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samples were prepared by melting together pieces of
the very pure sodium with pieces of commercial grade
pure sodium. The resulting resistivity ratios were meas-
ured using the eddy-current decay method. '0

Figure 10 shows the results of the measurements on
the width of the edge. The fractional width is plotted
against the reciprocal of &o,r. os, r =RB,/pe'K. The resis-
tivity at O'K, p4'E, was determined using the room
temperature resistivitv (4.3&&10 ' 0 mfor s-odium and
6.1&(10 ' 0-m for potassium) and the measured resis-
tivity ratio. The fractional width appears to be inversely
proportional to &o,r. The so. lid line is 6B/B, =sr/oo, r.

The properties of helicon waves have been investi-
gated for the case when the helicon wavelength is
smaller than the electron mean free path. Two experi-
mental techniques have been used: One was the study
of helicon waves propagating through a slab of metal;
the other was the measurement of the surface impedance
of the metal.
"C. P. Bean, R. W. DeBlois, and L. B. Xesbitt, J. Appl. Phys.

30, 1976 (1959).

The free-electron theory predicts a deviation from the
simple dispersion relation and a threshold field (the
Kjeldaas edge) for the propagation of helicon waves.
These predictions have been experimentally verified to
within a few percent for polycrystalline sodium and
potassium at O'K. The values for the radius of the Fermi
sphere deduced froni the data are in excellent agreement
with the theoretical values.

The measurement of the edge in polycrystalline
indium shows that (a) the holes in indium behave very
much like free holes with one hole/atom, and (b) an in-
vestigation of singl. e crystals should yield valuable in-
formation about the indium Fermi surface.

The measurements on the fractional width of the
edge demonstrated that it is inversely proportional to
to,r, and the empirical relation IsB/B, =sr/to, r fits the
data reasonably well.
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The electronic thermal conductivity (X,) of a weakly coupled, isotropic superconductor doped with a
small concentration of paramagnetic impurities is computed. The theory of such superconducting alloys has
been given by Abrikosov and Gor kov, and is based on the assumption that the static magnetic impurities
are randomly distributed and that their spins are uncorrelated. Starting from a Kubo formula, E, is cal-
culated by considering the electron-impurity interaction in the ladder approximation. A considerable simpli-
fication of the final expression for X, obtains if the exchange scattering time v g is much larger than the total
scattering time. Numerical calculations have been made of the ratio of the thermal conductivity in the
superconducting and normal states as a function of the reduced temperature (T/T, =—t) for different im-
purity concentrations. Abrikosov and Gor kov have shown that the energy gap function coo(T) is quite dif-
ferent from the Gor'kov order parameter h(T) in such alloys. It is found, however, that E,/E„ is less than
unity even in the "gapless" region (Arz(1). Moreover, E,/E„as a function of t decreases with the para-
magnetic-impurity concentration' for t &0.8 and low concentrations. Some aspects of the Abrikosov-Gor kov
model are reviewed in an Appendix. The numerical values of 6, coo, and the density of states that were used
in the evaluation of IC,/E„are given separately.

1. INTRODUCTION

'HE prediction of "gapless" superconductivity in
paramagnetic alloys by Abrikosov and Gor'kov, '

*Alfred P. Sloan Foundation Fellow. Supported in part by the
OfFice of Naval Research.

f Supported by the U. S. Atomic Energy Commission and by
the Advanced Research Projects Agency. Present address: Depart-
ment of Physics, University of California, San Diego, La Jolla,
California.

and the confirmation of this prediction by Reif and
Woolf2 are significant recent developments. Although
the theory is based on an approximate treatment of a
simple model and more detailed experiments are needed,

' A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.
39, 1781 (1960) LEnglish transl. : Soviet Phys. —jETP, 12, 1243
(1961)j.This will often be referred to as AG in the text.

'F. Reif and M. A. Woolf, Phys, Rev. Letters 9, 315 {1962);
Rev. Mod. Phys. 36, 238 (1964).
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the prediction is unambiguous and the confirmation
convincing. The work of Abrikosov and Gor'kov (AG)
is particularly interesting because it exhibits in a
mathematically tractable form a possibility that has
been admitted in principle for a long time. We refer to
the possibility of an uniform system in which an in-
finitely reactive conductivity a,t zero frequency (ac-
celeration current) occurs with merely a diminution,
relative to the normal state, of the density of optical
oscillator strength at small but finite frequencies. ' The
calculation of AG makes it clear that the key feature of
the superconducting state is the condensation phe-
nomenon. A gap in the single particle excitation spec-
trum is evidently not a necessary requirement for either
the infinite conductivity or the perfect diamagnetism of
the condensed state.

The experimental investigation of this phenomenon of
superconductivity without an energy gap promises to
improve our understanding both of superconductivity
and of the effects of magnetic impurities in metals in
general. 4 It has been known for some time that while
nonmagnetic impurities have a relatively mild effect,
paramagnetic impurities (i.e., magnetic impurities with
well-defined localized spins) in small concentrations can
produce a striking decrease' ' in the transition tempera-
ture T, of a superconductor. It was first suggested by
Herring' that this might be due to the existence of an
exchange interaction between the localized spin of the
impurity and the conduction electrons. By considering
such an interaction and assuming that the "structure-
less" impurities were randomly d.istributed with un-
correlated spins, Suhl and Matthias~ were able to show
that the predicted reduction in T, LST, ~is;5(S+1),
where 5 is the impurity spin, and e; the impurity
concentration jwas in good agreement with experiment.
The previously mentioned work of AG (see also Ref. 4)
is based on the same model, but goes much further in
drawing out its implications. Probably the most ques-
tionable steps in the calculation are the neglect of
correlations between impurity spins, ' and of multiple
scattering by impurities. Very little seems to be known
with certainty about the impurity concentrations at
which corrections from these sources becomes signifi-

Some remarks of this nature are contained in J. C, Phillips,
Phys. Rev. Letters 10, 96 (1963). Phillips however does not
mention that the residue of the pole corresponding to the accelera-
tion current Li.e. , limcoo. (cu), where 0 (co) is the long wavelength

electrical conductivity] was explicitly calculated by Abrikosov and
Gor'kov and is contained in Eqs. (38) and (39) of their paper.

4 P. G. de Gennes and G. Sarma, J.Appl. Phys. 34, 1380 (1963).' See, for example, B.T. Matthias, H. Suhl, and E. Corenzwit,
Phys. Rev. Letters I, 93 (1958); J. Miiller, Helv. Phys. Acta 32,
141 (1959);K. Schwidtal, Z. Physik, 158, 563 (1960); G. Boato,
G. Gallinaro and C. Rizzuto, Rev. Mod. Phys. 36, 162 (1964).' C. Herring, Physica 24, 184S (1958).' H. Suhl and B.T. Matthias, Phys. Rev. 114, 977 (1959). See
also W. Baltensperger, Helv. Phys. Acta. 32, 197 (1959).

An attempt to explain gapless superconductivity on the basis
of these correlations alone is contained in H. Suhl and D. R.
Fredkin, Phys. Rev. Letters 10, 131 (1963).

cant, but there is indirect. evidence' that they do become
important even at very low concentrations. At high
concentrations of paramagnetic impurities, it is possible
that the alloy will become ferromagnetic owing to the
interaction between two impurity atoms brought about
by the exchange of conduction electrons. It may happen
that the specimen will still be superconducting, as veri-
fied experimentally in certain cases." The possible
coexistence of ferromagnetism and superconductivity
has been demonstrated. theoretically in some recent
work by Gor'kov and Rusinov. "The present paper is
mainly concerned with impurity concentrations such
that the impurity spin correlations are small at the
temperature of interest.

We might remark that the measurements reported in
Ref. 2 have already been interpreted'' to be in dis-
agreement with a, specific result of the AG theory. This
theory predicts that at the absolute zero of temperature,
the gap in the energy spectrum shouM vanish at
exp( —7r/4) 0.91 of the concentration at which super-
conductivity disappears, whereas linear extrapolations
in concentration (n, ) of the data for the energy gap (ceo)

and the critical temperature (T,) lead to the conclusion
that experimentally the former goes to zero at ap-
proximately 0.5 of the concentration at which the latter
does. This apparent discrepancy is however largely due
to an improper comparison. According to the AG theory,
the curve of T, versus e, should. be concave downward,
while that of coo versus e; is concave upward and tern-
perature-dependent. When the experimental points for
T, and coo are compared with the predicted curves, "the
agreement is not unsatisfactory, and it seems that one
should keep somewhat of an open mind until more ex-
perimental information is available. The slight discrep-
ancy with experiment could easily be due to the use of
the BCS model for the effective electron-electron inter-
action, rather than the approximate treatment of the
impurity scattering. Measurements of the differential
conductance of tunneling junctions" and optical absorp-
tion will permit more detailed comparison with the
theoretical densities of one and two particle states.

In this paper, we have calculated the thermal con-
ductivity of superconductors containing pa, ramagnetic
impurities within the framework of the Abrikosov-
Gor'kov theory. We start from the Kubo formula, and
use the techniques of many-body theory to reduce the

9 For example, in dilute Zn-Mn alloys, there is observed a low-
temperature resistance anomaly. See. E. W. Collings, F. T.
Hedgcock, and W. B. Muir, Phys. Rev, 134, A1521 (1964), which
contains further references.' H. Suhl, B. T. Matthias, and E. Corenzwit, Phys. Chem.
Solids 11, 346 (1.959)."L.P. Gor'kov and A. I. Rusinov, Zh. Eksperim. i Teor. Fiz.
46, 1363 (1964) LEnglish transl. : Soviet Phys. —JETP 19, 922
(1964)g."Such a comparison was presented by S. Skalski, O. Betbeder-
Matibet, and P. R. Weiss at the January 1964 meeting of the
APS /Bull. Am. Phys. Soc. 9, 30 (1964)g. In the course of our
work, we found it easy to calculate these curves and some are
given for completeness in Fig. 5 ~

"M. A. Woolf and F. Reif, Phys. Rev, 137, A557 (1965).
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conductivity to an integral involving frequency-de-
pendent parameters introduced by Abrikosov and
Gor'kov. The details of this calculation a,re the subject
of Sec. 2.

A considerable simplification of the result occurs if we
assume, as is reasonable, that the total single particle
lifetime is much smaller than the exchange lifetime 7~.
With this assumption, we obtain in Sec. 3 an expression
for the ratio of the thermal conductivity in the super-
conducting state and normal state of the form

E. 3i
~P' d~ois sech'LrP&ufk(o~/6, rr) . (1.1)

Above" n—= (rsvp) ', 6 is the average order parameter,
and. P=—(1/ksT), where kii is Boltzmann's constant and
T is the temperature. For nonmagnetic impurities, one
finds the usual result" that k(oi/6 &1)= 0 and k (oi/6) 1)
=1, the average order parameter A(T, rs) being the
energy gap in this case. For a paramagnetic alloy, the
lower limit of integration is the physical energy gap
o~s(h, a) and not the average order parameter A(T, rs).
Moreover, the function k(oi) increases smoothly toward
unity for ~)coo.

We have numerically evaluated the reduced con-
ductivity E,/E„as a, function of the temperature for
various impurity concentrations. The integral in (1.1)
can be done analytically for T O'K and T~T,. The
results are presented at the end of Sec. 3 and compared
with the case of nonmagnetic impurities. Several fea-
tures are simple enough to be worth mentioning here.
Even in the gapless region (o.)1), the thermal con-
ductivity is predicted to be lower than that in the normal
state, because although the energy spectrum has no gap
it is still distorted. In addition, the onset of gaplessness
does not lead to an abrupt change in the thermal con-
ductivity. Long before the gap actually vanishes, the
BCS singularity in the density of states has been
smoothed out by the impurity scattering. Finally it is
found that E,/E, considered as a function of the re-
duced temperature/: T/T„has a characte—ristic concen-
tration dependence. For t&0.9, E,/E„decreases for
small e, while for 1&0.75 it increases with n, .

The authors hope, of course, that the predictions
made in Sec. 3 will be experimentally tested. As has been
indicated in the opening paragraphs of this section, one
only has reason to expect good agreement with the
theory for very low concentrations of impurities. Dis-
crepancies at higher concentrations, if they are large,
will serve as a useful test for a more inclusive theory. "

For nonmagnetic impurities in systems with weak
electron-phonon interactions (to which we restrict our-
selves), a simple calculation of the thermal conductivity
using a Boltzmann equation is possible. "A justifica, tion
of the need for the elaborate formalism of the next

'4%e use units in which A= 1.
~5 J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113,

982 (1959).

section seems therefore not to be out of place. First of
all, in the interesting gapless region (which always
obtains sufficiently close to T.), it is not possible to as-
sociate a narrow band of energies with a state of
momentum near the Fermi momentum. In other words,
the quasiparticle approximation breaks down. In addi-
tion, the effects of the paramagnetic impurities in
renormalizing the energy spectrum are crucial. Both
these effects would cause difficulties in conventional
transport theory, but they are easily taken into account
in the Kubo formulation.

In the final section, we make some further comnients
on gapless superconductivity. In particular we brieRy
consider the relevance of our results to the study of the
thermal conductivity of thin superconducting films
(containing nonmagnetic impurities) in the presence of
persistent currents, applied magnetic fields, "" or
rotations.

Two Appendices are included. In the main body of
this paper, we assume some familiarity with the work of
Abrikosov —Gor'kov. ' ' Readers who are unfamiliar with
the latter may find Appendix A of the present paper
useful. Appendix 8 verifies a conjecture made in Sec. 2.

II= d'xi/. '(x) — —p ~it (x)
2m j

+Q d'+ t(x) V p(x —R„)gs(x). (2.1)

Here P (x) is the annihilation operator for an electron
of spin n(a=I or $) at the position x, ii is the chemical
potential with respect to which it is convenient to
measure single-particle energies, and summation over
repeated spin indices is implied. The phonon-induced
attraction between electrons is approximated in the
manner of Gor'kov. " The interaction of an electron
with a paramagnetic atom of spin S at the position R„is
V ~(x—R„), where the short-ranged potential V p(x)
is taken to be

0'~p
V p(x)=Vi(x)8 p+Vs(x) S

2
(2.2)

"D. E. Morris and M. Tinkham, Phys. Rev. Letters 6, 600
(1961);Phys. Rev. 134, A1154 (1964).

'7 H. Maki, Progr. Theoret. Phys. (Kyoto) 31, 378 {1964).' H. Maki, Progr. Theoret. Phys. (Kyoto) 29, 10 (1963); 29,
333 (1963); 29, 603 (1963). We note that the reiaxation time in
these papers is twice the usual expression.

'~ L. P; Gor'kov, Zh. Eksperim. i Teor. Fix. 34, 735 (1958)
PEnghsh transi. : Soviet Phys. —JETP 7, 505 (1958)j.

2. ANALYTICAL DEVELOPMENT

We take the Hamiltonian for the system of interest
to be'
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Here e is the Pauli spin matrix vector. Equation (2.1)
permits the definition of a Hamiltonian density h(x) in

an obvious way. Using the equations of motion for the
field operators, one can then verify that the operator
u(x) defined by

series coefficient P(q, v ) by

E= 1/6T

P((1=0, i =(o+i0+)—P(q=0, i =a&—i0+)
'

Xlim

(2.8)

obeys the equation

h(x)+V u(x) =-0, (2.4)

and may thus be interpreted as the energy current
density.

For the thermal conductivity we are interested in the
Qow of energy with no Row of matter. 4Ve shall system-
atically neglect terms of order (k&T/p), and we shall

verify that to this order the matter current accom-
panying an energy current is reduced to zero by
measuring energies with respect to the chemical po-
tential. The Kubo formula for the ratio of the energy
current to the negative of the temperature gradient may
be written in the form""

2
E= Im dtsts d'xi iPxs(u(x„0) u(xs)ts)).

3VT
(2 5)

within our approximations, for the reason given above,
it is consistent to take E to be the thermal conductivity.
In Eq. (2.5), V is the volume of the system and the
brackets denote an average over the positions and spins
of the impurities as well as an average in the grand
canonical ensemble. To assist in the evaluation of (2.5)
it is convenient to introduce the correlation function, "

[The details of the connection between (2.5) and (2.8)
are contained, for example, in Eqs. (245) to (259) of
the lecture notes referred to in footnote 20.j

In treating simultaneously the eBect of the two
interaction terms in (2.1) it is convenient to use a 4-

component space

4(x)= '; 0't(x)=—(it t(x),lt "(x),it (x),P (x)).

1 0 0 0
0 1 0 0
0 0 —1 0

EO 0 0 —1.

0 i
0

I
=rsx1. (2.10)

(~ denotes the Pauli matrices in the larger space. ) We
note in passing that the notation (2.9) is redundant
because

'P,t( )=( X1);P,(..). (2.11)

In this 4-component space, the energy current operator
(2.3), apart from an irrelevant constant, takes the form

a a
u(1) = —

I

—vi'+ vi I

48K (r)ti r)ti

(2.9)

Ke write matrices in this space as direct products of
(2X2) matrices. For example, we shall write

~(1,2)=—(TLu(1) u(2) 3), (2.6)
X@t(1')(rsX1)%'(1)

I
i'=i ~ (2 12)

where 1, 2 denote space-time points, and T is Wick's
time-ordering operator. In the region Ret, =Ret, =0, The correlation function (2.7) is then"
0(Imti, Imts( —P, one has the expansion""

P(1,2)= V
dg z

(2~)s p

Xp p(q p )eis. (x&—xsie—ivies(ii —&s) (2 7)

x (.,x1)' (.,x 1)"'

XO'I:+'(1)+s(2)+i'(2')+)'(1'))) li'=it' (2'13)

Here i =2zmi/P, m running over all integers, and
p=(kiiT) '. The transport coefficient (2.5) is then
related to the analytic continuation of the Fourier

'0 For a review of the derivation of such formulas, see G. V.
Chester, in Reports on I'rogress in I'hyszcs, edited by A. C.
Stickland (The Physical Society, London, 1963), Vol. XXVI. The
particular form used here is discussed by J. S. Langer, Phys. Rev.
128, 110 (1962). See also V. Ambegaokar, in Bretsdeis Lectures,
ZP6Z (%. A. Benjamin, Inc. , New York, 1963), Vol. 2.

"V. Ambegaokar and L, Tewordt, Phys. Rev. 134, A805
(1964).

"This space has been used, for example, by G. M. Eliashberg,
Zh. Eksperim. i Teor. Fiz. 38, 960 (1960) LEnglish transl. : Soviet
Phys. —JETP, 9, 1385 (1959)g; R. Halian and N. R. Werthamer,
Phys. Rev. 131, 1553 (1963)."In v riting Eq. (2.13) we have neglected terms proportional
to b(t1—t2), which arise from the nonzero commutator of the time
derivative and time ordering operations. This neglect does not
affect the discontinuity of P(q, v ) to which the thermal con-
ductivity is related. However, we shall see (see Ref. 25) that it
leads to an apparently divergent sum over an intermediate fre-
quency variable. Since the source of the difBculty will be im-
mediately clear we prefer to proceed in this mathematically
impure but algebraically more compact way.
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i
P(v )= —P e«'

gtrt' P
k(2&,+v )

(2z )s

XTr((rsX1)g(k, (t+v )r„(Pt,v )g(k, (t)}, (2.15)

where the vertex function I"~ satisfies the integral
equation

I s(gt, v„)=k(2/i+v„)(rsx1)+4rt'
(2z.)'

X(V(k—k')g(k', $t+v„)

X&k ($t, vm)g(k', pt)V(k' —k)). (2.16)

Above $t (2l+1)z——.i/P with / an integer and g(k, $t) is
the Fourier transform in space and imaginary time of
the Green's function (2.14) which includes the effect of
the scattering of single particles in the Born approxima-
tion (Appendix A). The density of impurities is tt;. The
matrix V(k—k') is the Fourier transform of the inter-
action potential in the four-component notation and is
given by

We wish t.o evaluate (2.13) in the limit of a low
concentration of impurities, neglecting the existence of
any collective states. Calculations of this sort have been
carried out in many contexts, '4 and we shall therefore
omit some details. The eGects of the attractive electron—
electron interaction in (2.1) are taken into account by
the existence of off-diagonal components of the single-
particle Green's-function matrix,

g;, (12)—= —s(TL4't(1)%'tt(2)3) (2 14)

These off-diagonal components have to be determined
self-consistently' (see also Appendix A of this paper).
The effect of scattering from impurities with spin is
easily taken into account in our four-component nota-
tion. We treat in the Born approximation the scattering
of single particles and particle-hole pairs from inde-
pendent, randomly distributed impurities. The resulting
expression for the Fourier series coefficient P(q=0, v )
(=P(v )$ is

=k(2)t+v )(rsx1)+n;
~
V, (1 -I ') ['(,X1)

(2')s

x g(k', ~,+..)I, (q„..)8(k', ~,) (.,X1)

S(S+1) dsh'

+rt.
~

V, (k—k') ~s(„X~,)
(2z.)s

Xg(k', $t+v~)I's ($t, vm)g(k', tt)(rsxoi). (2.19)

The obvious next step is to calculate (2.15) using the
inhomogeneous term of (2.19) for Fs. It is well known
from similar calculations that this corresponds to the
neglect of "scattering-in" terms.

The single particle Green's function has been given by
Abrikosov and Gor'kov. ' We have rederived this result
in Appendix A. In the next several equations we list the
relevant results from this Appendix. The analytic con-
tinuation to the complex plane of the Fourier series
coefficients of the single-particle Green's function has
the form

g(k, z) =zZ(z) (1X1)+es(rsx1)—y(z) (rsxa s)
(2.20)

z'Z'(z) —e s' —q '(z)

where ~1, is the normal state single-particle energy
measured from the chemical potential. The complex
functions Z(z) and q(z) are given implicitly by the
equations (z a complex variable)

(2.16). We assume, following Abrikosov and Gor'kov,
that the impurity spins are unpolarized so that (r, s
=x, y, z; e denotes a particular impurity spin)

(S,")=0; (S,.S,"')=-',S(S+1)5„„,5„,.
Since there is no average polarization, the contribution
to (2.16) of each component of s in (2.17) must be equal
(one can explicitly verify this by keeping all terms to the
end of the calculation). Thus, after averaging over spins,
(2.16) may be written as

I k(pilvm)

5,
V(k—k') =-', Vi(k —k') (rsx, 1)+-',Vs(k —k') (rsX~i)—

25„5,
+ (1Xo.s)—+ (re Xo.s)—,(2.1'7)

2 2

where S—= (S„S„,S,). An over-all factor of 2 in Eq.
(2.15) and the factor of 4 in the second term of (2.16)
come from the redundancy (2.11). We have now to
calculate the average over the impurity spins in Eq.

u(z)
zZ(z) =z+

2r'" (u'(z) —1)'ts

~()=~+
2r(2) (us(z) 1)i/2

which can be combined to give

rgb (u'(z) —1)'ts

(2.21)

(2.22)

(2.23)

'4 S. F.Edwards, Phil. Mag. 3, 1020 (1958);A. A. Abrikosov and
L. P. Gor'kov, Zh. Eksperim. i Teor. I'"iz. 35, 1558 (1958);36, 319
{1959).LEnglish transls. : Soviet Phys. —JETP 8, 1090 {1959);9,
220 {1959)g. G. Rickayzen, in The 196/ Bergen Lecture Notes on the
Many Body Problem, edited by C. Fronsdal (W. A. Benjamin,
Inc. , New York, 1962), p. 85.

We have defined u(z)=—zZ(z)/p(z). The appropriate
branch of the radical is determined by the condition
Im(u'(z) —1)'")0. Above 6 is the temperature-de-
pendent Gor'kov order parameter 6—=ggt(x)it t(x))
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ut of the

l [E(0) i th d it ofiven b the formu as
at the Fermi surfa, cej,normal single-particle states a e

andwhere e is the density of electrons, an

0 s —= u'(s) —1)"' Im(u'(s) —1)'")0. (2 30)
u(s)

dQ
= 2m. The correct branch of Q(s) has the properties

n(s") = —n*(s),
n( —s) =n(s).

u, a (0)
47t-

5(S+1) (2 31)

dQ
= 2zrzz P' (0)

X
~
vz(&z, e) ~'+—

~
v, (k,,-,e) ~, (2.24)

u and 0 are defined by u(oi)For real arguments, u an ar
—'0+ an.d 0 oi) = Q(s=oi —zO

k that (2.29) is correctceedin we can chec t a
in several interesting limits. or e nv u e '— iv, (~„e)i, (2.25)

~ u, .()r
3m

(2.26) g'„= doioi' sech'(-,'Poi) = (2.32)

tha. t the lifetime in (2.32) is theExcept for the fact t at e
d not the transport i e ime,' '"ry '

the correct answer for the norma, l state.
arked a,nd

t
s will come, as we have remar ejng jn 0 corrections w j

Equationm the vertex corrections.will see shortly, from
h lt for non-

'
s as a s ecial case t e resu o

I liiic lm Ul'itles (Vz ~ 0 . Il

/ dKb n(2 2~) Q —+ —sgnoi(oiz —6')'tz, u —+ oi 6, an

(2.3.3)

124 670 1961).26 L. P. Kadanoft an d P C. Martin, Phys. Rev. 124, (

111
m&f T2

O
(l) (2)1$ 2 7' T

we are in a osition to carr
aluation of (2.15) with I'k replaced by t e e.

o
'

A result there exists the foon the real axis. s a r
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using (2.20) and (2.27) to be odd in c. The ma, tter flow
is thus zero to a sufhcient accuracy.

To complete the calculation of the thermal conduc-
tivity we must properly treat'4 the integral Eq. (2.19).
Since the only direction in which the vector I & can lie is
it, we write I'a ——kl'. The two factors of g in the homo-
geneous terms ensure that the integral is a rapidly
convergent function of e~.. In addition, we are only
interested in I"i, for k near kp. As a result, the integral
equation may be approximated by

I'(Pt, p.)

= (2gt+...)(.,x1)+
2 tV(0) ' (2zr)'

X((rpxi)g(k', $t+t )I'((t, t )g(k', Pt)(rex 1))

alld

zz' ) 1
I'i 0+II'+ + 1+

i
1—

IIII' 5 uu'

zz' -(I 1—
~

——(.+z'), (2.40)
2Lr"']' IIII' ku zt'

with II=II(z) defined by Eq. (2.30) and u=u(z) by Eq.
(2.23); u'=—u(z') and O'—= II(z'). The other new symbols
in (2.39) and (2.40) are defined by

1 dQ
=—2zrtz;A'(0) —

~
V, (k p, 8) ~'

4m

S(S~-1)
+—

i
Vp(ks, 8) i' (1—cos8), (2.41)

T2zr.h' (0)r s'
-((rpxai)g(k', kt+~ ) 1=1 1

(2zr)'
Lr&'&]' r' r g'

Xl'(p„..)g(k', ~t) (.pXai) }, (2.34)

where z' and 7-s' are given by

1 dQ——= 2zrzz, .V(0) —
~

Vi(k p,8
~

' cos8
T' 4z

alld

(2.35)

1 dQ S(S+1):—2vrZZ, 'l'1(0) —
~

VZ(k s,18)
~

'-

7S 4m. 4
cos8. (2.36)

i — zz' 1 y-
= (z+z') lI+n'+ — 1+

r t" 2gr ~'&]' OII' uu'f

(2.39)

The quantity I" is still a matrix in the 4-component
space. Since the inhomogeneous term is proportional to
(rpx I), we substitute the form r=rp(rpx1) into the
homogeneous terms. Then by performing the c' integral,
one sees that the only matrix which is generated by the
inhomogeneous item is (rix op). We are thus justified in
making the ansatz

7=I'p(rex I)+zTi(rixaz)

When (2.37) is substituted with (2.34) and the coeffi-
cients of the two independent matrices are set sepa-
rately equal to zero, one obtains two equations for the
unknowns Fo and 1&. The solution of these equations
requires straightforward but tedious algebra which we
shall omit here. The answer we obtain is

I' t(ft, o )=I';(z,z') z= &t, j=0, 1, (2.38)

z = kl+&m
where

zz'
I'p &+II + + 1+

nn' uu')

r' and r8' having been introduced in Eqs. (2.35) and
(2.36), respectively.

We must now substitute (2.39) and (2.40) into (2.37)
and use the resulting expression for I'~($t, p ) in (2.15).
It is now convenient to do the momentum integral
after converting it into one over energy according to the
prescription J'd'kj(2zr)'=iV(0) J'de. However, it is only
after doing the (t sum that the momentum integral is
peaked about the Fermi surface. '~ We avoid this di%-
culty in the standard way by subtracting the expression
for F(r ) in the normal state. The resulting expression
for the difference has the form (in an obvious notation),

F (o-)—~.(~-)
3%Bi=- -Z"""IF.(~,~ )—F-(~,~ )], (243)
Sm

where $t'=—pi+ t ~. The quantity F„=F,(6=0), and F, —
is calculated to be

zz 1
F, (z,z') = 2z(z+ ") M' uu'l

+ 1+ (1—
) . (2.44)

rg, (" 7-„g' QQ' ll'
If we had neglected the vertex corrections, i.e.,f'replaced
I' by (z+z') (rpx1), we would have obtained

ss' 1
F, (z,z') =2i(z+z')' 1— 1—

QQ' ll'
LII+II'+ I/r"'] (2 45)

"A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski,
Methods of QNamtam Pzetd Theory zrs Statzstecal Physics (Prentice-
Hall, Inc. , New Jersey, 1963), p. 312; G. Rickayzen, Theory of
Superconductivity (John Wiley R Sons, Inc. , New York, to be
published), Appendix 4.



A 11S8 V. AMBEGAOKAR AN 0 A. GRII I I i%

In this case, we know the answer for the thermal con-
ductivity. It is given by Eq. (2.29). Comparing (2.45)
with (2.29) and using (2.31) we find the relation

0 (rp) (0 1—[u'(o~/D, n) —17~/'

6 u(rp/D, n)

= (u'(o//D, n) —1)'" i—n (3.4)

32mkgT'
d(p sech'(-', Pro)

)&E,(op —z0+, op+i 0+) . (2.46)

One is led to guess that this relation also holds for E,
and F„and indeed it can be shown (Appendix Il) tha, t
for elastic scattering processes, such as those that con-
cern us in this paper, the guess is correct.

One anal answer for the thermal conductivity then
follows directly from (2.44) and is

(u(' —1
d(vo~s sechs (ip Pa)) 1+

oo (u' —1(
E,, =—

Sr/skaT' p i i Iu(' —1-
Im 0+ +—— 1—

27~,"' 2ra' Iu' —1(
(2.47)

Fquation (2.47) forms the basis for the discussion and
calculations of the next section.

We have numerically solved Eq. (3.3) to obtajn
u(&u/&, n) a,s. a function of o~/6 for some representative
values of n. We have then obtained curves for Ii(cp/g, n)
and these are plotted in Fig. 1. As was pointed out by
Abrikosov and Gor'kov, ' the desired solution of (3.3) is
complex for ~&coo, where

&(0,n) =1—n
—' for n) 1 (3.6)

and that the maximum value of h(o//5, n) is unity. In
Fig. 2, we have plotted the other quantity of interest in
(3.1), namely the imaginary part of B(rp), as a, function
of n. For n(1, "cusps" appear at ufo, where

Q(opp) //ppp
p/p (~p &/p~&/s

1—(—

o/p= &(1—n'")'" for n(1
=0 for ng].

As a result h(o//A, n) is finite for o/)o/p. It can be easily
verified using (3.3) that at o/=0,

3. APPROXIMATIONS AND NUMERICAL
CALCULATIONS =n'" (1—n'"), (3.7)

Our first task is to comment on the qualitative fea-
tures of the basic result of the preceding section, Eq.
(2.47). Note that the correct formulas for a normal
metal and for a superconductor with nonparamagnetic
impurities are obtained from (2.47) in the same manner
as (2.32) and (2.33) were obtained from (2.29). In the
latter case, K./K„ is unaffected by the vertex correc-
tions. Further, if the impurity potentials are assumed to
be delta functions in coordinate space [so V(q) is inde-

pendent of q7, then E, reduces, , to X, in (2.29).
In discussing E„ it. is convenient to rewrite it as

follows:

the maximum height of the cusp occurring for o.~~

0.6

E.=
4mkJ T'

o&' sech'(-,'Po))/r (o//A, n)
(3.1)

L0.4-

Im Q(co)+- +—[1—h(co/A, n)7
27 t,,(I) rg'

where we have introduced the new function

I (~/~ n) —= s [1+(I u(~/~ n)
I

'—1)/ I
u'(~/~ n) —117,

(3.2)

0.2

0

.2l l

~ & ~ s 1 s s

with n= (ran) —' a parameter which will play a lea, ding
role in the discussion which follows.

Finally, we have from Eqs. (2.23) and (2.30),

(./~) =u(./~, n)(1- ['n/(u (-/~, n)-1) "7), (3 3)

I.O 2.0 3.0

1. The function h(~/h, n) versus a&/6 for various vaiues of= (7 s~) ' 7s»d ~(1',~8) are the exchange scattering time and
temperature-dependent, impurity averaged Gor'kov order parame-
ter, respective1y.
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0
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=3 ')'~0.192. Finally, we note that

FIG. 2. The imaginary part of 0 (&u)/6 vs ui/6, for various values
of o,. This function occurs in the denominator of the integrand of
(3.1) and is defined in (2.30).

smaller than the direct potential Vi(x)—estimates' 4 "
range from 3 to 10 times smaller. Even a factor of 3
would amply ensure the correctness of our basic ap-
proximation (3.8). However, one can almost a,lways
assume the latter to be valid due to the presence of
nonmagnetic impurities in addition to the paramagnetic
impurities of interest. Thus, the total direct scattering
would be the sum of the contributions from both kinds
of impurities while the exchange scattering would be
unaffected by nonmagnetic impurities. It seems sig-
nificant tha, t at the critical concentrat:ion, (1/rs)„
= sing„(0), and hence the "critical exchange mean free
path" is of the same order as the coherence distance in a
pure metal ($s 10-4 cm).

In summary then, we have shown that if the exchange
scattering is much smaller than the nonexchange scat-
tering, the electronic thermal conductivity of a super-
conducting alloy with paramagnetic impurities is given
by

Q(oi= 0)
Im = (1—n) for n& 1,

e2r, „&')

E.=—
4mk pT'

o'oioP sech'(-,'Poi)h(oi/A, n), (3.11)

=0

It is clear that
ri, ,t"((rs& rs'. (3.8)

1 ))—[1—h (oi/A, n)]
(I)

(3.9)

follows directly from (3.8). This approximation reduces

(3.1) to a form identical to (2.29), except for the re-

placement of the scattering cross section by the correct
transport cross section. We next want to show that (3.8)
generally implies

»Im
2g&„0)

Q(cu)
for co+ coo. (3.10)

We need only consider the region co&+o as a result of the
function h(oi/D, n) in the numerator of (3.1). For large n

(say n) 0.1), it is clear from Fig. 2 and (3.7) that (3.8)
implies (3.10). For very small n, however, (3.10) may
not be satisfied. The inverse of the first two terms in the
denominator of (3.1) plays the role of a frequency-
dependent mean free path. While we shall not consider
the third term any further in this paper, we would like
to emphasize that the analytic approximations for
E,/E„which we discu'ss later in this section do include
the decrease in the generalized mean free path if it is
significant.

In general, the exchange potential Ps(x) is somewha, t

and that the maximum value of Im(&(oi)/6) is unity.
We now want to show that the first and last terms in

the denominator of (3.1) are negligible if we make the
reasonable assumption

where the function h is defined in (3.2). Actually the
terms omitted in the denominator of (3.1), though
small, are positive and hence E, given by (3.11) is in the
nature of an "upper limit" approximation to (3.1). We
hast. en to add that (3.11) is actually an extremely good
a,pproximation to (3.1), given (3.8). A very crude, but
still useful, estimate of a lower bound may be obtained
by multiplying our upper bound by the factor

(1+2ri,t't6) ' (3.12)

since the maximum value of Im (Q(oi)/6) is unity. What
is of special interest is the ratio of E, to E„(the normal'
sta. te electronic thermal conductivity) which is given by
(1.1) of the introduction. This ratio is a function of the
exchange scattering time ~q and hence will not be a
universal curve as in the case of nonmagnetic im-
purities. While the derivation of (1.1) requires no as-
sumption (compare Ref. 17) about the relative magni-
tude of hsT, /t (T,rs) and 1/ri, ,t", we might note that
in the interesting "gapless" region Ln)1, for which
&uo(h, n)=0j, one is effectively in the "dirty limit"
Lwhere A(T, rs) ri,"'((1$as a result of (3.8).

It should be clear that even in the "gapless" region,
K, /K„ is still less than unity. Indeed, this can be
studied analytically in the somewhat academic region
of O'K (academic because the main heat carriers a,t such
temperatures are phonons and the main dissipative
mechanism for the latter are the specimen boundaries).
Since oP sech'(-,'Poi) is peaked around co~2.5hsT, for
sufFiciently low temperatures the main contribution of
the integral in (3.12) will come from the neighborhood
of coo. Thus following the lead of Abrikosov and Gor'kov'
in their evaluation of the electronic specific heat, it is
useful to expand the right-hand side of (3.3) in a power
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series in u —up if n(1, with up—=u (happ/A, n) = (1—n'")' '.
To lowest. order, we 6nd

u= up —s[(o/ —o/ )/Aj'/'(-') t/'n'/suo-'/'. (3.13)

Now for the purposes of using (3.13), a slightly more
practical version of (3.2) is

u(tp/A, n)

0.8

0.7

Combining (3.3) with (3.14), and using (3.13) con-
sistently to lowest order, we find for co+cvo

h(cp/6 n(1)= (2/36) n "'(1 n /—) / (ro rpp)—. (3.15)

For o.& 1., a low temperature expansion may be found by
expanding (2.23) in a power series in [u—i(n' —1)"'j.
To lowest order,

u= i(n' —1)'/' —(o//&)n'(1 —n') ' (3.16)

and proceeding as for the case o.& 1, we find for co&0

h(o//0, n) 1)= (1 n')+—0(o/'/5') . (3.17)

Inserting (3.15) and (3.17) into (2.29), we conclude (see
also Ref. 17) that in the limit of T~ 0,

, -~(l) 27(l)

(
—2/p ]) e

—cap/k//'/' + n s/p

k AT 7' iS

E,/K„= (1—n ') for n)1.
for n (1, (3.18a)

(3.18b)

In our numerical calculations, we have used the BCS
expression fbr the order parameter h„(T) at O'K,

The omission of the Q(pp) term in (3.1) is equivalent, to
setting the last factor in (3.18a) to unity. Actually the
expansion around ppp in (3.13) is only a good approxima, -

tion if kgT/6&(n'/P. Since (3.18a) assumes k~T/6
«(1—n'/')'/' as well, we see that it is only correct for
intermediate impurity concentrations. This is the reason
we do not obtain the well-known result for 1/r, =0.

In Fig. 3, we give numerical results for E,/E„as a
function of the reduced temperature T/T, (where T, is
the transition tempera, ture for a given concentration of
paramagnetic impurities) and the paramagnetic im-

purity concentration n;. We have found it instructive to
give the latter in terms of the critical concentration
(/s„) required to destroy superconductivity completely.
It should, of course, be understood that what comes into
all the relevant formulas is the exchange scattering time
rs defined by (2.26),

I

04
I

0.5

FIG. 3. The ratio of the electronic thermal conductivity in the
superconducting and normal states (E,/E„) vs t =T/T, 'for var—ious
paramagnetic impurity concentrations. T, is the transition temper-
ature for the relevant impurity concentration, the latter being ex-
pressed in terms of n„, the concentration required to completely
destroy superconductivity. The curve for nonmagnetic impurities
alone is. denoted by n;=0.00n„. The n; =0.70n„curve is almost
identical to the 0.85 curve for t 0.7 and is not shown explicitly in
this region. These results are based on (1.1) or (3.11).

namely, d, „(0)= 1.76k&T,„,where T,~ is the transition
temperature for n;=0. AG evaluated the temperature
and impurity-dependent Gor'kov order parameter
A(T, /s.;) only at T=O'K. We have derived in Appendix
A a useful expansion which enables one to compute
A(T,m, ) for (6/7rT)«1, i.e. , near T„. The computed
order parameters for various concentrations are plotted
in Fig. 4 as a function of T/T, ~. From the point of view
of Fig. 3, which gives E,/E „as a function of T/T„ the
order parameters increase with impurity concentration—each d in Fig. 4 being scaled up by a factor (T,„/T,).
Some values of the true energy gap rpp(T, e;) are plotted
in Fig. 5, based on (3.5) and the curves in Fig. 4.

In examining Fig. 3, one should use the curve corre-
sponding to nonma, gnetic impurities as a guide (this
curve is independent of concentration in our isotropic,
BCS-type superconductor). Undoubtedly the most in-
teresting feature of these curves is the crossover in
paramagnetic impurity concentration dependence. We
note that for t= T/T, &0.9, E,/It „—decreases with e;.
(All the curves drawn in Fig. 3 go to zero for t= 0.) This
odd dependence merits a few more words. As we pre-
viously noted, by normalizing our results to T.(ur),
we are effectively scaling the order parameter h(n;) in
Fig. 4 by a, factor (T,~/T, ). We shall denote this
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"effective" order parameter by 6'(t) = 6 (T/T, ~) T,„/T,.
In addition, let us make the useful change of variable
&v ~ po1 in (1.1), with the result

Eg 3
(t) =

27r2

M 1
!Ckuo12 sech2(22 o&)k —,n =—

red(T/T, „)]
where g'(t)—=6'(t)t '(k&T, „) '. This equation has the
advantage that the dependence of E,/K„(t) on t and n,
is completely contained in h(o&/P, n), which is plotted in
Fig. 1. As one builds up the impurity concentration (or,
more precisely, 1/re) from zero, both p'(t) and n in-
crease Lnote 6'(t) increases but h(T/T, „) decreasesj.
However, the increase in p'(t) will tend to decrease
E,/E„, while the increase in n will tend to increase
K,/K„. A careful in'vestigation of the criterion under
which the former dominates leads to the conclusion that
rk'(t, n.;=0) must be somewhat less than unity. When

g (t, n;=0) is small, any increase is important. When it
is large ()&1), an increa, se in g'(t) is less significant.
Note that for sufficiently large concentrations, 1t'(t)
becomes independent of n; Lsee (A37')j and hence
E,/K „must increas, e.

Actually, one may study analytically the odd concen-
tration dependence discussed in the preceding para-
graph by making use of the fact that e))1 for T
sufFiciently close to 1,. With the expansion of u in
(A24) of Appendix A, we find from (2.29)

E. 3 00

—-= 1— Pa do1o12 sech2 (-,'1(lo1)

+n 2' 0

(3.19)

where we have neglected terms 0(6') and higher. For

00 O.I 0.2 0.5 0.4 0.5 0.6 07 0.8 0.9 10
T/ Tcp

FK;. 4. The Gor'kov order parameter 5(T,r8) for a paramag-
netic alloy (relative to its value in a pure metal at T =O'K) as a
function of the temperature (relative to the transition temperature
of a pure metal), The dashed curve is de6ned by 6(T,v-z)r&=1,
rs ' being proportional to the impurity concentration i2; Lace
(2.26)g. For a given value of a;, the gapless region occurs for
temperatures T,& T&T,, where T, is the transition temperature
for that concentration and T, is the temperature at which the
dashed curve crosses ri(T, Ng) The minim. um value of i2; at which
gaplessness occurs down to O'K is exp( ~/4)—n,„091n„,. as-
suming the relation h„(0)= 1.76T,„.The curve for this concentra-
tion is not labeled.

low impurity concentra, tions 0(ps, = (irrekeT, ) '&(1,
we may set sech2('2po1) to unity in (3.19), and hence

K,/K „=1—(3/82r) (6/kii T)an.

Combining this result" with (A36'), we find

(3.20)

4. CONCLUDING REMARKS

The Abrikosov-Gor'kov description of a supercon-
ductor with a small concentration of paramagnetic im-
purities has been used in this paper to work out the
electronic thermal conductivity of such alloys. We
believe that a comparison of our results (as summarized

1.0
!
1

0.6

0.4

0.2

0,2 0.4 0.6
9; /Acp

0.8 I.O

Fso. 5. The transition temperature T, and energy gap co0 as a
function of paramagnetic impurity concentration (both normalized
to unity, i.e., a pure metal). The energy gap is given for various
fractions of the transition temperature of the pure metal. The
closed circles and triangles are the data points of Reif and Woolf
(Ref, 2) (T, and co0, respectively) for Fe impurities in quenched In
films. The energy gap was measured by tunneling techniques at
1'K, which would correspond to the T=0.25T,~ curve. Since
experimentally tt„(0)=1.9T,» the correct eo curves for compari-
son would decrease slightly slower than those shown. The initial
reduction in T, was 6tted to the theoretical curve of AG and from
this the relation between percent Fe impurities and percent
critical concentration found (0.70m„~1'Po Fe). The experimental
values of the energy gap could then be plotted. According to Ref. 2,
the tunneling curves are those of a normal metal for Fe impurity
concentrations greater than 0.85%, or e; 0.6n„.

K,/K „(t)= 1—L32r2/14''(3) yj(n;/n„) L (1—t)/t j,
(3 21)

and hence K,/K„(t) decreases with n; for low concen-
trations with t sufficiently close to 1. If pz,))1, we may
omit (&o/6)2 in the denominator of (3.19) with the result
that K.,/E„ is given by (3.18b) again. Upon using
(A37') and (A34'), this reduces to

K,/IC „(t)= 1—12 ln(n„/n, ) (1—t') . (3.22)

Actually (3.22) is valid for low temperatures as well.
We note that for sufFiciently high concentrations! such
that (3.22) is valid), K,/E„(t) increases with n,
Eventually the anomalous concentration dependence of
E,/K (t) must reverse itself.

As we remarked in the Introduction, the onset of
gaplessness does not give rise to any "structure" in
K,/E„. For example, o12 first vanishes at t=0.616 for
e,=0.85m„ in Fig. 3.



V. AMBEGAOKAR ANP A. GR~I F~N

in Fig. 3) with experimental observations will provide a,

useful test of the ba,sic correctness of the AG theory.
Conversely, these theoretica, l results may be used to
estimate the va, lue of the exchange scattering time 7-8

and the energy gap coo(T,r8) from experimental data.
One may think of the paramagnetic impurities as

modifying both the superfluid condensate Ldue to the
change in 6'(1)j as well as the excitation spectrum
(through the change in n). In this sense, the initial
decrease and 6nal increase in E,/K„at high tempera-
tures gives graphic evidence of how transport properties
in superconductors may separately depend on the super-
Quid condensate as well as on the normal Quid.

Although calculations of transport properties in the
AG' model are easy, as the preceding sections have
shown, we believe that some light remains to be shed on
the physical ba, sis of the theory. The central point that
emerges from our calculation is that the condensation
phenomenon is the essential characteristic of the super-
conducting state. It would thus appear tha, t for per-
sistent currents with or without an energy gap the key
requirement is tha, t pair states, whose average mo-
mentum cannot be changed by single particle scattering,
be ma, croscopically occupied. The reduced thermal con-
ductivity in the gapless superconducting state is evi-
dently also due to the macroscopic occupation, the
paired states carrying no entropy. The stability of the
paired states in the presence of a gapless excitation
spectrum is however something for which a simple
physical explanation seems to us to be lacking. In this
connection, a study of the spa, tial varia, tions of the order
parameter would be useful. If, for example, "depairing"
occurs only in the vicinity of pa, ramagnetic impurities,
the superQow may simply be circumventing these
obstacles. "A study of these questions is planned.

That the Gor'kov parameter d (T) is not equivalent
to the energy gap o&o{T) in the excitation spectrum has
been realized in other contexts as well. Even though one
cannot in general define a single pa, rticle excitation
spectrum from the poles of such expressions as (2.20),
one may always define an energy gap as the lowest
frequency o~o at which the diagonal component of g(k, o~)

has a discontinuity on the real co axis. This generalized
concept of an energy gap has been extensively discussed
in the case of pure, strongly coupled superconductors" "
and for anisotropic superconductors with nonmagnetic
impurities. " '~ What is peculiar to paramagnetic im

"Calculations of ultrasonic attenuation and the nuclear spin
relaxation time have been completed by one of the present authors
(AG); see Proceedings of the Ninth International Conference on Low
Temperature Physics (Plenum Press, New' York, to be published).

'9 We gratefully acknowledge several discussions with G.
Rickayzen on this question.

~ J. R. Schrieffer, D. J. Scalapino, and J.W. Wilkins, Phys. Rev,
Letters 10, 336 (1963).

3'T. Tsuneto, Progr. Theoret. Phys. (Kyoto) 28, 857 (1962)."D. Markowitz and L. P. Kadanoff, Phys. Rev. 131, 563
(1963)."P. Hohenberg, Zh. Eksperirn. i Teor. Fig. 45, 1208 (1963)
(English transl. : Soviet Phys. —JETP 18, 834 (1964)j.

purities is not so much the degree to which they de-
crease coo relative to 6—with coo even vanishing —but the
sharpness of the threshold. The density-of-states in-
cieRses IRpldly Rs soon Rs 07 pRsses Goo in paramagnetic
alloys.

The effect of the indirect impurity spin interaction
brought about by the polarization e6ect of the conduc-
tion electrons has not been considered in this paper. As
we mentioned in the Introduction, this coupling may
lead to ferromagnetism a,t sufficiently high impurity
concentrations. "However, it may also be of some im-
portance at lower concentrations. "Ke plan to return to
these questions. Of course, even these refinements are a
long way from a complete theory which wouM discuss
the dynamics of the impurity spins as well as tha, t of the
conduction electrons. Again we reiterate that the AG
approximation should be quite good at low enough
concentrations of paramagnetic impurities.

It is perhaps worth remarking that the Hartree-Fock
approximation to the electronic thermal conductivity is
given by (2.29) for a wide class of superconductors. The
function u(s) which occurs in (2.29) and (2.30) is defined

by sZ(s)/p(s), with Z(s) and p(s) being given by the
single particle Green's function matrix (2.20). In the
problem considered in detail in this paper, N(s) was
determined by (2.23). In a previous paper" by Tewordt
and one of the authors (V.A.), the coupled integral
equations for Z(s) and y(s) were given for a pure
superconductor with strong electron-phonon coupling in
the weak momentum approximation (Z and p have no
momentum dependence). If one wished to compute the
electronic thermal conductivity of an anisotropic,
weakly coupled superconductor with nonmagnetic or
even paramagnetic impurities, (2.29) would again hold
except that e(s,Q) would now depend on the direction 0
and there would be an angular integration 1'dQ/4~ in
addition to the frequency integral. LSee Eqs. (A18') and
(A19') in Appendix A of this paper. ] Gor'kov and
Rusinov" have determined the analog of (2.23) if the
concentration of paramagnetic impurities is large
enough to warrant consideration of the resulting con-
stant exchange field.

Finally we wish to comment brieQy on the thermal
conductivity of thin superconducting films (containing
nonmagnetic impurities) in the presence of uniform
persistent currents or a constant magnetic field parallel
to its surface. Maki has suggested, in a series of papers, "
that these latter systems (in the dirty limit 7 "&8&&1)

formally resemble superconductors with paramagnetic
impurities' if one makes the appropriate reinterpretation
of the parameter n. In the case of a uniform supercurrent
Maki's theory is quite straightforward and leads to the
result that n is proportional to the square of the Qow

momentum. Our numerical results for K,/E „should be
directly applicable, care being taken that in measuring
the thermal conductivity, a "compensated geometry"

'4 P. %. Anderson and H. Suhl, Phys. Rev. 116, 898 (1.959).
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be used to minimize screening effects due to the super-
currents (for example, a thin film on the outside of a
hollow cylinder). We inight remark that one can easily
generalize Maki's analysis to cover the case of paramag-
netic impurities. If the center-of-mass velocity of the
Cooper pairs is v, one has

(4.1)

where N=rp/6, n=1/rsvp, and

H, '(T)/HP(0), we automatically have cps(T) as a, func-
tion of Hs/HP(T). Wemight remark that for T=0.9T.~,
Maki's approach gives nis(H)/Dp(T)~L1 —H'/H '(T)$.
We should point out that Meservey and Douglass" have
determined the magnetic field dependence of cop foi thin
aluminum films using tunneling experiments and though
their results are in qualitative agreement with Maki s
predictions, there is the important difference that Cup

decreases as T increases, coo being considered as a func-
tion of II'/IIP (T).

ACKNOWLEDGMENTS

l =——', (t~kF)'
~(1)g

(4.2)

"This was first suggested to the authors by G. Rickayzen in a
discussion of the magnetic field dependence of the transition
temperature of thin films.

The derivation of (4.1) requires, just as in the special
case 1/rs 0, th——at the impurities give rise to pure
s-wave scattering, that 6 is spatially independent and,
finally, terms of order 7('&6 and higher are negligible.
The similarity between persistent currents and para-
magnetic impurities comes from the breakdown of time
reversal invariance of the single particle Hamiltonian in
both cases; the Cooper pairs are hindered from forming
as a result. 4 Finally we note that our Hartree-Fock
calculation of E,/E„ is somewhat more a.ccurate than
Maki's since it includes the decrease in the generalized
mean free path. However this leads only to corrections
of order (r&"6).

Maki's analysis of the effect of a constant magne tic
field parallel to the surface of a very thin film leads to
the conclusion that o. is now proportional to the square
of the magnetic field. This case is of some interest in
view of the extensive experimental work of Morris and
Tinkham. "These authors reduced their thermal con-
ductivity data by using the well-known formula of
Bardeen, Rickayzen, and Tewordt" Lsee (2.33) of the
present paper] and hence found, supposedly, the ma, g-
netic field dependence of the energy gap. While Maki's
discussion is suggestive, there seems to be some question
as to the correct point in the calculation to average over
the vector potential A(x)."Maki's procedure is to use
volume-averaged. self-energies. We might remark that
Maki's analysis should also apply to a rotating cylin-
drical film.

On the whole, Morris and Tinkham's (MT) results
for indium films are in agreement with what one would

expect if Maki's theory were correct. Considering that
MT used a step function instead of the correct h(or/h, cr)

given in Fig. i, their value of coo should be and is slightly
larger than the predicted value —further, both decrease
with T for a given value of H'/IX. s(T). The field H, (T)
destroys superconductivity at the temperature T, and
may be read from Fig. 5, since ri, /m, „m H'/HP(0).
Indeed, if we expand the horizontal scale of res(T) by

The authors would like to thank A. Baratoff for
several useful conversations and comments. The first
named author (V.A. ) takes pleasure in acknowledging
the hospitality of the Physics Division of the Aspen
Institute of Humanistic Studies, where some final work
was done on the manuscript.

G„p(x,x'; gi)
gCx, x ).gi) =

iF& p(x,x'—; fi)

—il'~p(x, x; i i)
—C p(x, x'; gi)

where we have already Fourier transformed over the time-differ-

ence variables along the imaginary time axis and G p(x,x; f~)
=Gp (x,x; —&&). A straightforward investigation of the equations
of motion for | tl and F p shows that they may be summarized by
the matrix equation

(
gi —h p(x) —a p(x), , 1 p 0

A.,*(x) h+ h.p'(x)
"'" ' "' " "

0 1.p
where we have made use of the relation F ~(x,x'; g~)
= —Fp (x',x; —f i). We have also introduced the abbreviations
A.p(x) =g(ih. (x)it p(x)) and

p2
h, p(x)=b p

———p+Z„Vi(x —R )
2m

+Z„V9(x—R„)S ——=hp '(x). (A3)
2

At this stage, we have not made any average over the positions of
the random, static impurities. However we shall and as a result
homogeneity will be restored (momentum will be conserved. at
each impurity vertex in the scattering diagrams in momentum

space) and the Fourier transform of (A1) will be g(k, k'; 1'i)

=8(k; f&)b(k —k').
If we could assume that the order parameter 6 (x) was essentially

unchanged from its value in a pure metal by the presence of the
impurities, we could solve (A2) by iterating it in the impurity
potential and making the usual impurity average. '4 However, the
presence of the exchange term in (A3), which leads to large
changes in 6, requires that a slightly different procedure be used.
One way of proceding is to go back one step and introduce the
original electron-phonon interaction (in our 4)&4 space) which

- "R.Meservey and D. H. Douglass, Jr., Phys. Rev. 135, A24
(&964).

APPENDIX A

The main purpose of this Appendix is to sketch the derivation
of Eqs. (2.20)—(2.23), while incidentally reviewing some salient
features of the Abrikosov-Gor'kov theory of superconducting
alloys. We shall use the same notation as in Sec. 2, the Hamiltonian
of the "alloy" being given in (2.1).

The single particle Green's function matrix defined by (2.14)
may be written more explicitly as
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gives rise to the eRective electron-electron interaction in (2.1).
Then we may treat the electron-phonon and electron-impurity
coupling on an equal footing and look for nonperturbative solu-
tions of the equations of motion. This procedure is essentially' a
generalization to a 4X4 space of the approach used by Nambu'
in a pure metal and by others to discuss the effect of nonmagnetic
impurities (see, for example, the recent paper by Markowitz and
Kadanof'f32). Our major concern in this Appendix is to understand
the eRects of the impurity exchange interaction and we shall
consequently content ourselves with a very crude model of the
electron-phonon coupling —one consistent with (2.1).

We de6ne a matrix self-energy Z(k, g&) in a formally identical
fashion as one does in a 1-component space,
g- (k; f)) =f)1X1—.s X1—Z(k, f) —=g,-'(k, f)) —y(k, i)). (A4)

Infinite-order perturbation theory of the usual kind may be used to
expand Z(k, g~) in the electron-phonon interaction and

'=(" ' ) (AS)

Lsee (A2)g, using bo(k, f)) as the unperturbed propagator. We
shall determine Z(k, g&) self-consistently by equating an "ansatz"
with the lowest order diagrams Lexpressed in terms of the true
propagator g'(k, f))j contributing to the self-energy. We shall
neglect all contributions of order (kpl) ', where l=nlpv-('&, and
hence assume that the density of impurities is not too large (l))a,
where a is the interatomic lattice spacing).

To lowest order, then, the 4X4 matrix self-energy is the sum
of two self-energy diagrams. The interaction leading to supercon-
ductivity gives rise to the oR-diagonal component of

d'k'
Z&(k&f()= i — 2;. graXIQ(, k —k', (") f) )»—X1 (A6)—.P

'
(2~)d

j&1X1+~a7.a X 1—R7.2X0.2
S(k,r~) =

l2 pe ~ l2
(A13)

which upon insertion into (A11) gives

Z;(7),f)) =I; k
~

k, ~iC, X1+,i»XI+A(»X~i
(2)r)'

'
fP c, —mri ,P

d'k'
+n; i V, (k —k') i'

(2v)' 12

(A14)
)1X1+cj~gX1—&)~2X~2

gl ~k' +l—[U, (k —k')[ +-
d'k' J, , S(S+1)
(2 )3 ) Vs(k —k') ('

X|i1X1+~I ~3X1

g l &I"/ /-k l

d'k'
+r); i i/i(k —k') i' —-

(2~)' 4

where g—=Q(k —q, g&). Of course, due to the assumed isotropic
nature of the exchange interaction, we really need only consider
one component of S explicitly. An obvious generalization is to con-
sider the possibility that, say, (Z„S,") is a nonzero constant. "If
so, we should also have considered the contribution of the constant
exchange field to Z;(k, f)), which is not included in (A9).

To determine g(k, f')), we make the ansatz

() '(&&1)) =f)(IXI) ss—(»XI)+/) )(»X~s} . (A12)

Here the c-number functions g~ and 3 ~ are assumed to depend only
on g~ and not on k. If we rationalize the denominator of (A12)
using the well-known properties of the Pauli matrices, we 6nd

—1 d"k
,8 (k,f () I .. ). (A7) Xi Vg(k —k') i'=, '

fL &k' +l (AaS)

We remark that this will turn out to be proportional to ~2XO-~, and
the impurity averaged order parameter Z will be defined by

Z'~ O.s. = —n»X&ri. (AS)

Since the paramagnetic impurities are randomly distributed, the
self-energy due to electron-impurity scattering will be given by the
usual Born approximation. This contribution to Z(k, f() is' )

d'k'
&, (k&f))=4 (Vr(k')g(k —k', fi)Vr( —k'))r i (A9)

{221-)'

where ( )r denotes an impurity position average and the
Fourier transformed impurity potential in our 4-component space
is Lsee (A5)j

0'2
2Vr(q) =1X—Z~ Vs(q) exp( —iq R„)S„"

+rsX1 Z„V, (q) exp( iq R„)—
+rsX ZV~(q) exp( —zq—R„)S,"

oq+»X Z„U2(q) exp( iq —R„)S,"—. (A10)

In calculating Z, (k,|~), we shall further assume that there is no
impurity spin-spin correlation. Inserting (A10) into (A9) and
making use of (2,18), we find

d'q $($+1)
Z;(k, f)) =a; — —

~ Vs(q) )'(1Xoi()1X09)
(221-)~ 3.4

X ( 3X~&g~3X~3+»X~&g~3X~I)

+n;, ~ Vi(q) ~'(»X1gr3X1), (A11)

37 Y. Nambu, Phys. Rev. 117, 648 (1960).

In terms of (A13), (A7) becomes

1 ' d'k sEz.~. . =&(—:, ,(-..x..)
(271 ) g P —

&Ic

which vindicates (AS), with

1 & d'kz=—g —zi
P (2'.)3 g~' —~/,

2—g P
(A16)

and compare it with the ansatz (A12), we find

z+ 9S=3+
2&(1) (&2 g2) I/2 ' (A18)

(A19)Q=D+
2&(2) (&2 g2) I/2 '

with n being self-consistently defined by (A16} (we shall generally

Actually the sum and integral in (A16) diverge —however, this
divergence is removed by noting that we must introduce a cutoff in
momentum space (hence the prime) when we use (2.1). If we
assume that the impurity potential U(k —k') depends only on the
angle between k and k', owing to its short-range character, we may
do the integrals over the kinetic energy in (A15), Referring to
Ref, 32 for details, to this approximation we find

Z;(k,f i) Z,; Q )) —= +—=, (A17)
z g)1X1 z ~«2X0.2

r(l) (fP /1 2))/2 r(2) (f 2 g i)1/2 '

where r(" and (' arre d)efined in (2.24) and (2.25). Considered s,s
a function of the complex variable s, the appropriate branch of the
square root is determined by Im(s' —3,')'/') 0.

If we now analytically continue our result for g '(k, g&) I see
(A4), (AS), and (A1"/) g to the whole complex plane s,

g '(k, s) =s(1.X1)—~I,7RX1+S72X0.2 —Z;(.)
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drop the bar on 6). If we define u(z) =z//I, then (A18) gives

i u(s)
2r&&& (uz(z) —1)&/i '

while (A19) leads to the alternate form

i u(s)
2r&s& (u'(s) —1)'/'

$
z(z) =s+ (A 18')

where u(Q) —=z/n (0) and fl is a unit vector in the direction k. The
consequences of (A18') and (A19') have been discussed at length
by several authors" ' for nonmagnetic scattering (V2=0). In the
latter case, the anisotropy is crucial since u=cu/A if n(fl) is
independent of orientation.

The spectral density a(k, co) of the ordinary single particle
Green's function, defined by (2.27), is of particular interest since
it is directly related to the probability that a particle put into the
system will have energy ~ and momentum k. We note that, as
defined here, o(k,~) satisfies the sum rule

" Cku—o(k, (u) =1.
oo 27f

In general, one has

(A20)

Subtracting the latter equation from the former, we have

1 1 w(s)
2r&'& 2r&'& (u'(z) —1)'"

This essentially completes the derivation of Eqs. (2.20)—(2.23),
apart from some notational changes. It should be clear that in the
lowest order approximation used to derive (A18) and (A19), the
presence of several kinds of impurities (whether paramagnetic or
nonmagnetic) will simply give rise to total scattering times of the
kind

1 1 1

Tp(1) ~ .(1) ~ ~,(2) T .(2)

where j denotes the impurity species.
If we were dealing with a superconductor with an anisotropic

effective electron-electron interaction, an essentially identical
discussion would lead to

where p(co) is the density of states to be discussed next.
The single particle density of states" "is defined, relative to the

density of states at the Fermi surface in a normal meta1, hy

1V, ((o) 1
dpi., IrnG(k, a=cd —iO+)

Z (0)
00

dpi;a(k, co) .
2' 0

It is quite easy to show from (2.20) that

1V„(co) u(z)

and further, using (2.23),

(A22)

(A23)

A/„(ai)

i'�(0)
= —(rz/x} Imu(z =co 0"}s. — (A23')

In Pig. 6 we have plotted some examples of the density of states
curves for paramagnetic alloys. "These curves may be useful in
tunneling experiments since the differential conductance of a
normal superconducting junction is directly proportional to the

s $ I
t I

t.O

the more complicated expression

1 co sgnco

l 2 r(1& (~2 A2)1/2
~2 +21

2&(1)+,X&rL/&(/d —6)+8(cu+A)g, for ~cu
~
&/1,

co' —A~+
2~(I.)

=0, for (A21)

While there are no states within the energy gap, which is h in this
example, the delta functions at

~
~

~

=6 have decreased weight due
to the broadening for to& ~

&A. In the case of paramagnetic im-

purities, we And

Aa(k p,cu)~2r&z&6/1 —2r&~&/r&'&gp(ca), for a& &/1 and rz))r&i&
2

~2 —,for ~))h,

but for simplicity we shall restrict ourselves to the Fermi surface
(k=kp} where

3 0
CO ~z

u(z)

(u'(z) —1jn (s)

=a(kp, —co).

z=n& —s 0
~ +

(A20')

0.5

The last equality (which of course holds only for k=kp) follows
from the easily verified relations

R eu ( a&+i0+}= Reu, (io+i—0+), —
1mu ( /s+i 0+) = Imu (co—+i0+) .

We now consider u(ky, co) for several special cases. For a pure
superconductor, u =co//'d and 5=~ and hence (A20') gives the well-

known result

o (kp, &u) =m Lb(cd —6)+s (a&+5)j.
For a superconducting alloy with nonmagnetic impurities, we find

O~a al sl a II k I s

0.5 l.O
s s s t s I s

I.5
e/g

8 Such curves have been also discussed in Ref. 12. See also A.
Baratoff, thesis, Cornell University, 1964 (unpublished).

FIG. 6. The density of states X,(co) in a paramagnetic alloy
function of the excitation frequency co (we have normalized the
former with respect to a normal metal and the latter with respect
to the Gor'kov order parameter 6). The density of states for non-
magnetic impurities is also shown to—= (rsvp) '=Oj.
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density of states in the superconductor. "We remark that X,, (~)
always has its maximum for cz &A. If we expand zz(cz/n) in inverse
powers of (cv/6 —in) and determine the coeKcients by putting the
series in (2.23), we 6nd

Z cx
zc= (c /A in) —(—~/zt in—) '+.

2
(A24)

Thus if we may cut oR the expansion as shown,

lV, (ro) 1 (coja)' —n'

A"(0) 2 [( /n)'+ ')'
This result is valid in two situations. For co))A, we see quite
generally that

&s(~)/Jz/(0)=1+ s (S /n)' (A25')

and hence there ahvays is a "peaking" in the density-of-states.
Secondly we note that for T T„n»1 and therefore (A25) is a
good approximation for all co. Here the "peaking" occurs at
co=hu&)D. More generally, we note that for co near the threshold
c99(n&1), (3.13) inserted in (A23') gives

(A26)

One sees that the threshold is sharp. 1 or n) 1, cop
——0 and in this

case [see (3.16)g we find

1V, (co=0)/iV(0) = (1 n')'—z'+O(cd/ci)' (A26')

Hohenberg" has recently published a careful analysis of the
effect of anisotropy on Ã. (90) for the case of nonmagnetic im-

purities. The interesting corrections he finds would probably be
swamped if one repeated his calculations using {A18') and (A1.9').
Indeed when one reAects that a —+~ for 2' —+ 2', no matter how
small the paramagnetic impurity concentration, it is obvious that
great care must be taken that there be no trace of paramagnetic
impurities in samples used to study the eRects of anisotropy on the
density-of-states near T,.

We now turn to the question of an energy gap. Consider {2.23)
as defining co/6 as a function of real u—=upi. Obviously for u &1, ~
will increase v ith zlzz, reach a maximum equal to cup at ug ——Np and
then decrease, with co =0 for nil ——(1—cx-')'/ For n) 1, co always
decreases with increasing zcR Therefo. re I, as a function of co/A and
o. &1, will have a real solution for co&cop and be complex for all
~)cop. It is clear that cop plays the role of an energy gap, the latter
being the minimum frequency at which either zl. takes on an imagi-
nary value or equals unity. Some representative values of cup(T, +;)
are given in Fig. 5 and compared with the tunneling data of Reif
and Woolf. '

The last point we must discuss is the determination of the
Gor'kov order parameter A(T, rs), which according to (A16) is
given by the self-consistent integral equation [s and cI are defined

by (A18) and (A19)g
oz+

rc= gksT Z E(0) dz, , =, , (A27)
l~oo -own ~l +& +/-kl

where c9c= —is(cdc), az=c1(arz) and ~i=( 2fI+) /0zr, l an integer
We have introduced the usual BCS cutoR at the Debye phonon
frequency col). i%row, as in the SCS theory, '7

hand side and we may extend the limits of integration to infinity,
with the result"

1 1
ln(T/T, „)=2xp Z

(1+zizz)'zz xi

where xi =—(21+1)zikRT/rz and

(A30)

xi zz=i[1 n—(1+zzz') 'z'-j (A.31)

W'e have made use of Ni =u l i' and col' ——co l i' in reducing the
sum over l. Since zsl~xl+a for xp&/1 (which is the case we are
interested in), it is useful from the point of view of improving
convergence to add and subtract (xc+n& ' from the right-hand
side of (A30). If in addition we make use of (A31) to rewrite

(1+$l l')

T " 1 1xl
ln —— =2xp Z ————— —x(ps),

T'z:p l=p cx cx Ni xl+cj

where ps = (zrksTrs) i and

1 1
x(x)=—2 &

l p 2l+1 23+1+x

2
-~ l)

(A32)

(A33)

with P(x) being the well-known digamma function (the logarithmic
derivative of the I' function). We note in passing that at T„ the
transition temperature of the paramagnetic alloy, (A32} reduces to
the simple result'

»(T../T. ) =X(R„).
For zis, = (zrksT, rs) '«1, we have

T.= T., (r/4ksrs), —

(A34}

(A34')

»(T.r/T) =X(Ps)+xo (21+1+ },
—

(2f+1+

p (2)+1+pg) 5 (2)+1+pg) 6

+
2 1, +0(x, '). (A35)

(2f+ I+Rs) '
This is a quadratic equation in xp ' which can be used to 6nd
6(T,rs) for xs»1. Some special limiting cases of (A35), which is
valid for (A/zrksT)«1, are of interest. For low impurity concen-
trations (pg, «1), one has'

while for ~s,&)

Tcz =6/zizrs'1 (nzrksTcr s/v2) ' (A34")

This last result predicts that when (1/rs)„=zrksT, „/2y= c4( )0/ 2

{using the BCS relation h~(0) =1.76T,„), superconductivity is
destroyed. We have plotted T, vs zz; in Fig. 5. If one fits (A34')
to the experimental results, one finds (A34) to be in good agree-
ment with experiment, ' and furthermore the value of the exchange
potential so found is consistent' with other investigations.

As mentioned, we are interested in finding D(T,~~) for T near
T„and shall use the inverse power series the first terms of which
are given in (A24). This is an expansion in powers of 6, which is
small in the region of interest. After a little algebra, we find

2yco D ~ "D de
ln —kg

7l /AT l=oo —AD COl +E
(A28) ln —'" =ln 1+—ps + ~sg 3) (A36}

holds as an identity for arbitrary T, where lny is Euler's constant.
This follows from combining the usual integral equation which
determines the transition temperature T,„with the relation
$1V(0)gp'=in(2p~n/zrT9„). If we subtract a term Tt(&ucz+zz} '
from the integrand on the right-hand side of (A27) and use (A28),
we find

1 cr/r„)= z 9 (. . .—;,). 9929)

There are no divergence difFiculties in the integral on the right-

and hence

Q2- 87f'kgPT' T,—T
7f (3) T,

(A36')

"We might remark that according to (A36'), the jump in the
electronic specific heat in a superconductor with a small (pg,«1)
concentration of paramagnetic impurities is T,/T, „as large as that
in a pure superconductor.

This reproduces the usual SCS expression for T, —+ T,„.» In con-
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trast, for high concentrations (pe,))1), (A35) reduces to

In —' = ln(2yp8)+ — —+ (A37)

and therefore
A'=2m'L(ke2", )'—(keT)'g. (A37')

APPENDIX 8
The subject of this Appendix is the proof of Eq. (2.46). A con-

venient starting point is a spectral representation for the quantity
P (v ) =P (q =0, v,„)as defined in Eqs. (2.6) and (2.7).An examina-
tion of Eqs. (2.15) and (2.16) shows that for the problem at hand
one has the representation

c „y d k dceidcve /co (cvi, ce2)
P(v )=—Zc eii'

ft (2r)' (2r)' 0 i ~i) (fi+v- ~e)

LIt should be emphasized that (B1)is not completely general. The
general spectral representation has been derived in Ref. 21, where
it was shown that there are two independent spectral functions,
and not one as in (B1).The second independent denominator can

We note that 6 has an infinite slope at T, for all impurity concen-
trations. In addition, we might remark that if use is made of
Maki's expression" for A(T) when (A/crksT)))1, one finds that
A(7') is given by (A37') once again for pe,))1. That (A37') is
correct for all temperatures in the large concentration limit was
first noted by Abrikosov and Gor'kov. '

AG have considered the other limit x0&(1, that is, near T=O'K.
In particular, they find

InLA(T=O)/Av(T=O)]= ic/4reA(7'=—0) for A(T=O)re)1.
Thus if A(0)re=1, then A(0) =Av(0)e r~' and hence

1/re=~(0) =2e r~'(1/re)„.

This result means that for paramagnetic impurity concentrations
0.912n„&n;&m„, the gapless region exists for ul/ temperatures.

By combining (A35) and AG's low temperature calculations, we
have computed A(T, rc;) for several impurity concentrations.
These results are plotted in Fig. 4.

with
d'k fe*(cei,cee)

(2r)'(4 ~i)(0c' ~e)'
3rsi . c dceidcee

8 s fc&fc' =
(2 ),

wh. ere f~ =/~+V
It follows directly from (B4) that

d'k =3n
(2r)' ' 4

fe'( i,cee) = )F,(ce+i0+, ce i0+)—
ReF, (ce i—0+, ce i0+—)—g (BS.)

An examination of the explicit form of F, LEq. (2.44)j using
(2.30) shows that the second term in the square bracket in (BS) is
zero. This term is therefore also zero in the normal state since
F„=—F,(n=0). One can also verify using Eq. (2.8) that the
contribution to the thermal conductivity of F„is just the thermal
conductivity of the normal state, Putting all these facts together,
we obtain

n pcs
IC= dce sech' —F, (ce i 0+, ce+i0+) . —

64mk~T' 2
(B6)

Combining (2.44) and (2.31), one can show that the integrand of
(B6) is even in ce, and Eq. (2.46) follows at once.

be chosen to be either (f c
—cvi) (v» —cve) or (pc+ v» ce—i) (v» —cee).

However, no such denominators occur with integral equation
(2.16) because the scattering is elastic. Thus (81) is sufficiently
general for the present problem. f Using (B1),we can express the
thermal conductivity as an integral over the spectral function
fs(cei, ces) .Fi.rst we carry out the sum over 7 and then use the
prescription (2.8) to get

dec d3k
IC= — — fe(cv, cv) sech'(sigh&) . (B2)

24kgT2 — 2~ (2'-)'

To get a result of the form (2.46) we have to show that
J'd'kfe(cv, ce) is simply related to the summand of (Bi). Here
again we encounter the "order of operations" problem mentioned
above (2.43) (see Ref. 27). The difficulty is again avoided by
subtracting the expression in the normal state. Then we write

P.(-)-P-(-)= ~, «"LF,(f,f ')-F.(f,f ')3, (B3)8'


