because it is in precisely this region that the
disagreement between theory and experiment is most
marked and the extrapolated values of p~ are likely to
be in error. Clearly the question cannot be finally settled
unless this region is investigated in greater detail, with
much greater precision and larger specimens. %e have
also calculated the temperature dependence of [he ideal
resistivity from the intercepts of the direct pa versus 1/d
straight lines (column 2, Table III) and find that it
varies as T"'. Although it is realized that this value,
which neglects the temperature increase of the slope, is
likely to be even less accurate than the preceding value,
the main conclusion which seems inevitable, and which
must be emphasized, is that the ideal resistivity is
varying very nearly as predicted by electron-electron
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10,000—

1000
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E
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O. I

O.OI j.
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T( K)

I zG. 7. The bulk mean free path of electrons as a function of
temperature. l~ represents normal electron-phonon collisions
and /„represents collisions vrhich may be umklapp or electron-
electron.

interaction. However, in this temperature region, the
possibility of contributions due to electron-phonon
umklapp processes cannot be completely neglected. In
all probability the temperature dependence in the entire
region is due to the combined efforts of electron-
electron and electron-phonon umklapp and normal
processes.

According to the above interpretation, the normal
electron-phonon collisions would dominate the resis-
tance in the temperature range in which Olsen-Bar and
Powel12' and Weisberg and Josephs" have shown a
T4' variation, whereas at lower temperatures the
electron-electron events would become more important.
Neither Olsen-Bar and Powell nor Weisberg and Josephs
could have observed this because their gallium was
much less pure and its resistance had already approached
a constant value at 4.2'K. I.et us suppose that theT"
variation is due to a combined action of the normal and,
for lack of a better term, abnormal processes. The ideal
resistivity can then be written as

(T) PTm++T4. 5 (3.6)

on the assumption that T4' is a true representation of
the normal electron-phonon contribution. Substituting
the values of p, (T) from our observations we can deter-
mine numerical values of P, y, and m. As a result of this
calculation, Eq. (3.6) becomes

p;(7")= (2.5T4 5+190Tr 9) X 10 "0-cm. (3.7)

Once again, T" is so close to T' that it is difficult not
to attribute this to an electron-electron resistance. There
is no general rule for determining the temperature varia-
tion of electron-phonon umklapp processes, and it is
possible that their contribution by coincidence also
follows a T' variation. However, these processes by their
very nature should depend on the geometry of the Fermi
surface and therefore it is possible that in gallium, whose
Fermi surface is very anisotropic, their contribution
along different axes would be different. Our observa-
tions for the other tvro axes, details of which are to be
published in another paper, also show a variation very

close to T' and the conclusion that this is a consequence
of electron-electron collisions seems unavoidable.

From Eq. (3.7) and the experimental value of(ptlq)c
obtained above, we have calculated separately the mean
free paths for the two mechanisms as a function of tem-
perature. The result is illustrated in Fig. 7 which clearly
shows that below O'K, the resistance is no longer
governed by normal electron-phonon collisions and for
this reason electron-electron or umklapp processes can
become effective. At higher temperatures, normal proc-
esses begin to take over and achieve complete domi-
nance at about 10'K. It is now clear why a mean free
path of the order of 1 mm due to impurities makes it
impossible for the temperature to change the resistance
of gallium below O'K.

Finally, we can compare the values of the slope e

(columns 5 and 6, Table III) obtained directly from the
size effect observations with those obtained by sub-
stituting the first term on the right-hand side of Kq.
(3.7) in Eq. (3.4) with f=1, and using Seidel and
Keesom's" value of 300'K for the low-temperature
Debye O~ of gallium. The temperature variation of this
slope is proportional to T"~ for the calculated values
and to T" for the observed (see Fig, 8). This dis-
crepancy, which also exists for In and Hg, " stresses
the fact that the Blatt and Satz calculations are very
approximate.

1.5—
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O

I.O-
O

Ql
O

0.5—

0
0 0.2 OA

LOQIOT

0.6 0.8

Fro. 8. Temperature dependence of the coefficien e of Fq. (3.4)."G. Seidel and P. H. Keesom, Phys. Rev. 112, 1083 {1958)."D.K. C. MacDonald, Nature 163, 637 (1949).

Longitudinal Magnetoresistance

Working with thin sodium wires, MacDonald" in
1949 was the first to discover that the resistivity, in-
stead of increasing as for the bulk meta1, actually de-
creases with the application of a longitudinal magnetic
field. This was attributed by him to the lengthening of
the effective mean free path caused by the spiral motion
of the electrons around the lines of the magnetic field.
Chambers~ has developed an exact analysis of this effect
based on the free electron model assuming diffuse scat-
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FIG. 9. Normalized resistance as
a function of the longitudinal field
times the dimensions of the cry-
stals. Symbols are identified in
Table II.
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tering at the boundaries. The final results derived by
Chambers depend on two parameters, d/rs where 1's

is the cyclotron radius, and d/ls the ratio of the di-
mensions of the wire to the mean free path. For a fixed
value of d/ls provided d/ls(1 the resistance begins to
decrease with increasing field until it reaches the bulk
value as d/rs tends to infinity. The smaller the ratio of
d/ls, the more rapid is the initial rate of decrease of re-
sistance as a function of d/rs. It must be pointed out
that Chambers' theory is based on the free-electron
model and neglects the phenomenon of bulk magneto-
resistance shown by all metals in varying degrees.

Since MacDonald's initial discovery, the effect has
also been observed in Sb', Bi" In" ",Sn, Zn, Al,
Cd, and Pb'4 more or less in accordance with Chambers'
predictions.

We have also investigated the effect of a longitudinal
field on the resistivity of our crystals at 4.2' and 1.2'K
up to a maximum of 1400 G. The field was parallel to
the axis of the crystals to within 2 or 3'. In order to
compare our results with those of Chambers we have
plotted our measurements in Figs. 9 and 10 showing
Rs(H)/R„where R, is the limiting resistance of Eq.
(3.1) and Rs(H) the same in a field H, as a function of
the product of the magnetic field strength and the size

"M. C. Steele, Phys. Rev. 97, 1720 (1955).
3' J. Babiskin, Phys. Rev. 107, 981 (1957).
8' P. Cotti, Helv. Phys. Acta 33, 517 (1960)."C. Froidevaux, J. R. Keyston, P. Cotti, and J. L. Olsen, in

Proceedings UII International Conference on Loz Temperature
Physics, Toronto, D'60 (University of Toronto Press, Toronto,
1960).

'4 B.N. Alexandrov, Zh. Eksperim. i Teor. Fiz. 43, 1231 (1962)
LEnglish transl. : Soviet Phys. —JETP 16, 871 (1963).

of the wire. Since H er 1/rs, our way of presenting the re-
sults is equivalent to that of Chambers. As expected,
the resistance does indeed drop rapidly as a function of
the field, but instead of approaching a limiting value it
begins to rise after going through a minimum. Initially,
it also shows a maximum which can be seen more clearly
in Figs. 11 and 12, where the low-field values have been
replotted on an enlarged scale. Both these features,
which are not predicted by the free electron theory, are
exhibited by all the above metals except Na and can be
attributed to the presence of bulk magnetoresistance.
As soon as the field is applied, the charge carriers begin
to spiral round and the resistance tends to decrease; at
the same time the bulk magnetoresistance also begins to
play its part. Therefore, the net change in resistance
which we observe is due to the combined effects of the
two phenomena taking place simultaneously. In other
words, pg(H)/Pz, which we plotted in Fig. 9, is in reality
the product of pd(H)/pq, which Ga would show if some-
how we could suppress its bulkm agnetoresistance, and
P&(H)//pz which is the ordinary bulk magnetoresistance.

In order to show that these two phenomena acting
simultaneously do indeed give results similar to those
of Fig. 11, we have plotted in Fig. 13 the quantity

P&(H)/P& &d(H)/Pb(H))PPs/PdlLP&(H)/Ps) (3 8)

for Ga, assuming different values of d and d/ls. It was
assumed that the first factor in Eq. (3.8) is given by
Chambers' free-electron theory using the value ro
from Appendix B, the second factor was set equal to
1.116 d/Es LEq. (1.8)j, and the last factor was obtained
by extrapolating to zero magnetic field the actual bulk



A 1192 M. YAQUB AND J. F. COCHRAN

1.2

I.O

0.8

O
O

z 06
0

Fxo. 10. Normalized resistance
as a function of the longitudinal
field times the dimensions of the
crystals. Symbols are identified in
Table II.
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magnetoresistance shown by our crystals at higher
values of the longitudinal field. In spite of the fact that
Chambers' theory is not strictly valid for complicated
metals such as gallium, Fig. 13 does indeed display all
the features observed in the experimental curves. The
maximum appears in the beginning because initially the
bulk magnetoresistance rises more rapidly than the fall
due to boundary effects. However, the rate of change of
the bulk resistance with 6eld is independent of size )

whereas the rate of decrease of resistance with the field
becomes more rapid as the ratio d/lq becomes smaller.
The result is that for smaller specimens the maximum is
less marked and appears at a lower value of the field.
For the purpose of direct comparison with the calcu-
lated curves, we have also plotted in Fig. 13 the experi-

mental points at 1.2'K for the C&' crystal whose di-
mensions are the same as those for the middle curve and
whose ratio of d/lt, from the simple size-effect rneasure-
rnents is known to be =1/100. The much more rapid
drop in its resistance compared with the middle curve
indicates that the average momentum of the electrons
for a plane perpendicular to the C axis is about half the
free-electron value. This has been estimated from the
low-6eld region in which the experimental points and
the middle curve in Fig. 13 diGer by a factor of about 2
in the value of the Geld for the same relative drop in re-
sistance. The agreement between the points and the
curve improves as we go to higher fields but this has no
particular significance because the latter part of the
calculated curve has been obtained by using the actual
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Fzc. 11.Normalized resistance as a function of the longitudinal
field times the dimensions of the crystals for low values of the
Qeld showing an initial in&zt„as|;in the resistance for every crystal.

FIG. 12. Normalized resistance as a function of the longitudinal

Geld sh
field times the dimensions of the crystals for l 1 f h

e s owing an initial increase in the resistance for every crystal.
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pendence of the transverse magneto-
resistance. The symbols are identified
in Table II. Open symbols are for
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morphic e6ects eventually disappear when the cyclotron
radius of the charge carriers become much less than the
dimensions of the specimen. At and beyond this stage
the magnetoresistance would be expected to regain its
bulk Field dependence. Such behavior is indeed displayed
by most of our specimens in a transverse field as can be
seen in Fig. 14, which is a plot of logis(B, R/R)against
logyoIId. A transverse field up to a maximum of 400 G
was applied to each specimen and vvas parallel to the A

axis to within about 2 deg. Measurements were made
both at 4.2' and 1.2'K. At low values of the field, each
specimen seems to follow a different curve. However,
at a value of approximately 5 for IId, all curves, after
changing from concave down to concave up, bend
sharply upwards. Beyond this point they appear to be
parallel to each other and we conclude that in this re-

gion they represent the bulk magnetoresistance only.
The appearance of the bend for the same value of IId,
which is proportional to d, ro, is a clear indication of the
fact that the bulk behavior is reached when the cyclo-
tron radius of the charge carriers attains a fixed ratio
with respect to the dimensions of the specimen. Accord-
ing to Kohler s rule, the magnetoresistivity function,
AR/R, depends upon magnetic field and mean free path
through the product (H/b). The data for all of the speci-
mens at 1.2'K fall very nearly on the same curve, from
which it can be concluded that the specimen walls are

playing the role of a mean free path even for the speci-
men 1 mm on a side (the motion of the carriers parallel
to the magnetic field is unaffected by the field). This is
additional evidence that the mean free path in these

gallium crystals at 1.2'K is very long.

If d/rs)) 1 at Hd= 5, then it is clear that on an average
the orbit of electrons in a plane perpendicular to the A
axis has a momentum which is at least 10 times smaller
than the momentum of the free electrons at the Brillouin
zone. In view of the complexity of the gallium energy
bands (see Slater, Koster and Wood" and Reed and
Marcus" ) this result is not too unexpected. It is also
consistent with the results of de Haas —van Alphen effect
on Ga reported by Shoenberg, 4, Condon, " and
Goldstein, '~ who show that for di6erent directions of the
magnetic 6eld, the momentum ranges from one half to
one thousandth of its value at the Brillouin zone. If we
extrapolate our results for the 1-lnm crystal at 4.2'K to
a field of 12 kG, we get dR/Rs ——6&&10'. For a 1-mm
crystal under identical conditions, Reed and Marcus"
obtained a value of 4)&104. Considering that their Ga
was not as pure as ours, the two values are in reasonable
agreement.

Current Dependence of the Resistance

The resistance of our crystals, defined as R= V/I,
where V is the potential and I the current through the
specimen, was found to depend in a complicated way on
the current. This can be seen for all six crystals in
Fig. 15.

It is clear that such complex variations could not be
entirely due to the Joule heating of. the crystals by the
current. However, it was necessary to make sure that

38 J. C. Slater, G. F. Koster, and J. WVood, Phys. Rev. 126, 1307
(1962).

"W. A. Reed and i. A. Marcus, Phys. Rev. 126, 1298 (1962)."D.Shoenberg, Phii. Trans. Roy. Soc. (London), 245, 1 (1952).
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Fxc. 15. The current dependence of the resistance for the C-axis crystals of dift'erent size.

heating contributed nothingto the observed phenomena. irrespective of any changes in the resistance of the cir-
The current regulator was designed to keep the value of cuit. If, at a certain stage, the dissipation of Joule heat
the current through the crystal at a pre-selected value, became large enough to cause a rise of temperature in
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Fro. 16. nR/Rb as a function of the current
for the six crystals at 4.2 K.

the specimen, its resistance also increased as a conse-
quence. With a constant current, the dissipation of heat
continued to increase so rapidly that within a fraction
of a second, the crystal reached its melting point and
was destroyed. At the cost of destroying several crystals
in this way, we arrived at a value of 0.4 W/cm' at 4.2'K
for the critical power density below which the tempera-
ture of the crystal did not rise above that of the bath.
In actual measurements, therefore, we never exceeded
0.21 W per cm'. Here, it might be of interest to mention
that our critical value agrees with the observations of
Eastman and Datars, 4' who found that the resistance of
single crystals of Sb, Bi, As, and Te displayed an anomal-
ous increase at 4.2'K if the power input exceeded 0.5
W/cm'.

In a preliminary account of this phenomenon, the de-
pendence of the resistance on the measuring current was
attributed to the magnetoresistive effects of the field

generated by the measuring current itself. The bulk
magnetoresistance is always positive in all metals and
for small fields always increases as a function of the
field. It is therefore clear that the initial fall in the resis-
tance, which is characteristic of all specimens at 1.2'K,
could not be caused by the phenomenon of bulk mag-
netoresistance. However, it is well known that in speci-

'P. C. Eastman and%. R. Datars, Cryogenics 3, 40 (1963).

mens of small size, the effect of the boundary scattering
can be altered considerably by the bending of electrons
round the magnetic field. This, in general, leads to a
nonzero change in resistance which may be positive or
negative. The details of the phenomenon strongly de-
pend on the shape of the specimen and the relative
configuration of the current and the magnetic field.
They are purely classical in nature, and entirely differ-
ent from the bulk effects. We believe that a joint action
of these so-called galvanomagnetomorphic effects and
bulk magnetoresistance is responsible for the complex
nature of the curves in Fig. 15.

The field due to the current is essentially a transverse
field which has the property of deflecting the electrons,
moving opposite to the direction of the current, away
from the walls. Thus, the mean free path, which in the
absence of a field will be limited by scattering at the
walls, is lengthened and causes the resistance to
decrease.

In Fig. 16, we have plotted AR/Rs for all six speci-
mens at 4.2'K. The characteristics of the curves in this
figure can be summarized as follows:

(1) Towards the end, each curve has a sharp upward
bend which becomes more pronounced as the specimen
size is decreased.

(2) The smaller the specimen the lower is the value of
the current at which the bend appears.

(3) The smaller the dimensions, the lower is the value
of AR/Rs at the bend.

(4) The slope for small values of the current, which is
positive in the larger specimens, decreases as the di-
mensions become smaller; for the two smallest speci-
rnens, the initial slope is negative and a distinct mini-
mum appears at about 2.5 A.

At a fixed temperature, reducing the size of the speci-
ment reduces the ratio d/lb In a single .specimen, this
ratio can be reduced by lowering the temperature. If
the change in the characteristics of the curves described
above is a consequence of the reduction in d/lb only,
then in one and the same specimen, we should expect a
curve for a lower temperature to be similar in shape to a
curve for a smaller specimen at a higher temperature.
That this indeed is the case can be seen in Fig. 17,
which displays AR/Rp against I for the Cs' specimen at
different temperatures; curve 2 of this figure is re-
remarkably similar to curve 5 of Fig. 16. Since the
lowering of the temperature reduces the ratio d/Lb much
more drastically, we find that in curve 3, which is for
2'K, the initial negative slope is steeper and the sharp
bend appears at a still lower value of th, e current.
Further lowering of the temperature makes the initial
drop even more rapid and two additional minima make
an appearance.

The Fermi surface of gallium is very complicated.
According to Reed and Marcus, " it is composed of
seven bands. There are three hole bands and three elec-
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Fro. 17. nR/Rz as a function of the current for the C&' crystal J
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OA

tron bands and one band which has both holes and elec-
trons. The number of holes and electrons is very near y
equal and the Hall fields for a given current density are
rather small. For current along the c axis and a magnetic
6eld in the AB plane, EIr/E~r & 1. Although it is almost

impossible to develop a theory which would fully ac-
count for all the details for the curves in Fig. 16,
approximate calculations of the resistance as a function
of the current in thin cylindrical specimens can be ma e
on the basis of the free electron model (see Appendix A).
For a fixed value of the current, a fraction of the charge
carriers becomes trapped in the magnetic field gener-
ated b the current and is unable to collide with the
walls. These carriers are then able to travel the'
ae y

1 heir full
bulk mean free path and their contribution to the cur-
rent is considerably increased. As the current increases,
more and more of the particles are trapped and the re-
sistance steadily decreases as a function of the current.
The results of our calculations for three different values
of lb/2a where a is the radius of the wire are shown in
Fig. 18.

ricalAlthough the above calculations are for cylindrica
wires, it seems reasonable to assume that the results
would not differ qualitatively for a square cross section.

It is clear from Fig. 18 that a theory based upon free
electrons cannot explain the increase of resistance with
curren at t large currents observed in ga ium wires.
This increase of resistance is undoubtedly ue to a u
magnetoresistive effect since the resistance of gallium
increases very rapidly if a transverse magnetic field is

applied to a specimen carrying current parallel to
the C axis (see the previous section, and Reed and
Marcus" ). The simplest way in which to incorporate a
bulk magnetoresistive effect into the simple theory
outlined in Appendix A is to require the resistivity of

I ~h/2o =3

4

Fro. 18. Calculated values of Ap/pz(0) for cylindrical wires as a
function of n=oeff&/nssoc, which is directly proportional to the
current. lq is the bulk mean free path and 2a is the diameter.

ps(0)

1+/(lb/2a) —1jF(o.)
(3 9)

where n=(eI/SP~c) =0.018 I, and F(n) is defined by
Eq. (A9). The current I is in arnperes, and Pr, c, e are,
respectively, the momentum of the charge carriers at
the Fermi surface of the metal, the velocity of light, an
a constant numerically equal to the magnitude of the
electronic charge. Since F(n) —+ 1 as o. —&~, we have

lim~ ~ p =ps(0) 2u/lb =p b(0) .

Consequently if 3.9 is multiplied by the ratio pb(H)/
(0) will a roach the required magnetoresistivi y

)

i itpb, pwl a
limit for large currents. There is no reason to ppsu ose
that this bulk resistivity ratio will be the same as that
observed when a uniform transverse fmld is applied to
the specimen; the carriers which contribute to it rep-
resent a limited number of states on the Fermi surface.
Nevertheless, we have plotted in Fig. 19 the product of
3.9 and a bulk magnetoresistivity function which is
similar to experimental curves obtained by applying an
external transverse field. The curve so obtained shows
a remarkable resemblance to the observed variation o
resistance with current for the larger specimens at
4.2'K. Moreover, if the reasonable assumption is ma e
that the bulk magnetoresistance function for current
generated fields depends upon the magnetic field and the
bulk mean free path of the carriers through the pro uct
(Hlb), it follows at once that the ratio 3p/pa(0) depends
upon the dimensions of the wire only through the ratio
(lb/2a) in agreement with the observations.

The simple model sketched above cannot explain the
additional minima which are apparent in the curves o
Fi s. 16 17 and 20. These are presumably due to other
carriers having a different Fermi momen um
probably a different mean free path from those carriers

the wire, p, to become the bulk resistivity pb(H) for
large currents. From Appendix A, Eq. (A7),
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For a given specimen, the position and magnitude of
these kinks were reproducible to within 0.1%. Apart
from the fact that they seem to appear for relatively
high current densities, we have not been able to cor-
relate their existence with any other parameter. One
notable feature which was associated with them is as
follows.

For a given current the potential drop across the
specimen was measured by passing the current in the
forward and reverse direction and each point in the
curves of Fig. 15 represents the mean of the resistance
obtained from these two observations. In general, the
agreement between the two values of the resistance was
better than one percent. However, in the vicinity of
these kinks the two values sometimes differed by as
much as 3%. Since these anomalies were not found in
every crystal, we believe that they may be associated
with some unknown defect in a given specimen.
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FIG. 19. Graph showing the resultant of the bulk magneto-
resistance and the magnetomorphic decrease in resistance as a
consequence of the trapping of the charge carriers.

which are responsible for the first minimum. The theory
also does not explain the sharp kinks in the resistance
current curves at 1.2'K displayed by specimens C2'
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APPENDIX A: APPROXIMATE CALCULATION OF THE
RESISTANCE OF A THIN CYLINDRICAL WIRE AS

A FUNCTION OF ITS MEASURING CURRENT

Let II G be the field due to a uniformly distributed
current I A across a cylindrical wire of radius a. At a
point I' whose distance from the axis of the wire is r,
H is of magnitude H,r/a, where Ho I/5a, and is-—
directed along the tangent to the circle of cross section
through I'.

Let r, m, and s denote the cylindrical coordinates for
the wire, where the positive s axis is along the axis of the
wire in the direction of the current Aow. Consider a par-
ticle whose position at time t=0 is specified by r= $,
m=0 and s=so. Suppose that the particles' velocity
vector at t=0 is of magnitude vo, that it is inclined at
an angle O~ to the positive z axis and. that its projection
in the plane perpendicular to the axis makes angle 4
with the cross-sectional radius. The initial velocity
components are then given by

v„=dr/dt=vo sinO cosC,

v =re/dt= vo sinO sinC,
and

v, = dz/dt =vo cosO.

-MO l i i » I I i I i l

5 10 15 20
I (Amps)

FIG. 20. AR/R0 as a function of the current
for the six crystals at 1.2'K.

Vfe assume that there are no Hall fields acting on the
carriers, and neglect the force due to the electric field

which causes the current to Qow; thus, the force acting
on the particle is assumed to be purely magnetic. In a
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) coso+—

(
—

i i
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) (

—
) . (A3)

Here I4 mvoc/eHO, is——the cyclotron radius of the charge
carriers in the maximum 6eld IIp.

The time taken by the electron to reach the cylinder
wall is given by

Let
(dr/dt)

(A4)
([2/m][EO —U(r)]) '"

x= r/a, V= 5/a,
gi'

p

6p=
2mvp'1

V=
~PM'p"

specimen of diameter 10 ' cm Fe/FII=10 '. We also
assume henceforth that the particle considered is an
electron: the working for a positively charged particle
is entirely analogous. Let m denote the mass of the elec-
tron and e the absolute value of its charge. Then an
integration of Newton's laws of motion, together with
initial conditions, gives

—',m(dr/dt)'= Eo—U(r), (A1)
where

F = -'mi~o'{ sin'0 —(a/R ) ($/a)'cos0~
—4i(a/Eo)'-'(&/a)') (A2)

and

eo—v(1) =0, which yields

n, =- [cosO+(1—y' sin'0~ sin'C)"']
~2

3 Re
-(r) =- leff sinO~ cos'O~dO~

2 Rsvp p

(AS)

Here again an approximation has been made. We
assume that the energy gained by the particles from the
electric 6eld is not affected by the spiralling of the charge
carriers round the magnetic lines of force and that
DE= el,n cosO'X (electric field). The assumption is crude
but should not affect the results qualitatively.

Substituting the value of l,ff from above we have

since we require the positive root.
The particles can now be divided into two groups.

The first group contains particles which are "trapped, "
i.e., which make no wall collisions; this group will be
assigned the bulk mean free path /b. The second consists
of "untrapped" particles, which collide with the walls;
we shall assume that these have an effective mean free
path 2a. It is of course assumed that lb/2a))1.

Since the expression for n, is not very sensitive to C,
we shall assume for simplicity that C =0. In this case,
given a value of the current, or equivalently given a
value of n, we can define a critical angle 0'„where

0",= cos '{-'(1—y')n —1)

such that for all 0' with 0~,&0~&~, the electrons are
trapped and have a mean free path lb.

The conductivity at the point f=ya is given by the
Chambers tube integral"

Eq. (A4) then becomes

dx

3 se
-(~) =- 2a sinO" cos'O~dO~

2 esp p

where
&p [e,—~(x)]'"

' + li, sinO cos'OdO

and
eo = sin'0~ —n'r' cos0~ —-'n''r'

i~(x) = (y/x)' sin'0. sin'C+-'n'x4

se a

mVp

lb
1—cos'0",+—(1+cos'0~, )

28
(A6)

—[n cos 0~+-'o'y']x'.

Now, if eo —n(x) &0 at x=1, the particle cannot reach
the wall of the cylinder, and in this case its contribution
to the current will clearly be much greater.

$Q
—o(1)= —i~&(j —y&)2+(y cos(&)(1—y~)

+sin'0~(1 —7' sin'4 )

Note that 0&y& 1 and that n depends on the current
through the wire.

We see that for any pair of angles 0~ and C there will

be a critical value of the current, such that for any
larger current the particle cannot reach the wall. The
corresponding critical value of o. is given by setting

As n —+ 0, 0', —+ s. and o ($) —& oe(0), where oe(0)
=(rte'/moo)(2a) is the conductivity of the wire extra-
polated to zero current.

Thus

(i)=
l
i+—)+(—&)

A 3Q
X —(1—v')' — (1—v')'+2~(1 —v') —1

-8

since cosO~, =-,'(1—y')n —1. The average conductivity,
o, must be obtained by taking the average of o($)
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across the section of the wire. Thus TABLE IV. Resistivities for current Row along the principle axes.

2zro ($)$d$,

~(v)vdv,

Axis
T=20'C

(0-cm)

17.27X10 6

7.85X10 '
55.53X10 '

T=O'C
(rl-cm)

15.8 X10 '
7.17X10-'

51.3 X10 '

T= —195.8'C
77.4'K

(0-cm)

3.04X10 '
1.42X10 '

10.5 X10 '

o (x)dx, where x= 1—y'

For any given n, all particles are trapped if x= (1—y')
)4/cz. In this case the conductivity is just the bulk
conductivity o b= o z(0) [lb/2a].

On evaluating the integrals for o-, we have

0 = tTd(0) {1+[(1b/2a) —1]
Xn—'(n' —Sn+24)), if 0&n&4

or

o =og(0) {1+[(lb/2a) —1][1—(2/n) ]), if rr) 4. (A7)

(The second integral is evaluated in two pieces. ) With
o.= 1/p, o's(0) = 1/pq(0), we obtain

Gallium has an orthorhombic cell containing 8 atoms35

with lattice constants4' at T=2.35'K, 2=4.5151 A,
8=4.4881 A, C=7.6318 A. The volume of the ortho-
rhombic cell is Vo ——ABC= 1.547)&10 "cc.Each gallium
atom has three valence electrons outside a closed 3d
shell: the number of valence electrons per unit volume
at 2.35'K is

X=24/Vs ——1.551X10".

Volume of gallium per gram atom at 2.35'K=11.65 cc,
density" at 20'C=5.907 g/cc, and density at 2.35'K
=5.983 g/cc.

Properties of a free-electron gas having the same elec-
tron density as gallium. Momentum of an electron
having the Fermi energy:

where

p —pg(0) —[(l /2a) —1]F(a)

1+[(~b/2a) —1]P(~)

&(zr) = (o./64)(n' —Sn+24) if 0&rr&4
= [1—(2/n)] if cr) 4.

(AS)
Pi=1.752)&10 "cgs.

The wavelength of an electron having the Fermi
momentum

Xz=lz/Pz 3.780X10 ——s cm.

The Fermi energy: E~ Pf'/2Mb=16——.85X10 " ergs
~A9~

= 10.52 eV. The cyclotron radius of an electron having
the Fermi energy:

APPENDIX B. SOME RELEVANT PROPERTIES
OF GALLIUM

Resistivities for current Qow along the principle
axes"" are shown in Table IV.

rs Pz%H——= 10.94/H cm, H is in gauss.

~ C. S. Barrett, in Advuncesin X-ray Analysis, edited by AV. M.
Mueller (Plenum Press, New York, 1962), Vol. 5.




