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Multiple Scattering of Neutrons in Vanadium and Copper-
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Department of Metallurgy, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received 18 September 1964l

The intensity of multiply scattered neutrons from cylindrical specimens of incoherent isotropic scatterers
has been calculated and compared with experimental values. The scattering is considered in terms of the
number of scattering events, and the intensity is expressed in terms of the parameters pR, R/tt, and e,/e't,
where p is the absorption coefficient, R is the radius, h is the height of the cylinder, 0, is the scatterI. ng cross
section, and rrt is the total cross section. Intensities were measured as a function of R/lt for vanadium, which
scatters almost entirely incoherently, and for copper, which has strong coherent reflections. /he data for
vanadium and copper are in good agreement with the calculat. ions.

I. INTRODUCTION

""T is frequently necessary to separate the primary
~ ~ scattering of neutrons from the secondary and sub-
sequent orders of scattering in interpreting measure-
ments of diffuse intensities. This is particularly impor-
tant in the case of vanadium, since it is frequently used
to standardize incoherent scattering. The multiple
scattering correction is also important in studies of
magnetic and temperature diffuse scattering, since it
may represent a substantial portion of the diffuse in-
tensity. The problem of multiple scattering events has
been treated in a general way, ' and'a solution for the
multiple scattering of neutrons by infinite slabs of an
isotropic scatterer has been derived by Vineyard. '

The latter calculation separates the primary scatter-
ing in which neutrons have suffered only one diffraction
event, from the second order, where two di6raction
events have occurred, and finally from all subsequent
higher order events. Vineyard calculated the second
order scattering and then estimated the total multiple
scattering. Brockhouse et al. ' compared these calcula-
tions with data obtained with several coherent scatterers
and found this quasiisotropic approximation to give
reasonably good agreement.

%e have followed the same approach used. by
Vineyard. for the case of cylindrical samples completely
bathed in a homogeneous neutron beam. The problem
involves a series of definite integrals which yield the suc-
cessive orders of scattering for an incoherent isotropic
scatterer, neglecting inelastic eRects. The secondary
scattering was evaluated. numerically by means of a
machine calculation. The multiple scattering is a fulic-
tion of tt R, R/h, and o.,/a t, and the calculation was tested
by a comparison with data obtained from specimens with
various values of R/h. These specimens were made up
of a series of discs separated by cadmium spacers. In the
case of vanadium, the calculations are in good agreement
with the measurements. In the case of copper, which has

' S. Chandrasekhar, Radiatioe Trartsfer (Clarendon press,
Oxford, England, 1950); S. Chandrasekhar, D. Elbert, and A.
Franklin, Astrophys. J. 115, 244 (1952).' G. H. Vineyard, Phys. Rev. 96, 93 (1954).' B. N. Brockhouse, L. M. Corliss, and J. M. Hastings, )Phys.
Rev. 98, 1721 (1955).

strong coherent reAections, it appears that the calcula-
tion underestimates the multiple scattering from tall

cylinders. The absolute values of the multiple scattering
are significant; for vanadium the multiple scattering
was up to about 25%%uo of the measured tots, l diffuse

scattering, and for copper it was up to 85%%uo of the meas-

ured diffuse scattering.

II. CALCULATION OF MULTIPLE SCATTERING

The number of neutrons per unit solid angle scattered
in a primary fashion from a unit volume d V for an in-

coming Aux Jo is given by

dIr = (Ntrrr. Jo)e—r~rdV.
4'

Here, dI& is the number of primary scattered neu-

trons per unit solid angle, lV& the atomic density in

atoms/cm', o, the sca,ttering cross section, tt the total
absorption, and Lr is the path length of the incoming
beam as shown in Fig. 1. The total primary scattering
Ij in neutrons per solid angle is then

where I.i~ is the path length of the scattered beam

(Fig. l). The secondary intensity from a volume element
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FIG. 1. Primary and secondary scattering.
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a sc, attering, 8'. Combining Eqs.rima scattering, secon yar to rimary sca eridV'can now be calculated from the pnmary sc
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f th t f th
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We now take up the calculation o
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MULTIPLE SCATTERING OF NEUTRONS IN V AND Cu

TABS.E I. CoeKcient 5 for secondary seattexing.

0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0,40
0.50
1.00
2.00
3.00
4.00
5.00

0.1

0.1049
0.1023
0.1001
0.0981
0.0963
0.0946
0.0931
0.0916
0.0902
0.0888
0.0895
0.0819
0.0768
0.0615
0.0425
0.0333
0.0277
0.0237

0.2

0.1922
0.1878
0.1841
0.1809
0.1780
0.1752
0.1726
0.1701
0.1677
0.1654
0.1631
0.1536
0.1445
0.1174
0.0818
0.0644
0.0535
0.0460

0.3

0.2657
0.2600
0.2553
0.2512
0.2475
0.2440
0.2407
0.2376
0.2345
0.2316
0.2287
0.2165
0.2044
0.1682
0.1181
0.0933
0.0778
0.0670

0.4

0.3286
0.3212
0.3157
0.3110
0.3067
0,3028
0.2991
0.2955
0.2921
0.2887
0.2854
0.27 15
0.2573
0.2143
0.1516
0.1203
0.1005
0.0867

0.5

0.2742
0.3670
0.3616
0.3570
0.3S27
0.3488
0.3450
0.3413
0.3377
0.3342
03193
0.3036
0.2560
0.1825
0.1454
0.1218
0.1053

0.6

0.4118
0.4046
0.3933
0.3947
0.3905
0.3866
0.2829
0.3792
0.3756
0.3605
0.3439
0.2937
0.2110
0.1687
0.1418
0.1227

0.7

0.4422
0.4349
0.4295
0.4250
0.4210
0.4172
0.4136
0.4100
0.3953
0.3785
0.3273
0.2370
0.1904
0.1604
0.1391

0.8

0.4661
0.4585
0.4530
0.4486
0.4447
0.4411
0.4376
0.4239
0.4073
0.3571
0.2607
0.2103
0.1776
0.1543

0.9

0.4751
0.4701
0.4657
0.4619
0.4586
0.4461
0.4303
0.3830
0.2820
0.2286
0.1936
0.1685

scattering cross section 0

~.(~,/~') 8
&m, = )

1—(o,/~, )S

where a, is the total scattering cross section.

III. EXPERIMENTAL CORRELATION

(16)
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Vanadium has a very small coherent cross section and
may be regarded a,s an isotropic incoherent scatterer.
This material is thus well suited for a test of the cal-
culations. Stacks of disks of 1.9-cm diameter and dif-
ferent heights were used. Cadmium spacers, 0.030 cm
thick, were used to absorb the neutrons traveling be-
tween the disks. Five sets of cylinders, ranging from one
solid cylinder to one containing 17 layers, were used.
This experimental arrangement provided comparable
scattering intensities for a variety of values of R/h.
The observed intensities were corrected for the volume
occupied by the spacers. 0.55—

a
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measured at 28 = 20'
a emerging beam collimated
~ no collimation
a entering beam collimated

&, f~t = 0.6S
p. ~ 0.59 (cm )
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O
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A lead monochromator arranged to provide a neutron
beam of 1.204 was used, and a BF3 counter was
mounted on the spectrometer. Experiments were carried
out with a roughly collimated incoming beam and a
collima, tor in front of the counter. Measurements were
repeated without the scatter coBimator, and also with a
collima tor in front of the specimen to minimize the
vertical divergence of the entering beam. These varia-
tions in collima, tion made little difference in the results.
The usual background corrections were made and
standardization was accomplished by comparison with
the (111), (200), and (220) peaks from nickel powder.
The measured cross sections for vanadium at.a scatter-
ing angle (28) of 20' are shown as a function of the speci-
men height in Fig. 4, and these agree well with the values

0
0
0 0.40—

calculated primary
incoherent scattering

0 I,O DM 0 I
2' 3

specimen height, h (cm)

FIG. 3. CoeScient of secondary scattering. FIG. 4. Diffuse scattering of vanadium cylinders.



A 1116 A VERBACHI. A. BLECH AiN D B. L.

I t !I I I I I I I I
APPENDIX
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8 as 9—9', and integrate Eq. 16) toNext we redefine 8 as —,a
get

h—Z~—pL

f the Secondary ScatteringEvaluation o e
CoefEcient 8

n I.i and Liz was assumed to beThe attenuation along
the same as orf the primary scattering.
becomes

2
7i R h =p t =p g=p z=o z=o L

&(rr'drdr'd8d8'dZdZ' (18I I I I I I I II I I I I I I

I 2
specimen height, h {cm)

scattering o pf polycrystalline copper.

0 I I I

0

I2= r r"—2rr' cos0.

(dI(i) )gz'dydy'd8, (19)
q=p ~ y' p

(20)

I"=t"+ '+g'2 —2gg' cos8.

E . (19) can be readily calculated
dI sed i thi

19) has been carried
d dIo through 6 were

inte ration in Eq.
70941 usln a iglta con1

Tbl Ia ulate in aan
was also integrate wi

e " ' '
th first assumption.e I'& i+~»& in the integ rand to test e
8=0.8 and at scat-te that even at pE= . aThe results in icate E= . a

tering ang es e1 between 0' and 30, t e assi
within 1&.
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