
~ —DECAY PROPERTIES OF SOME Tm AN D Yb ISOTOPES

The alpha-reduced widths 6' given in Table I reQect
the probability of alpha decay after the energy de-
pendence has been removed. The exact de6nition of P
and the method of calculation is that given by
Rasmussen. " The 6' for the Tm isotopes are very
close to those obtained for the Ho isotopes with the
same neutron number, and the P for the Vb isotopes
are in approximate agreement with those obtained for
the corresponding Kr isotopes. The approximate con-
stancy of 6' for nuclides near the 82-neutron closed
shell has been of particular interest. Theoretical cal-
culations of relative reduced widths using pure single-
particle wave functions show that large Quctuations in
6' can be expected, depending on the magnitude of the
radial wave functions near the nuclear surface. Also,
as a shell is being 6lled (in our case the hrvs proton
shell), 3s should have a maximum value when the shell
is half-filled (Z= 70 for the hires proton shell). Experi-
mentally, however, P for the 84- and 85-neutron iso-

"J.O. Rasmussen, Phys. Rev. 113, 1593 (1959).

topes has been reasonably constant for Z= 60 to Z= 70,
except for a slight decrease at Z= 66. If wave functions
derived from residual pairing-force calculations are
used, Quctuations in calculated P are essentially washed
out."The constancy of the experimental reduced widths
for the 84- and 85-neutron isotopes clearly demonstrates
the role of the residual pairing force in the alpha-decay
process.
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The relationship between the statistical properties of the parameters de6ning the E matrix and the dis-
tributions and correlations of the poles and residues of the statistical collision matrix are explored by means
of some limited numerical computations involving models for reactions in the presence of large numbers of
competing strongly absorbed channels. The results shed light on the distributions of resonance energies and
widths, and on the relationship between the partial width to spacing ratios and the channel transmission co-
efBcients. The calculations also yield substantial channel-channel and resonance-resonance correlations in the
complex amplitudes which deine the collision-matrix pole residues. These are important for their eRects on
average cross section and Quctuation calculations. It is found that the investigated statistical relationships
depend on the choice of R-matrix boundary conditions, and the implications of this for the choice of bound-
ary conditions are discussed.

I. INTRODUCTION

'HE statistical properties of the eigenvalue spectra
and eigenvectors of complex and strongly inter-

acting bound systems such as heavy nuclei have been
extensively investigated. ' In the continuum part of the
spectrum, the results of this work are thought to be
applicable to the artie. cial discrete states generated by
the real constant boundary conditions of R-matrix

*%'ork performed under the auspices of the U. S. Atomic
Energy Commission.

t Temporary address: Laboratory for Nuclear Science, Massa-
chusetts Institute of Technology, Cambridge, Massachusetts.' See, for example, the notes for lectures by N. Rosenzweig, in
Statistical Physics (W. A. Benjamin, Inc. , New York, 1963),
Vol. 3, which also includes extensive references.

theory. ' The eigenvalues of this boundary value
problem are then the poles of the R matrix and binary
products of the corresponding eigenvectors form the
matrix residues. It is of interest to translate such
statistical models of the R matrix into statistical
information regarding the poles and residues of the
statistical collision matrix, ' since it is the latter which
directly affects the statistical properties of cross sections
such as energy averages, mean square Quctuation,
correlations, etc. , as discussed in Ref. 3.

s E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).

3P. A. Moldauer, Phys. Rev. 135, B642 (1964). Extensive
background references will be found there as well as more complete
discussions of the concepts and symbols employed in this paper.
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There are, of course, other formalisms which give
more direct interpretations of the poles of the collision
matrix. ' These deal, however, always with "states"
having complex energies and eigenvectors, requiring
essentially twice as many statistical hypotheses, some
of which may be physically redundant. In addition,
these other formaljsms involve parameters such as
normalization constants or matrix elements whose
evaluation requires additional dynamical assumptions.
On the other hand, it must be recognized that assump-
tions regarding the R-matrix statistics are essentially
models which are not simply related to specific dy-
namical models and which must be checked against
experiment for verification. This fact will become
particularly evident when we come to discuss the
relationship between R-matrix boundary conditions
and the statistical assumptions. Nevertheless, it appears
that the statistical discussion proceeding through the
R-matrix formalism is more firmly grounded at the
present time since it is evidently connected, through a
unique sequence of boundary conditions, to the true
bound state problems and the almost bound states of
slow neutron resonances, where its predictions have
been amply confirmed. '"

In the next section we review the theoretical relation-
ship between the R matrix and the statistical collision
matrix for the special conditions to be assumed here.
Having so far failed in constructing a fully successful
analytic method of relating the statistical properties of
these two matrices, we then give the results of some
numerical computations and discuss their implications.

II. THEORETICAL BACKGROUND

A detailed development of the relation between the
R matrix and a locally valid pole expansion of the
collision matrix has already been given. '" We review
here briefly the results for the special case of an energy
region where distant poles do not contribute to the off-

diagonal elements of the R matrix (R"~ diagonal), and
where there are no nearby thresholds. These conditions
(which are in fact not nearly so restrictive as they may
seem) imply that there are no direct reactions and no
smooth effects due to distant resonances (except insofar
as potential scattering may be regarded. as such). Then,
if the E matrix is

approximated by
gpcgpc. '

U„.(E)=8„.—i P
E—8„+-',iT'„

(2)

where

and

T.= (o..&, (1—le.(O""&.),

e.=».(1-~.)/P. )„
~.=

I (g..'&. I'/& I g" I'&.'

(10)

(12)

measures the anisotropy of the distribution of the g„,
in the complex plane, going to zero for a completely
isotropic distribution. The quantity 4o depends on the
distribution of the spacings of the B„and goes to unity
for large width to spacing ratios. ' For most cases of
I'/D) 1, Eq. (10) implies that T,=(H„,)„. Under the
same assumptions, the reaction cross section for
transitions from partial wave c to a different partial
wave c' is given by

where the 8„——,'iI'„are the eigenvalues of the complex
symmetric level matrix:

&~.LE.~"—Z. (~'+i~.)7"v-3=L~~—kiT.]&&., (3)

where I', is the penetrability function and 5,' the
modified shift function of channel c, and

g,.= (21'.)"Z. &,.v-.
It can be shown, furthermore, that

r„=p, r„„
where

p..= lg, .l /~„
and

(7)

In addition, we have defined'

0„,= (2ir/D)S„I g„, I
',

where D is the mean spacing of the 8„.Ke have verified
that in all cases of the calculations to be reported later,

(g„,g„, )„.=0 for chic',

where ( &~ is an average with respect to resonance
index p. When the relations (9) hold, the optical-model
transmission coefficient for the partial wave c is given
by6

R„(E)=g
jv jv

0„,0„.
0 cc' ~~c

chic

A„A
(13)

it has been shown' that aside from constant phases the
collision matrix may, in a certain energy interval, be

4 P. L. Kapur and R. Peierls, Proc. Roy. Soc. (London) A166,
277 (1938); H. 1''eshhach, Ann. Phys. (N. V.) 5, 357 (1958);
J. Humblet and L. Rosenfeltl, Nucl. Phys. 26, 529 (j.96]).' See, for example, J. 8. Garg, J. Raimvater, J. S. Petersen,
and W. W. Havens, Phys. Rev. 134, 8985 (1964) and earlier
references cited there,

and angular distributions as well as fluctuations are
expressible in terms of (13) and similar expressions. '

III. METHOD OF COMPUTATION

The solution of the problems posed in the Introduc-
tion were progran1nied for computation by means of
the CDC 3600 digital computer. First, the R matrix

P. A. Moldauer, Rev. Mod. Phys. 36, 1074 (1964}.
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was generated by producing random uncorrelated and
normally distributed real amplitudes y„, with zero
mean and unit standard deviation by averaging twelve
pseudorandom numbers uniformly distributed in (0,1)
and generated by the method of Rotenberg. 7 Up to
300 channel indices c could be accommodated. Four
types of distributions of the E„were employed: (1)
Equally spaced E„. (2) Uncorrelated E„. These were
generated by drawing spacings E„+~—E„at random
from an exponentially distributed set of spacings. (3)
signer repulsion, generated by drawing from a set of
spacings distributed according to the Wigner distribu-
tion. s (4) Wigner repulsion anticorrelated, generated
by drawing at random alternately from the upper and
lower haN of the above Wigner distribution of spacings.
This was intended to test the effect of the anticorrela-
tion of spacings actually present in the spacings of the
random matrix model proposed by Wigner. ' '

The level matrix on the left-hand side of Eq. (3) was
generated by specifying a set of channel penetration
factors I', and shift factors 5,'. The procedure of
Osborn' was employed to perform diagonalizations of
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FIG. 1. Distribution of fifty poles of a collision matrix having
100 channels with random uncorrelated R-matrix amplitudes and
E-matrix pole spacings selected from the Wigner distribution with
anticorrelated neighboring spacings. The transmission coefficients
of all channels are unity.

level matrices of dimension up to 50. At that maximum
dimension, the complete program required about 15
min running time per matrix. The diagonalization
method was checked for accuracy by means of a 3X3
complex matrix and by various internal consistency
checks.
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FiG. 2. Combined distribution in energy of the poles of six
independent collisi. on matrices as described in Fig. 1, The dashed
line shows the underlying density of the R-matrix poles.

the dimensionality of the matrix was reduced in steps
down to 10. It was found that the above conditions
required the choice of 2mB, =0.2 for all c. Figure 1 shows
the distribution of poles 8„—s'sI'„. (Note that, con-
sidered as a plot in the complex plane, the vertical
scale in Fig. 1 is twice the horizontal scale.) We note
6rst of all that the density of the 8„is uniform and equal
to that of the X:„and that the center of the distribution
is unshifted. These facts are illustrated in Fig. 2 in
which we compare the distribution of all 300 8„ in the
six cases with the underlying density of the E„.This
result, that the resonance level density is invariant
under the transformation (3), should not be misin-

terpreted. In particular, it must not be assumed that
the density of the B„may be calculated directly by
means of a statistical model of nuclear level densities. "
Such models presumably apply to states arising from
constant boundary conditions and these are not com-

patible with the assumption that the S.'=0 in all
energy intervals. The shifts resulting from keeping the
boundary conditions constant will tend to make the
density of the 8„ increase more slowly than that
calculated by the statistical model.

The nearest-neighbor spacing distribution of the 8„
is compared in Fig. 3 with the Wigner distribution which

characterizes the spacings of the E„and with the
exponential distribution which characterizes the spac-

IV. CASE OF 100 BLACK CHANNELS

The case of 100 competing channels, each with
transmission coefficient equal to unity and boundary
conditions adjusted so that all S, vanished, was studied
most thoroughly. Six independent 50&50 such matrices
were diagonalized using six different independent
distributions of the y„„but the same Wigner anti-
correlated distribution of the E„centered about 8=0
and having unit average spacings. It was ascertained
that the results were not significantly affected when

50

EXPONENTIAL

+

IO

gaE)

NER REPULSION FIG. 3. Distribu-
tion of the energy
spacings of the same
poles as in Fig. 2
compared with the
Wigner and exponen-
tial distributions.

r A. Rotenherg, J. Assoc. Comp. Mach. 7, 75 (1960).' E. P. Wigner, Fourth Canadian Mathematical Congress
Proceedings (University of Toronto Press, Toronto, Canada,
1957), p. 174.

9 E. E. Osborn, SIAM 6, 279 (1958).
For summaries see T. Ericson, Advan. Phys. 9, 425 (1960);

and D. Bodansky, Ann. Rev. Noel. Sci. 12, 79 (1962).
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we have
2' =(o").= (2 iD)(1V.lg" I') (15)

Comparing this with Eq. (6), we see that if the 1V„and
the

l g„, l

' were uncorrelated we would expect to obtain
instead of (14)

ings of random uncorrelated levels. It is clear that the
level repulsion present in the E„ is markedly reduced
in the 8„. However, small spacings are less common
than in the exponential case. As a result, the function
40 is actually closer to unity than in the case of full
repulsion. Qualitatively, the same effect, namely, a
partial reduction of the repulsion, resulted also when
other E„spacing distributions were employed. More-
over, it appears that no other property of the collision
matrix is very sensitive to the assumed spacing distribu-
tion of the E„.

In Fig. 4, the distribution of the total widths is shown
to be slightly broader than the chi-squared distribution
with 100 degrees of freedom. The latter characterizes
the distribution of the quantities 2Z,P,y„, ." The
average value (r„)„ is 6.40 which does not differ
significantly from the average value of 2Z,E,(y„,s)„
which is 6.37. It does differ very markedly from the
average total width one would obtain from the relation

r,= 2~(r„,)„/D, (14)

which would yield (r„)„=15.9. This discrepancy is
easily explained as follows. From Eqs. (8) and (10),
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Fro. 4. Distribution of the total widths (twice the imaginary
parts} of the poles of Fig. 2 compared with the chi-squared
distribution with 100 degrees of freedom.

TABLE I. Average resonance and channel correlations of the
collision matrix parameters for 100 black channels.

Correlated
quantities p(1)

+0.48
+0.19
+0.20
+0.19

p(2)

+0.13

p (3)

+0.04

p(cc')

+0.02
+0.12
+0.20

where we employ the correlation coefficients defined by

(lV„E„+„)„(X„)'—
p~( )—

(1V„')„—(lV„)'

From Eq. (7), it is apparent that the correlations of
the X„reAect correlations of the elements of the
transformation matrix t which by Eqs. (4), (6), and (8)
inQuence the statistical properties of the g„„F„„
and 0„,.

The channel parameters lg„, l', r„., 0'„, are closely
related, differing statistically from one another only by
factors of X„. Their distributions were found to be
quite similar, following closely the Porter- Thomas
distribution" of the y„,' but lacking somewhat in small
values. This is illustrated in Figs. 6 and 7 where the
distributions of the r„, and. the 0'„, for 25 channels in
one of the cases are compared with the chi squared
distributions with one and two degrees of freedom
corresponding to the Porter-Thomas and exponential
distribution laws, respectively. Examination of the
normalized mean square deviations defined by

r.=(1V„)„(2 (r„.)„iD).
In our case (1V„')=2.46, for which Eq. (16) yields
(r„.)„=15.6. The deviation of this result from the value
of 45.9 is not statistically signi6cant.

The values of the normalization constants E„are
thus of the greatest practical importance. Figure 5
shows the distribution of the E„obtained from six
cases under consideration. This distribution has the
average (1V„)„=1.52 and the standard deviation
o(1V„)=0.39. Of even greater interest is the apparent
strong correlation of the values of E„belonging to
neighboring - 8„.Numerical investigation of this corre-
lation in the six cases produced positive correlation
coefficients in all cases. In addition, the correlation was
found to extend over a range of three consecutive 8„ in
some cases. These results are summarized in Table I,

Frc. 5. Combined distribution of the normalization constants N„
corresponding to the six collision matrices of Fig. 2.

"C.E Porter and R. . G. Thomas, Phys. Rev. 104, 483 (1956)..

Xp, p Sp p 0 Xp
(18)
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pc pc' p, pc tM, pc'
pe(c, c')— (19)

arises from the fact that the same fluctuating E„enters
into the Q~„, for each channel. The resonance correlation
coefficients

pc Itt+n c p, pc tM

pO(n) = (20)

are due to the resonance correlations of the S„orof the
elements of t. Additional correlations between different
channels md different resonances may be considered.
The channel correlations of the I'„, were found to be
small and of varying signs with a slight bias toward
positive correlations. Presumably this is due to the fact
that the t„„occur bilinearly in both the numerator and
denominator of the expression (6) for I"„„andtherefore,
the correlation effects largely cancel. On the other hand,
the I'„, are of very little interest in the many channel
case. Their only apparent signi6cance lies in the fact
that they add up to the total widths. Cross sections and
their fluctuations are determined by the 0'„. and the

~g„, ~

which exhibit definite positive correlations as
summarized in Table I. Such correlations are of
importance in the theory of average cross sections
where they tend to reduce the width Quctuation correc-
tion' " and in the theory of cross-section fluctuations
where they affect the interpretation of observed
fluctuations "4 /Note . added ie proof It appears lik.ely
that the correlations observed here are in part conse-
quences of the unitarity property which is automatically
satisfied in the E matrix formalism, but is not neces-
sarily satis6ed by simple statistical assumptions regard-

shows that the distribution of the 0'„, approaches most
closely to the Porter-Thomas value of s= 2.0, while the
distribution of the I'„, is distorted most toward the
exponential value of s= 1.0. (See Table II in the next
section. ) The phase angles of the g„, were found to
cluster somewhat around the real axis yielding an
average value of

(8,),=0.39

which corresponds to a value of about ~ for the ratio
of the standard deviations of the imaginary and real
parts of the g„,."

The X„produce two types of correlations of the
channel parameters. They may be described as channel
correlations and resonance correlations. The channel
correlation coefficient
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FIG. 6. Combined distribution of the partial widths of 25 of the
channels of one of the collision matrices of Fig. 2 compared with
the Porter-Thomas and exponential distributions.

ing the parameters of a pole expansion of the collision
matrix. )
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V. EFFECTS OF VARIATION OF NUMBER OF
CHANNELS AND BOUNDARY CONDITIONS

In order to see how the above results vary with
changing numbers of strongly absorbed channels, we
have diagonalized three 50&(50 matrices corresponding
to 300 competing channels with T,=0.92 each, and also
one 50&(50 matrix corresponding to 20 competing
channels with T,=0.83. The latter computation yields
insufhcient data for a reliable statistical analysis and is
cited here only to indicate the general trend. In all of
these cases the R-matrix poles E„were uniformly
spaced one energy unit apart. The results are sum-
marized in Table II. It can be seen there that with
increasing numbers of channels, both (N„)„and the
o. (N„) increase, while 8, decreases, indicating a trend
toward more isotropically distributed g„,. The statistical
samples provided by these calculations are too small
to indicate any meaningful trend in the dispersions and

"When the phases of the g„, are correctly defined, the major
axis of the distribution of the g„, is found to be rotated away from
the real axis by the potential scattering phase shift of channel c.

'3 P. A. Moldauer, in Proceedings of the Symposium on Statis-
tical Properties of Atomic and Nuclear Spectra (unpublished).
Obtainable from P. Kahn, Dept. of Physics, State University of
New York at Stony Brook, Stony Brook, New York.

FIG. 7. Combined distributions of the 0„,of 25 of the channels
of one of the collision matrices of Fig. 2 compared with the
Porter-Thomas and exponential distributions.

'4 T. Ericson, Ann. Phys. (N. Y.) 23, 390 (1963);Phys. Letters
4, 258 (1963); D. M. Brink and R. O. Stephen, Phys. Letters &,
77 (1963); 8, 324 (1964); P. A. Moldaner, Phys. Letters 8, 70
(1964).
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TABLE II. Comparison of average parameters for the cases of
20, 100, and 300 strongly absorbed competing channels with 50
resonances spaced at unit energy intervals.

No. of (r„)
channels s(I'„)

20 1.94
0.09

P') 8',.)
s(E,) s(r„,)
1.18 0.097
0.01 1.60

s(lg„, l')

0.144
1.67

(o")
s(O„,)
0.83
1.81

100

300

6.40
0.032

14.34
0.015

1.52 0.064
0.066 1.38

1.69 0.047
0.07 1.31

0.108
1.48

0.081
1.40

1.0 0.39

0331~ 76

TABLE III. Dependence of average collision matrix parameters
on E-matrix boundary conditions. Lines enclosed by brackets
denote single calculation.

Number
of

channels 2s (S,o+iP,)
100

100

100

100

0.2i

—0.2+0.2i

—0.5+0.2i

—1.0+0.2i

100 0.2i

100 —1.0

(r, ) (E„) s(cV„) "T," 8,
6.40 1.52 0.066 1.0 0.39

6.51 2.12 0.10 2.1 0.33

6.52 3.07 0.13 4.5 0.49

6.23 5.18 0.11 12.4 0.49

14.2 0.52
6.29 5.57 0.14

0.0

correlations of I'„, and „, . In general, it is remarkable
how little the statistical properties appear to change
from the 100 to the 300 channel cases. The average total
vridth of 14.3 units in the 300 channel cases is less than
the value expected by Kq. (14) by more than a factor
of three. This agrees roughly with the prediction of
Eq. (16) and. the value (S„')„=3.06.

In the R-matrix theory, the shift functions 5,' can
be chosen to have arbitrary positive or negative real
values by adjustment of the boundary conditions. It is
therefore of interest to knovr vrhether and to what
extent the relation between the statistics of R matrix
and collision matrix parameters depends on the choice
of boundary conditions. For this purpose the calcula-
tions described in Sec. IV were repeated, vrith all input
parameters having the same statistics but now with
nonvanishing shift factors given by 2m-5, '= —0.2, —0.5,—1.0. The calculations were also repeated by adding
closed channels vrith vanishing penetration factors and
shift factors ranging up to a value of —10/2sr. The
results are summarized in Table III. Both the average
values of the g„and their dispersions increase as the
5,' move away from zero. In addition, the centroid of
the 8„ is shifted by —Z, (S,e/2E, )(~g„,~')„units with
respect to the centroid of the E„and the density of the
8„ is no longer uniform but decreases in the direction
of the shift. Except for the direction of this shift, the

statistical properties of the collision matrix do not
appear to depend on the signs of the 5, .

The increased values of E„result in transmission
coefficients greater than unity in Table III. These cases
are then physically not meaningful, but serve to indicate
the extent to which the dispersions of the y„, must be
reduced in order to maintain the physical values of
the transmission coefficients in the face of boundary
conditions with nonvanishing values of 5, . Of course,
such reductions in the dispersions of the 7„.will result
in corresponding reductions of the partial and total
widths. The situation is summarized by observing that
the relation (16) between the channel transmission
coefficients and the average partial width to spacing
ratios are dependent, through (1V„'), upon the values

of all the channel boundary conditions. However, to
the extent that both the T, and the (1'„,)/D, or even

the (I'„)/D, are measurable quantities, the actual
relationship between them cannot depend on the choice
of R-matrix boundary conditions. It follows therefore,
that for some sets of boundary conditions the distribu-
tions and correlations of the E„and the y„, must be
modi6ed in such a way that either the relation (16) or
the computed distributions of the E„are changed, or
both. In other words, the bound-state random matrix
model of the R-matrix parameters' ' cannot apply to
all sets of boundary conditions.

Of course, the measurability of the channel trans-
mission coefficients and the width to spacing ratios may
be debatable, at least in practice. The T, have at least

upper bounds and the total widths are accessible by
the analysis of cross-section fluctuations, " though the
interpretation of such data is made more complicated

by the above mentioned resonance correlations of the

~ g„, ~

'. But determinations of partial widths or resonance
level spacings may be exceedingly difficult in the case
of overlapping resonances and may even be impossible
in principle. Nevertheless, it seems unlikely that agree-
ment with all measurable quantities can be achieved in
a reasonable way without modifications in the R-matrix
statistics to suit the R-matrix boundary conditions.

The boundary conditions which set all 5,' locally
equal to zero are unique in that they leave the pole
distribution unshifted and the pole density invariant
when passing from the R matrix to the col/ision matrix.
They also minimize (1V„)„and maximize (I'„)/D for a
given set of channel transmission coefficients T,. For
these reasons, and because these boundary conditions
relate the R-matrix poles to the physical processes in
the same region of the energy spectrum where the poles
are located, it may not be unreasonable to speculate
that these boundary conditions are indeed the appro-
priate ones for the statistical application of R-matrix
theory with the usual bound state model for the
parameters.

100

100

0.2i

—10,0
6.29 7.86 0.08

27.5 0.96

0.0
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