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We have developed a semiempirical equation, starting from the liquid-drop model, to account for the syste-
matics of nuclidic masses. The mass excess of a nuclide is expressed as follows (in the scale of C"= 12.000000
mass units): M (Z A) = (0.0089794 A' —2 0717A+33.448)+-',

l
3.258—(60.22/A't')+431. 6/A] (Z —Zs) '—S

+(11.51/A"')S MeV, where Zx= (A+0.003A')/(2+0. 01A); 8=+1, 0, —1 for odd-Z —even-A, odd-A,
even-Z-even-A nuclides, respectively; and S is a term for the shell eBect consisting of a series of Cauchy distri-
bution functions in terms of the nucleon numbers. The shell correction is not symmetric with respect to the
shell edges, this being the main feature of the present equation. The shell eBect on Zz has been investigated
in an alternate approach. Compared with the other nuclidic mass equations, the above equation, with only
34 adjustable constants, has the fewest number of large deviations from the experimental data and very
little systematic error. The equation agrees with the 842 experimental masses to within &0.5 MeV in 57% ]
and within +10 MeV in 91%.Only 11 deviations are between 2 0 and 3.1 MeV.

I. INTRODVCTION

N the past thirty years, more than twenty mathe-
& ~ matical expressions have been formulated to account
for the systematics of the nuclidic masses, binding
energies, and nucleon separation energies. ' These
expressions, corrnnonly called nuclidic mass equations,
represent the mass or the equivalents as a function of
the proton number Z and the neutron number N of the
nuclide. Some of these expressions are quite incon-
venient to use because they involve many complicated
functions and adjustable constants. The physical
significance of some of the complicated functions is also
uncertain. Although many of the quations describe
fairly well the general features of the nuclidic mass
surface (a three-dimensional plot of nuclidic masses
versus X and Z), systematic deviations from the experi-
mental data are observed in every mass equation hither-
to published. ' Most of these systematic deviations
originate from the inadequate treatment of the nuclear
shell eRects and the isobaric mass variation. We have
developed a relatively simple semiempirical expression
to account for the nuclidic mass systematics starting
from an equation based on the liquid-drop model, ''
with the shell eRects included in a correction term. The
numerical values of the constants in the mass equation
are evaluated by least-squares fitting of the experi-
mental nuclidic masses ~ based on the scale of C"
= 12.000000 mass units. The computations in this work
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were performed at Argonne with the help of several
electronic computers and an abacus.

II. FORMULATION OF THE MASS EQUATION

The basic form of our nuclidic mass equation is

M (Z,A) =Mg+ ,'B~ (Z Zg) s+P-g S(1—V,Z), (1)—
where M is the mass excess (nuclidic mass minus mass
number), Mg the mass excess of the stable nuclide
(Z=Z~) for mass number A, B~ a measure of the
curvature of the isobaric mass section, Z~ the charge
(not necessarily an integer) of the most stable isobar,
I'z the pairing energy due to the even-odd variation,
and S the shell correction term.

M~ is assumed to be a parabolic function of A, and
the coeKcients were evaluated in a erst approximation
by a least-squares Gt of the experimental masses of the
stable, odd-2 nuclides not containing closed-shell
configurations:

M~ =0.0089794 A' —2.0717 A+33.448 MeV. (2)

For odd-A nuclides, it can be shown that

By= M(Z, A) 2M(Z+1,A)+M—(Z+2,A) . (3)

With the experimental masses of odd-A nuclides in-
serted into Eq. (3), we calculated the values of B~ on
the basis of which the following expression was obtained
as the first approximation of Bg.

B~'=4 68 (86.32./A—'t')+ (550/A) MeV. (4)

The expression for Zg was taken from Green's work';
his Z& seems suKciently satisfactory as a continuous
approximation and is adopted without change:

Z~ = (A+0.003 A')/(2+0. 01 A) .

6 A. E.S. Green, Nuclear I'hysics (McGraw-Hill Book Company,
Inc., New York, 1955).
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The pairing energy term was obtained by comparison
of Eq. (1), with Eqs. (2), (4), and (5) inserted, with the
experimental mass data, disregarding the nuclides with
the dosed-shell configurations:

the other hand, each side may be 6tted by a Cauchy
distribution curve with a width different from that of
the other side. Thus we assumed diferent values of the
width b~ for 1V(or Z) greater and smaller than the magic
number. The shell correction term thus has the following
form:Pg ——1.1.51 8/A'~' MeV, (6)

a,b,g'where 5 equals 0 for odd-A, —1 for even-Z-even-A, and
+1 for odd-Z-even-A nuclides.

Wapstra~ suggested a bell-shaped correction curve
for the shell effect. We tentatively assumed the shell
effect term in our mass equation to take the form of the
sum of a series of Cauchy distribution functions in
terms of E and Z, with their maxima located at the
magic numbers:

a .b-
$(X,Z) =Q +P ' '+

(8)P'—& *)'+b '
7 (Z Z.+)2+b—2

'

where b;~ and b;+ are used when (1V—N;*)~~0 and
(Z—Z,*)~~0, respectively. In spite of the discontinuity
of b at the shell edge, the equation remains continuous
to the f rst-order derivative. The values of the constants
in Eq. (8) were evaluated by a variable metric method
for minimization, the input data being the values of S
obtained from the combination of Eqs. (1), (2), and (4)
to (6) and substitution of experimental masses. The
results are listed in Table I.

We then applied the variable metric minimization
method for the improvement of the Bg expression,
using the experimental masses and all the previous
equations and constants except Eqs. (3), (4), and (7).
We obtained the following expression for Bg and
discarded Eq. (4):

8 '6 '

S P,Z) =P +~
(~ ~.+)~yb 2

g (Z—Z *)'+b'

+A 3.258 —(60.22/A'~')+ (431.6/A)MeV. (9)
A similar iteration was performed for 3fg. However, the
values of the coefficients so obtained were essentially
identical with those in Eq. (2) and therefore Eq. (2)
is used for M ~ without change.

W. C. Davidon, Atomic Energy Commission Report, ANL-
5990, 1959 (unpublished}.' A. H. Wapatra, Phyeica 18, 83 (1952).

where ~,* and Z * are, respectively, the magic numbers
of neutrons and protons in the closed-shell configura-
tions, u is the maximum magnitude of the shell cor-
rection in the ith neutron or jth proton shell, and b is
the half-width at —,'a. In the neighborhood of a shell edge,
only one term in the sum is large; other terms from
other shells are small. The advantage of this form of
shell correction is that the mass equation remains a
continuous function (except for the pairing energy)
from one shell region to another. It soon becomes
apparent' that the correction curve of Eq. (7), which is
symmetric with respect to the shell edge, cannot 6t
experimental data on both sides of the shell edge. On
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We have also studied the possibility of developing a
mass formula by correcting Z& for the shell effects. We
know that the charge of the beta-stable isotope is not a
smooth function of A, but shows fluctuations due to
shells. This approach will be discussed in the Appendix.
The resulting mass equation, referred to as the alternate
equation to avoid confusion, is not as simple and as
successful as the present one and is listed only for
reference. In addition to the shell correction for Z~, the
terms S remains indispensable and again appears to be
asymmetric with respect to the shell edges. The present
mass equation includes all shell corrections in the
asymmetric S term and thus is simpler; the empirical
variation of the charge (integral) of the beta-stable
isotope is thus a manifestation of the S term.

III. DISCUSSION

The nuclidic masses predicted by the present equation
are compared with the experimental data by plotting

the differences in Fig. 1. No large systematic deviations
are observed in the mass region of A =60 to 220. For
A&230, there is a wide spread of almost 5 MeV of
differences; the neutron-rich nuclides have positive
deviations and the neutron-deficient nuclides have
negative deviations. This wide spread of differences is a
result of inadequate treatment of the isobaric mass vari-
ation in this region (B~ and Z~ small compared with the
experimental data). Improvement of the present mass
equation could be made with additional adjustable
constants especially for the B~ and Z~ expressions.
However, this was not done because we did not want to
add any more adjustable constants into our present
equation. A more refined expression for Z~ is given in
the Appendix, which may be used for the purpose of
determining the stable isobar of a given mass number A.

For comparison, we have also plotted the differences
between the experimental and the calculated (masses
or binding energies) values, for the mass equations of

TABLE I. Values of the constants in Eq. (8).

28
50
82

126
152

3.49
5.99
5.75
7.76
5.02

b;+

(S—IIT;o) ~&0

4.04
5.96
2.49
2.90
6.88

1.44
2.88
5.32
5.36
5.29

28
50
82

3.07
2.74
4.22

4+
(Z —Z,. *) &0

2.27
4.31
1.51

b;

(Z—Z;*) &0

2.77
3.10
2.35
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Cameron, Seeger, ' Levy, " Baker," and Green' in
Figs. 2 to 6. In the mass region of A &201, Cameron and
Baker used, for the evaluation of their constants, the
experimental masses" which are about one MeV lower
than those we used. 4 We have, therefore, allowed for
a one-MeV correction in the calculations using the
equations of Cameron and Baker in this mass region.

It has long been recognized that a liquid-drop-model
mass formula, such as Fermi's, deviates from the experi-
mental results by a uniform shift plus systematic
Quctuations related to shells. ' The former may be
eliminated by proper changes of the parameters of the
formula, but the latter cannot be expressed in terms of
simple functions of N and Z. We are thus led to expect
a nuclidic mass formula consisting of two parts: a
smoothly varying part similar to the liquid-drop model
formula plus a rapidly varying shell correction term.
How to formulate the shell correction is thus the central
problem.

Levy" and Green tried to 6t the experimental data
between the shells with smooth functions, this being
obviously the simplest approach because the variation
of mass between the shells is the least drastic. The
6tted smooth functions expectedly lead to large devi-
ations near the closed shells. Yet the most undesirable
feature of this approach is that the formulas are dis-
continuous over the shell boundaries. Levy divided the
mass surface into sections by the magic number lines.

9 A. G. W. Cameron, Can. J. Phys. 55, 1021 (1957).
~o P. A. Seeger, Nucl. Phys. 25, 1 (1961).
"H. B. Levy, Phys. Rev. 106, 1265 (1957)."G. A. Baker, Phys. Rev. 112, 954 (1958)."J.R. Huizenga, Physica 21, 410 (1955).

The mass surface in each section is approximated by a
quadratic surface, the parameters of which change from
section to section. Besides large deviations at the shell
edge (Fig. 4) there is also a constant deviation of about
1.5 to 2.0 MeV for the heavy elements region. Green's
shell correction term consists of a set of parabolic curves
with vertices located midway between two magic
numbers. The discontinuity at the shell edge is con-
siderable (Fig. 6).

The other alternative is to correct the shell effects in
the neighborhood of the shell edges; this approach is
mathematically more dificult but physically more
reasonable. Seeger' expressed the shell effects by a
series of sine functions of N and Z with cross product
terms. The systematic oscillation of his deviations
(Fig. 3) is probably a result of the symmetric nature of
the sine functions with respect to the shell edges.

Since this leaves the asymmetric correction over the
shell edges as the only alternative, we adopted it. From
the point of view of nuclear structure we have no reason
to expect a nucleus with extra nucleons outside a closed
shell to behave exactly the same as one with an equal
number of unfilled levels (holes). The nuclear level
spacing behaves differently for these two types of
nuclides. So does the nuclear mass which fixes the posi-
tion of the ground level. Apart from the shell correction
term, the rest is empirically 6tted into a smooth formula
in the present approach. The formula is similar to the
liquid-drop model formula in its quadratic dependence
on Z, though the expressions of hIg, Sg, and Z~ are
purely empirical.

Cameron' empirically determined the combined
effects of the shell and pairing interactions for each
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value of X and Z. There is a notable systematic devi-
ation in the rare-earth region (Fig. 2). This may be due
to the fact that very few and perhaps poor experimental
data were available in this mass region for the evalu-
ation of Cameron's constants. The complication of his
formula is brought out by the fact that more than 200
parameters are involved. Many of the deviations in
Cameron's, Seeger's, and Levy's mass equations become

very large for nuclides far away from the beta stability
line, indicating inadequate treatment for the isobaric
mass sequences.

Baker" expressed the binding energies of nuclides by
polynomial functions of neutron excess and mass
number. No shell eRect was included in his binding
energy formula. The spread of his deviations (Fig. 5) is
wider than those we have examined so far, except for

TABLz II. Frequency distributions of deviations.

Mass region

40&A& 70

70&8 ~&115

115&2&162

162&A &208

208&A &255

40&~3 ~& 255

Deviation
(MeV)

&0.5
0.5-1.0
1.1-2.0
P2.0
&0.5

0.5-1.0
1.1—2.0
y2.0
&0.5

0.5-1.0
1.1-2.0
g2.0
&0.5

0.5-1.0
1.1-2.0
P2.0
&0.5

0.5-1.0
1.1-2.0
p2.0
&0.5

0.5-1.0
1.1-2.0
p2.0

Cameron&

(232)
89
26

3
146

11
2

96
70
27
0

29
21
38
57

158
11
0
0

518
172
84
62

Seeger

(25)
45
51
23
7

50
75
53
25

101
68
23

1
65
43
33

106
50
13
0

367
287
145
37

Levy

(8I)
16
8
5
6

132
40
16
6

127
55
8
3

40
33
46
14
1

12
133

6
316
148
208
35

Baker'

(63)
66
38
19
2

118
70
15
6

72
63
45
13
24
28
54
39

154
12
2
1

434
211
135
61

(34)
76
35
13

2
137
65
6
1

92
78
21

2
107
37

1
0

68
65
30

6
480
280

71
ii

This work The alternate
equation

(47)
57
38
27

93
76
33

7
103
65
23
2

46
60
34
5

50
65
44
9

349
304
161
27

a Corrected for 1-Mev error in these equations for nuclides with A, &201.See text.
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the heavy elements region. These deviations are ob-
viously related to the shell eGects which are not ade-
quately accounted for.

Table II lists the frequency distributions of devia-
tions (absolute difference between the experimental and
calculated values) found in the nuclidic mass equations
which we have considered. The number of the adjust-
able constants used in a given mass equation is placed
in parentheses. The present mass equation has the

fewest deviations greater than 2.0 MeV, and, next to
Cameron's, has the highest percent (and number) of
deviations smaller than 0.5 MeV. No deviation in the
present mass formula is larger than 3.10 MeV, whereas
all the other mass equations we have examined so far
have one or more deviations larger than 4.0 MeV. In the
mass region of A =60 to 220, our calculated values are
in good agreement with the experimental data. How-
ever, in the heavy mass region (A) 210), Cameron's
and Baker's predictions are much better than ours.
Finally, it may be mentioned that the present mass
equation has only 34 adjustable constants while all the
others, except Seeger's, require more than 40 adjustable
constants.

The nuclidic mass excesses, neutron and proton bind-
ing energies, alpha-particle binding energies, and total
beta-decay energies predicted by the present mass
equation for Z=13 to 110 and A =22 to 315 are tabu-
lated in an Argonne National Laboratory report. '4
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APPENDIX: THE ALTERNATE EQUATION

The basic form of the alternate equation is again-l2

I I I I t I I I I l I I I I I I I

0 20 40 60 80 M(Z, A) =My+ ',Bg(Z Zg)'+I'~ g, (1-0)— —I I I I~ I I I s I I~~I I I s I ~l I I I I

I 00 l20 I40 I60 I80 200 220 240 260

FIG. 6. Deviations of Green's mass equation from the
experimental values of nuclidic masses.

'4 J. aging and J. D. Varley, Atomic Energy Commission
Report, ANL-6886, 1964 (unpublished).

I i I i I i I i I t I i I i I i I i I & I & I i I i I i I i I & I i I i I i I i I i I i I i

30 40 50 60 70 80 90 100 110 120 150 140 150 160 170 l40 ISO 200 210 220 250 240 250
A

5. Deviations of 3aker s formula from the experimental values of nuclidic binding energies.
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Fro. 7. Deviations of the calculated values of Zz using Eqs. (5) (solid points) and (12) (open circles) from
Dewdney s Zz values. Experimental errors greater than 0.25 units are indicated by vertical bars.

where the symbols have been defined previously. We
took the values of 8& and Z& derived by Dewdney'5
from experimental total beta-decay energies and tried
to And expressions to 6t them. A least-squares fit of
Dewdney's 8& values for nuclides away from the closed
shells gave the following expression:

Bg = 1.646—(28.41/2'I')+ (292/A) MeV. (11)

A plot of the differences between Dewdney's Z~ values
and those obtained with Eq. (5) is shown in Fig. 7. The
relatively large deviations shown in this figure may be
attributed to shell effects on Z~.s" /Note that, in the

TABLE III. Values of the coeKcients in Eq. (12).

heavy mass region, Eq. (5) gives Zz values which are
too small compared with Dewdney's values, and these
small Z~ values account for, at least partly, the wide
spread of deviations observed in Fig. 1 in this mass
region. ) We, therefore, modified Eq. (5) to include the
shell eRects on Z& by adding a series of Cauchy dis-
tribution functions:

A+0.003A' f,g
s

Z~=- +P
2+0.01A ' (A —A.*)'+g'

where A* is the mass number at which maximum
deviation of Z~ is observed in Fig. 7. The values of f;
and g; were obtained by a least-squares fit and are listed
in Table III. A plot of Dewdney's Z& values minus the
Z& values of Eq. (12) is also shown in Fig. 7.

40
48
57
83

105
130
147
206
250

0.32—0.28
0.50—1.03
1.32—1.56
0.97—0.61
0.61

1.14
3.06
3.25

15.74
24.21
14.97
5.79
4.28

16.10

Z, *

28
50
82

2.61
0.04
6.70

b;

2.62
3.19
3.16

28
50
82

126
152

3.30
4.09
3.91
5.96
3.28

TARSI.E IV. Values of the coe%cients in the
expression for S (alternate approach).

4.28
4.23
4.36
3.09
3.52

"J.W. Dewdney, Nucl. Phys. 43, 303 (1963).
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We used Eq. (6) without change for the pairing
energy term here. We have not attempted to correct for
the shell effects' on B~ and I'g since we intended to
include these effects in the shell correction term 5.

Having obtained B~ and Zg, we then calculated the
quantity 3II, ,——',B&(Z—Zz)', using Eqs. (10) to (12)
and the experimental masses4 5 of the stable isobars of
odd 3 not containing closed shell con6gurations. A plot
of these calculated quantities versus A exhibited a shape
of two slightly different half-parabolas joined at their
vertices. By means of least-squares fits, we obtained

the following expressions for these two half-parabolas:

For 10(A &~120, HI~=0.009008 2'
—2.1302+36.751 MeV, (13)

For 120(A (260, %~=0.008189 A2

—1.763 A+ 4.221 MeV. (14)

We then determined 5 with the substitution of the
experimental mass data in the mass equation specified
by Eqs. (6) and (10) to (14). We adopted Eq. (7) for
the expression of 5 instead of Eq. (8) in order to mini-

TABLE V. Empirical expressions of BA, IA, and ZA.

Author (s)

Wing and Fong

Fermi
Ayres et pl. '

Wing and Pong
Fermi
Friedlander and

Kennedy
Green
Ayres et cl.'

Wing and Pong
Fermi
Tsen
Green

Reference

Present work

17

Present work
16

18
6

17

Present work
16
19
6

Bg(MeV)

Eq. (9) 3.258 —(60.22/A'~')+431. 6/A

Eq. (11) 1.646—(28.41/A '~') +292/A
78.064(1.98067+0.0149624A'i') /A

2(4a,+a,A'~')/A

Pg(MeV)

11.51/A 'i'
33.5/A '~'

132/A
11.2/A '»
a /2A

ZA

Eqs. (5) and (12)
A /(1.98067+0.0149624A'a)
0.86667~ZA'/'+147. 576ZA =74.6272
&s (200A —0.6A')/(A+200)

& a, a~, and a~ are smooth functions of A.
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in Table V. A comparison of these expressions including
ours with Dewdney's values" is shown in Figs. 7 and
9-11.Except for the closed-shell regions, our expressions
are in fair agreement with Dewdney's values. Our

empirical expression for Zg with the shell effect terms
included LEq. (12)j is in much better agreement with
Dewdney's values than other Z& formulas none of which
contain shell effects on Zg.
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Hyperflne Structure and Nuclear Moments of 20.4-Min C»t

R. A. HAnzzsrzoH, ' W. J. KossLzz, t O. Airzs& ANn D. R. HA+rLToN

Palmer Physical Laboratory, Princeton University, Princeton, S'em Jersey
(Received 19 June 1964)

We have measured the hyperGne structure in the 'P2 and 'P& states of the ground state configuration of C"
by the atomic-beam magnetic-resonance technique. The values obtained after corrections for perturbations
by nearby Gne-structure states are 8Pr.' A/h = (—)68.203&0.007 Mc/sec, 8/h = (—)4.949&0.028 Mc/sec;
'Pi. A/h= (—)1.242&0.010 Mc/sec or (—)1.200+0.010 Mc/sec depending upon the choice of zero-6eld
level ordering, where B(J=1)= —B(J=2)/2. From these data it is possible to calculate the nuclear mo-
ments of the mirror nucleus, C", using a theoretical value of (1/r') for the P electrons. The results are
iu = (—)1.027&0.010 nm, Q„~oo~oee = (+)(0 0308&0 0006) X10 "cm'. No signs were measured in these ex-
periments; the indicated signs assume pq (0 in C".A value of $.5011&0.0006 for gJ was also obtained in the
'P2 state.

I. INTRODUCTION

HE study of the magnetic dipole moments of
mirror nuclei should be particularly useful in

helping to find good nuclear wave functions. Assuming
that these functions are suKciently well known it may
then be possible to check on the form of the magnetic
moment operator. Of interest are contributions to this
operator from meson currents in the nucleus; these
contributions are expected to arise from the exchange
of mesons between nucleons (exchange moments) and
from the quenching of the anomalous part of the nucleon
moment (quenching effects). A theorem due to Sachs'

states that the exchange moments must be equal and

opposite for the members of a mirror pair. A similar

theorem should apply to the quenching calculations of
Drell and Walecka' as they consider only the isotopic
vector part of the anomalous magnetic moment. From
these considerations it is clear that the sum of the
moments of a mirror pair should be more useful in

determining th, e wave function than either of the indi-

vidual moments. Other effects such as the moment

t This work was supported by the U. S. Atomic Energy Com-
mission and the Higgins Scientific Trust Fund.

*Present address: Erstes Physikalisches Institut der Uni-
versitaet, Heidelberg, Germany.

f Present address: Department of Physics, Massachusetts
Institute of Technology, Cambridge, Massachusetts.' R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing
Company, Inc., Cambridge, Massachusetts, 1953).' S. D. Drell and J. D. Walecka, Phys. Rev. 120, 1069 (1960).

contribution arising from the spin-orbit force must also
be taken into account and the reader is referred to
Ref. 2 for a further discussion.

Such a program has been carried out for the H', He'
pair resulting in the 6rst direct indication of exchange
currents in nuclei, ' and recently the magnetic moments
of the radioactive members of three more mirror pairs
have been measured. These nuclei are N","0",' and
Ne'~ the moments of the stable members are, of course,
known. Unfortunately it is not yet possible, for these
heavier cases, to do nuclear structure calculations with
sufficient accuracy so that the mesonic effects can be
detected.

In this paper we report on measurements on the radio-
active member of the A = 11pair, 20.4-min C".Previous
measurements' have determined the spin to be ~3. In
the next section we shall discuss the necessary hyperfine
structure theory. The experimental details are presented
in Sec. III, the data and results in Sec. IV, and in Sec.
V we discuss the results.

The 3= 11 pair is the first one for which both electric
quadrupole moments are now known.
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