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the scalar product between two eigendifferentials ft
and Ps, centered at x and y, respectively, is

(lbt, g,) = (2sr)
—'nt'

Since the Bessel function Er(s) is always positive for
s&0, this scalar product is positive and nonzero for

arbitrarily large distances ~x—yI between the spheres
in which the eigendi6erentials are formed. Thus
I.orentz-invariant localization, as we have formulated
it, does not lead to orthogonal localized states.

The nonorthogonality of the eigendiGerentials means
that there is no self-adjoint operator ("position op-
erator") which has the localized state (17) in its
continuous spectrum. This constitutes an unfortunate
consequence of the decision to drop the orthogonality
requirement included in the NW postulates.
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Many-body perturbation theory as formulated by Brueckner and Goldstone is applied to atoms to obtain
corrections to Hartree-Fock wave functions and energies. Calculations are made using a complete set of
single-particle Hartree-Fock wave functions which includes both the continuum and an infinite number of
bound states. It is shown how one may readily perform the sums over an ininite number of bound excited
states. In order to demonstrate the usefulness of many-body perturbation theory in atomic problems, calcu-
lations are made for a wide variety of properties of the neutral beryllium atom. The calculated 2s-2s cor-
relation energy is —0.0436 atomic unit for 1=1 excitations. The calculated dipole and quadrupole polariz-
abilities are 6.93&(10 ' cm' and 14.1X10 ~ cm', respectively. The calculated dipole and quadrupole
shielding factors are 0.972 and 0.'H. Results are given for oscillator strengths, photoionization cross sections,
and the Thomas-Reiche-Kuhn sum rule, which is 4.14 as compared with 4.00, the theoretical value.

I. INTRODUCE TION

" ANY —BODY perturbation theory as developed
~ ~ by Brueckner' and Goldstone' has proven very

useful in the study of many-particle systems. As shown

by Brueckner, the appropriate form of perturbation
theory as the number of particles becomes large is

Rayleigh-Schrodinger theory modified so as to eliminate
the "unlinked clusters. " The principal applications of
the Brueckner-Goldstone linked cluster expansion (BG
expansion) to many-fermion systems have thus far been
investigations of nuclear structure' and of the electron
gas. 4 However, the BG theory, which corrects both wave
functions and energies, should also prove very useful
in calculations of atomic structure and in other 6elds.
In applying this theory to atoms, where the interparticle
forces are well known, one also gains information as to
its general applicability to 6nite systems.

*Work supported in part by the U. S. Atomic Energy Com-
mission.' K. A. Brueckner, Phys. Rev. 97, 1353 (1955); 100, 36 (1955);
The Many Body Problem (John W-iley tk Sons, Inc. , New York,
1959).

s J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
'K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023

(1958); K. A. Brueckner and K. S. Masterson, Jr., ibid. 128, 2267
(&.962).' M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).

A previous application of BG theory to the calculation
of correlation energies in the neutral beryllium atom
yielded excellent results. ' However, it was found neces-
sary to calculate high orders in the expansion. This
difFiculty was related to the set of single-particle
Hartree-Fock states which were used. The purpose of
this paper is to investigate the use of a different basis
set for the expansion and to show the usefulness of
perturbation calculations using this set. The states used
are the ground-state Hartree-Fock orbitals and single-
particle excitations calculated in the Hartree-Fock
potential field of the nucleus and E—1 of the E ground-
state orbitals. The use of this set is justi6ed in Sec. II.
In Sec. III it is shown how sums over an in6nite number
of bound excited states may be carried out. In Sec. IV
the t'= 1 correlation energy among the two 2s electrons
of Be is calculated. In Sec. V calculations are given for
the dipole and quadrupole polarizabilities and shielding
factors for Be. In Sec. VI many oscillator strengths and
the photoionization cross section curve are calculated.
Section VII contains the conclusions.

1

~ H. P. Kelly, Phys. Rev. 131, 684 (1963},hereafter referred to
as K. Correlation energies are defined in K.
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The kinetic energy for the ith particle and the sum of all
one-body potentials acting on it are given by T;. For
atoms T; includes the interaction of the ith electron
with the nucleus. The true ground state of the system
is Qo given by

&+o= (&o+~&)+o (2)

The effect of the E interacting particles may be approxi-
mated by a single-particle potential V and then %0 is
approximated by C 0 where

Ho@ 0= Eo@'0

&o=2 (T'+ V') .

The single-particle wave functions, q „which are solu-
tions of

(T+V)v = o oo (5)

constitute an orthonormal set, provided V is Hermitian.
The state 4 0 is a determinant formed from the E solu-
tions of Eq. (5) which are lowest in energy. The states
occupied in C 0 are called unexcited states. An unoccupied
unexcited state is called a hole and an occupied excited
state is called a particle.

The BQ result is that

(6)

where Pz, means that only "linked" terms are to be
included and

N
II'= Q p; —Q V;.

Also,

where L' indicates that the sum is only over those terms
which are "linked" when the leftmost H' interaction is
removed.

To first order, the energy is

Eo& =Eo+ (C p[H' [C'p),

and when a Hartree-Fock basis is used

(9)

Zoi =AHF= P ((n[ T[n)+-,'(n [ V[n)). (10)

II. PERTURBATION THEORY

A. Review of the Brueclrner-Goldstone
Expansion

The total Hamiltonian for a system of X identical
fermions interacting through two-body ptoentials e„ is

N

H=P T,+P p;,

B. Choice of the Single-Particle Potential V

The Hartree-Fock potential is de6ned by'

(a[ VHp[b)= P ((un[o[bn) —(an[a[nb)), (11)

where a and b are arbitrary. This potential was used in
E to obtain the complete set of single-particle Hartree-
Fock states which were used in calculating the correla-
tion energy for Be. When VHF is used, Eq. (5) for the
single-particle states p becomes

o,;*(r')o,;(r') )'~ V -(r) ~lee -(r—)+ 2 «' ', IV -(r)
1

,o;*(")o -(")—P[ b(ns, „,mz„) «' '
q;(r) [

[r—r'[

This is the usual Hartree-Fock equation considered, for
example, by Slater. ' Atomic units are used throughout
this paper except where specified otherwise. Once the X
unexcited states have been calculated self-consistently
by solving the coupled Eqs. (12), VHF is determined and
the remaining states of the orthonormal set are obtained
by solving the single Eq. (12). As pointed out in K,
excited states are calculated in the potential of
particles but unexcited states are calculated in the
potential of F—1 particles because of cancellation of
direct and exchange terms when q;= q „.In K this led
to the surprising result that all excited single-particle
Hartree-Fock states for Be were in the continuum and
it was conjectured that excited states of Eq. (12) would
all lie in the continuum for most if not all neutral
atoms.

There are two advantages in dealing with only con-
tinuum excited states. First, it is much simpler to
solve Eq. (12) for continuum states than for bound
states for which it becomes an eigenvalue equation.
Second, sums over excited states are more readily per-
formed when only continuum excited states need be
considered. However, in the numerical work reported
in the later sections of this paper it was found quite
feasible both to solve Eq. (12) for bound states and to
sum over excited bound and continuum states. There is
also a disadvantage in using VHF as defined by Eqs. (11)
or (12) for excited states. In K it was found that the
perturbation expansion converged slowly for the cor-
relation energy among 2s electrons; this was due to
large effects from certain hole-particle interactions re-
ferred to as second-type EPV (exclusion-principle-
violating) diagrams. They were shown to arise from the
fact that interactions of excited particles with the oc-
cupied unexcited states do not cancel the interaction
with VHF as shown in Fig. I.

' J. C. Slater, Quantum Theory of ~ tomi c Structure (McGraw-
Hill Hook Company, Inc., New York, 1960),Vol. lI, Chap. 17, p. 6.
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T'anLE II. Radial functions ps, (r) for Be.

(a) (b)

'0' 6
(e}

FIG. 1. (a) Second-order energy diagram. (b) Particle in excited
state yj, interacts with all occupied unexcited states q„.Note that
q „and q, are no longer occupied. (c) Particle in state yg, interacts
with the potential V. When the Hartree-Fock potential VHp of
Eq (11.) is used, diagram (b) does not fully cancel (c) because
VnF includes interactions with all unexcited states. Diagrams (d)
and its exchange and (e) result. If q ~ and q, have parallel spina
there is also the exchange of diagram (e). There are simile, r dia-
grams for the interactions of q g, .

TxsLz I. Orthogonality of s states. '

(is Is)
(is 2s)
(is 3s)
(is 4s)
(is Ss)
(is O. ls)
(1s 0.2s)
(is 0.6s)
(is 1.0s)
(1s 1.6s)
(is '2.0s)
(2s 3.0s)
(1s 4.0s)
(is S.Os)
(is 6.0s)
(is 8.0s)

1.0000022
0.0000357
0.0000428
0.0000272
0.0000191
0.0000723
0.0001049
0.0002253
0.0003638
0.0005253
0.0005626
0.0005056
0.0003611
0.0002009
0.0001000
0.0000254

(2s 2s)
(2s 3s)
(2s 4s)
(2s Ss)
(2s O. ls)
(2s 0.2s)
(2s 0.3s)
(2s, 0.4s)
(2s 0.6s)
(2s 1.0s)
(2s 2.0s)
(2s 3.0s)
(2s 4.0s)
(2s 5.0s)
(2s 6.0s)
(2s 8.0s)

1.0000001
0.0000012—0.0000037—0.0000013
0.0000010
0.0000041
0.0000075
0.0000067—0.0000066
0.0000007—0.0000014
0.0000008
0.0000002—0.0000001—0.0000015
0.0000009

Since the excited particles actually interact with E—1
other particles, it appears desirable to choose the po-
tential accordingly. 7 In the calculations of this paper for
Be the excited states were calculated in the potential
field of the nucleus and (1s)'(2s) where 1s and 2s are
the Hartree-Fock orbitals of the neutral beryllium
atom. In this potential the excited states have direct
interactions with two 1s electrons and one 2s electron
and also an exchange interaction with one 1s electron.
The excited states then correspond closely to the physi-
cal single-particle excitations of beryllium. The 2s
state for this potential coincides with the usual Hartree-
Fock 2s state. The new 1s state differs from the Hartree-
Fock solution but this difference is expected to be small
as the 1s potential depends strongly on the interaction
with the nucleus. However, there are now first-order
corrections to the wave function as shown in Fig. 2. '

When these terms and similar terms in higher orders
are added to Co the wave function becomes the usual
Hartree-Fock Co. The appropriate procedure is to omit

r Ps,' (r) Ps,b (r) Z„" (r) Ps,b (r)

0.01 0.02569
0.02 0.04936
0.03 0.07110
0.04 0.09104
0.05 0.10926
0.20 0.17771
0.15 0.21536
0.20 0.22985
0.25 0.22700
0.30 0.22123
0.35 0.18596
0.40 0.15381
0.45 0.12681
0.50 0.07655
0.55 0.03428
0.60 —0.00904
0.65 —0.05261
0.70 —0.09585
0.75 —0.13827
0,80 —0.17951
0.85 —0.21929
0.90 —0.25739
0.95 —0.29366
1.00 —0.32798
1 20 0 AAA92

1.40 —0.52968

0.02569
0.04935
0.07109
0.09101
0.10922
0.17765
0.21530
0.22980
0.22694
0.21118
0.18592
0.15377
0.12679
0.07654
0.03428—0.00901—0.05257—0.09580—0.13821—0.17944—0.21921—0.25730—0.29356—0.32788—0.44479—0.52953

1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.40
3.80
4.20
4.60
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
14.00
16.00
18.00

—es, (a.u.)

—0.58549—0.61697—0.62889—0.62566—0.61110—0.58835—0.55996—0.52797—0.45905—0.39026—0,32597—0.26870—0.21910—0.12683—0.07065—0.03828—0.02031—0.01060—0.00546—0.00278—0.00070—0.00017—0.00004

—0.58534—0.61683—0.62878—0.62559—0.61106—0.58833—0.55997—0.52799—0.45911—0.39027—0.32611—0.26884—0.21923—0.22692—0.07071—0.03834—0.02037—0.01065—0.00550—0.00281—0.00071—0.00027—0.00004

0.30942 0.30927

a Calculated for this investigation. i a.u. =27.21 eV.
b Calculated by Roothaan, Sachs, and gneiss, Ref. 9.

s
ls, 2s

it
ns

(a)

ns

, ns

the diagrams of Fig. 2 in calculations and to use the
Hartree-Fock solutions for both 1s and 2s states. Bound
and continuum states were calculated for l= 0, 1, and 2.
The l= 1 and l= 2 states are orthonormal because they
were all ca,lculated with the same Hermitian potential
and they are automatically orthonormal with respect
to all I,= 0 states. The 2s Hartree-Fock (HF) state and
all excited l=0 states were calculated with the same
Hermitian potential and are orthonormal. The only
deviations from orthonormality in the basis set arise
from the nonorthogonality of the HF 1s state with
excited l=0 states. This nonorthogonality is not an
error or an approximation as may be seen from the dia-
grams of Fig. 2. In actual calculations the nonorthogon-
ality of the 1s state and excited l=0 states is expected

a Continuum states are normalized so that asymptotically PI (r) =sin(kr
+(1/k) ln2kr+S).

7 I would like to thank Professor K. A. Brueckner for stressing
the desirability of using a potential for excited states which has a
physical basis and yields rapid convergence of the perturbation
expansion.

Fin. 2. (a) Single-particle corrections to the wave function C0
in erst order. When yj., is a Hartree-Fock orbital, these corrections
vanish. When q», is not determined by the Hartree-Fock potential,
these terms and similar higher order terms as shown in (b) added
to 4~0 give electively the Hartree-Pock result.
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(e) -6G
FIG. 3. Corrections to 40 due to correlations among electrons in

states p and q. (a) First-order term. (b) Diagonal hole-hole
interaction. (c) Particle-particle interaction or ladder diagram.
(d) and (e) are hole-particle interactions which represent the net
eftect of interactions of the particles in states i and J with all oc-
cupied unexcited states and with the potential V. It is assumed
that i is calculated in the leld of all unexcited states except p
and j in the field of all but g. (f) Exclusion principle violating
diagram arising from the linked cluster factorization.

C. Summation of Diagrams

In order to obtain the corrections to Co due to corre-
lations among a pair of electrons in states p and q, the

V. V. Kibartas and A. P. Yutsis, Zh. Eksperim. i Teor. Fiz.
25, 264 (1953).' C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.
Phys. S2, 186 (1960).

to be very small. Overlap intergrals of l=o states are
given in Table I. All integrals were calculated by Simp-
son's rule. Orthogonality for the l=0 states is quite good,
even for the 1s state with excited states for which, in

rinciple exact orthogonality is not expected. The ack
of exact orthogonality between 1s and 2s states may e
attributed to limits on the numerical accuracy of the
HF is state taken from the Kibartas and Yutsis solu-
tion. ' All other states were calculated by the author' s
Hartree-Fock program which solves the following equa-
tion for ~„.
—s V'v -(r) —Z(r ~-(r)

,~i.*(r')~i.(r'), V s.*(r') V s.(r')

r—r' r—r'

9 i.*(r')~-(r')
9 i, (r) = »„y„(r). (13)

[r—r'[

For Be, Z=4. The 1s and 2s states used in Eq. (13)
were taken from Kibartas and Vutsis. The 2s state
calculated by the author's program was in good agree-
ment with the Kibartas solution. Comparison with the
2s Be solution of Roothaan' is given in Table II. The
very small disagreement in the fourth decimal place
may not be attributed to a limit of accuracy for the
author's program but is due to use of the Kibartas is
and 2s states rather than Roothaan's in Eq. (13). In
the calculations of this paper the most important per-
turbation terms are those involving 2s states and ex-
cited l= 1 and E= 2 states.

diagrams of Fig. 3 are considered. For simplicity, states
p and q have opposite spins. Figure 3(b) shows the di-
agonal part of the hole-hole interaction which violates
the exclusion principle as discussed in K. In general,
hole-hole nondiagonal interactions are quite small. The
diagram of Fig. 3(c) shows a particle-particle interac-
tion. It is assumed that the excited state i of Figs. 3 (a)
and 3(d) was calculated in the potential field of all un-
excited states except for the state p. Interactions with
the occupied unexcited states and with the potential
combine to give the diagram (d). This diagram is
analogous to that of Fig. 1(e). Similarly, it is assumed
that the state j was calculated in the potential field of
all unexcited states except for q and this gives Fig.
3(e). Diagrams shown in Fig. 1(d) are not included
because excited states are now calculated in the field of
E—1 unexcited states. %hen i and j are bound-states
diagrams (b), (c), (d), and (e) of Fig. 3 are largest for
diagonal matrix elements. Diagram (c) is largest for
i=i», j=i and (d) and (e) are largest for i=0 and j=0,
respectively. The expression for the diagram of Fig.
3(a) is

14(»„+»,—», —»,) '(ij
I
"Ipq)

For the diagonal interactions just described, the sum of
diagrams 3 (b) through 3 (e) is given by

L("+» —» —») '((pqlsl pq&+(VI~IV& —(sql~lsq&

(pjlt'I pj&)l(» +' " '& '(V'lt'I pq& (15)

When these diagonal interactions occur in the next order
of perturbation theory the factor in brackets in Eq.
(15) is repeated, and so the diagonal interactions give a
geometric series which is readily summed to

D '(V'Iv[Pq) (16)

' In Ref. 5 diagrams of this type were shown to arise from the
factorization of diagrams and they were labeled third class exclu-
sion-principle-violating (EPV) diagrams. A more detailed analysis
of such terms and their sects on Eq. (18) is given by H. Kelly,
Phys. Rev. 134, A1450 (1964).

where

D= ("+" (pqlslpq)) —(»'+'+(V—[A[V&
—(sq[s[sq& —(Pjl eIPj)) (»)

When diagrams of the type shown in Fig. 3 (f) are con-
sidered, D of Eq. (17) is further modified tom

D= L»y+»s —
(pq I

s
I pq)+Eoorr(pqq)+Ecorr(py rWq)

+E..„(«p, q)j C;+;—+(V Ie[sj &

—(iq[ [iq&n(pj I
s

[ pj &
—E«»'(i,j)g. (18)—

The term E„,,(p, q) is the correlation energy among the
two electrons in states p and q. The term E„„(p,rWq)
is the total correlation energy of an electron in state p
from interactions with all unexcited states except for q
and similarly for E„„(rWP,q). The term E„„'(s,j) is
the sum of all terms contributing to the total correlation
energy in which either of the excited states i or j occurs
and in which the hole states differ from p and q. Equa-



8 900 H UGH P. KELL Y

TmLE III. Dependence of matrix eIements on n.'

n
2
3
4,

5
6
7
8

I (2pnp fv I2s2s) I'

3 644X10
2.569X10 '
/371X10 4

3.171X10 '
1.667X10 4

9.889X10 '
6.364X10 '

I &nPIrl»&l'
7.849X 10'
1.480X10 -'

1 299X10 '
7.446X10 '
4.443X10 '
2.823X10 '
1.894X10 '

I &nP fr~i»& I'
1.830X10 '
1.711X10 '
5.260X10 '
2.327X10 '
1.241X10 '
7.424X10 '
4.804X10 ""

I &nPIrl1s) I'
2.515X10
4.774x 10-8
1.791X10 '
8.637X10-4
4.819X10 4

2.960X10 4

1-947X10 4

n'
I (2pnp Iv I2s2s) I'

0.2915
0.0694
0.0472
0.0396
0.0360
0.0339
0.0326

n'
f (np fr f2s) I'
62.794
0.400
0.831
0.931
0.960
0.968
0.970

n'I (np fr~ 2s) I'
0.1464
0.0462
0.0337
0.0291
0.0268
0.0255
0.0246

n'f (np fr fls) I'
0.2012
0.1289
0.1146
0.1080
0.1041
0.1015
0.0997

3

5
6
7

9
10

3

5
6
7
8
9

10

n
3

5
6
7

9
10

n
3
4
5
6
7
8
9

10

f(nd fr'I2s) I'

5.169X10'
1.604X 10'
7.022 X10'
3./24X 10'
2.223 X10'
1.438X10'
9.85/X10 '
7.062X10 '

I (nd fr 'f2s) I'
7.317x10-5
4099X10 '
2.328X10 '
1.419X10 '
9.176X10 '
6259X10 '
4437X10 '
3-284X10 '

I (nd fr'
I
is)'

9./11X10 '
5.707x 10-5
3.304X 10-~
2.030X10-'
1.323X10 ""

9.051X10 '
6446X10 '
4.746X10 '

(2s fr'Ind)(nd fr 'I2s)
6.150X10 '
2-564X10 '
1.279X10 '
7.268X 10-'
4.517X10 '
3.OOOX 10-
2.091X10 '
1.523X10 '

n'I (ndfr'I 2s)f'

1395.6
1026.3
877.8
804.3
762.5
736.2
718.6
706.2

n'I (ndlr —'I2s) I'
1.976X10 '
2.623X10 3

2.910X10 s

3.064X10 3

3.147X10 '
3.204X10 3

3.235X10 '
3.284X10 '

n3I (nd r'I1s) I'
2.622X10 3

3.653X10 '
4-130X10 3

4.385X10 '
4.53/X10 '
4.634X10 '
4.699X10 '
4.746X10 '

n'(2sfr'fnd)(ndfr 'I2s)
1.660
1.641
1.598
1.570
1.549
1.536
1.525
1.523

a Only radial parts of matrix elements are given.

tion (18) is the two-particle energy for states p and q
minus the approximate two-particle energy for states i
and j. In the fi.rst bracket, subtraction of (pqfvfpq)
from en+ e, corrects for the fact that each single-
particle state was calculated in the potential field of the
other and so the interaction of p with q was counted
twice. Then e +e,—(pqfvfpq) is the Hartree-Fock
energy for the pair pq. E~„„(p,q) accounts for higher
order interactions of p with q and E„„(p,rAq) and
E„„(r&p, q) account for the higher order interactions
of p and q with the other unexcited states since these
interactions are not included in the HF calculat'ion of
ev and e,. In the second bracket, (ij f

v
f
ij) accounts for

the interaction of i with j and —(iq f
v fiq) corrects for

the fact that i, which was calculated with interactions
with q, does not interact with q which is now unoccupied.
The term —(PjfvfPj) corrects similarly for state j.
The first five terms of the second bracket of Eq. (18)
then give essentially the HF energy of the excited pair
ij The term. E„„(i,j) does not give —correlations
between i and j but accounts for the fact that all cor-
relations among unexcited pairs which involve excita-
tions into states i or j are eliminated by the Pauli
principle when P and q are excited into i and j.Although

the discussion of this section has treated bound excited
states, it is readily extended to continuum states as
shown previously. ' " In numerical applications the
nondiagonal higher order terms are calculated but they
converge rapidly.

III. SUMS OVER BOUND EXCITED STATES

In later sections the BG theory is used to calculate
the correlation energy among 2s electrons and other
properties for Be. In using BG perturbation theory, it
is necessary to sum over all excited states. When the
continuum is considered, the sums are readily evaluated
by numerical integrations as shown in K. It is not obvi-
ous that the sums over bound states may be handled so
simply, however. One often includes just the first few
bound states and assumes that the remaining contribu-
tions are small. This is probably reasonable in many
cases; however, it is preferable to sum over all bound
excited states and this is now shown to be feasible. In
the numerical work reported here it was found that
matrix elements such as (nspnp f

v
f
2s2s) are proportional

to n '" for hxed m as n becomes large. This behavior

"H. P. Kelly and A. M. Seavler, Phys. Rev. 132, 2091 (1963)
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is expected to hold true for other operators and for
other atoms when the asymptotic potential is Coulombic
as in this case. The explanation lies in the fact that p~,
lies much closer to the nucleus than p„~ for n large.
When we compute p +» there is very little change in
the single-particle energy and the behavior of p„+~„ is
very close to that of q „„(except for normalization) in
the region of space where p~, is substantially nonzero.
The principal change in the matrix element in going from
I to I+1 then is due to the change in the normalization
factors.

It is shown, for example, by Bethe and Salpeter"
that for hydrogen-like atoms the behavior of the eigen-
functions for large principal quantum number n is

&2s

62y
E„(2s,2s)
4E (2s; is)
(2s2siei2s2s)
(2p2p e 2p2p)" (~n~=+1)
(2p2p e 2p2p) (m~=0)
(2p2s i e i 2p2s)
(2p2p ( e i 2s2s)b

—0.30942—0.17951—0.0439—0.00497
0.34331
0.28652
0.30180
0.30867
0.0636315

a One 2p state has mf =+i and the other m& = -i.
b This term is negative for m& = ~1 and positive for mt =0.

is the zeta function of Riemann" given by

TAsLz IV. Numerical values in a.u. for D of 1'".q. (23)
and for excitation matrix element.

Z 'Is (2Zr)' 2rZ
(19)

ss (23+1)! 21+2

The potential used in Eq. (13) is asymptotically Coulom-
bic and since q „~ for large n is located mainly in the
asymptotic region of the potential, it is expected that
the normalization of y„„should contain the factor
n '~' as does that of hydrogen. The numerical checks on
this rule are given in Table III. When the product n'
times matrix element squared has not completely
reached its asymptotic value, a curve may be drawn to
estimate the higher values and the limit. In perturba-
tion theory calculations we consider terms of the form

2 2 I(~p~plnl»»&l'D
f14=2 n=2

f+1
n—'dn=C/l 2(1Vr+1)')

where Ef is the last n value calculated by discrete
sun@nation and

(.=lim rs'l (nspsspl nj 2s2s) l'D '. (22)

For greater accuracy we may also use f'(3) where i'(s)

"H. A. Bethe and E. E. Salpeter, Qgantlm Mechanics of One-
and Two-E/ectron Systems (Academic Press Inc. , New York, 1957),
p. 18.

where D is given by Eq. (18). The double summation
presents no essential complication in the following
discussion. As I in Eq. (20) becomes large, D approaches
a constant value. This allows us to carry out the summa-
tions of Eq. (20). For example, for fixed ns we might
carry out the sum from n= 2 to n= 8 by explicit calcula-
tion of the terms. Then from n=9 to approximately
n=15 we would calculate terms by using the n ' rule
for the matrix elements squared and we would make the
necessary extrapolations to obtain accurate denomi-
nators. For example, e„„~n '. The remainder of the sum
is obtained to a good approximation from

In the calculations of the next sections Sj is typically
15. This procedure may be carried out to any desired
accuracy by calculation of a suKcient number of ex-
cited states. The sums of Eq. (20) must be repeated for
di6erent values of nz and an extrapolation made for
m ~~ just as for n.

IV. Be CORRELATION ENERGY FOR
2s ELECTRONS

In K it was found that almost all the contribution to
2s—2s correlations in Be came from excitations into
l= 1 states. This calculation has been again made using
BG theory but with the set of single-particle states of
Eq. (13). Diagonal terms beyond second order are in-
cluded in the "second-order" calculation by using the
denominator D of Eq. (18). The nondiagonal third-
order and higher terms are also calculated. The states
p and q in Eq. (18) are now the Hartree-Fock 2s states
of Be. The term E„„(2s,2s) was found to be —0.0439
atomic units (a.u. ) in K. The terms E„„,(p, rQq)
+E„„(rW p, q) give the total correlation energy between
the 2s and is shells which was calculated to be —0.00497
a.u. in K. One a.u. = 27.21 eV. Most of the contribution
to the 2s correlation energy will be shown to come from
excitations into 2P states. The term E„„(i,j) is the
contribution to the correlation energy among 1s elec-
trons when at least one of the excited states coincides
with i or j. For 2p excitations E,o„' was calculated to
be —0.00027 a.u. This is quite small relative to the
other terms in Eq. (18) so E„„'(i,j) is omitted. When
both 2s electrons are excited into 2p states

D= ese+ as~ —es& es&+ E«—»(2s, 2s)+4E«»(2s, is)
—(2s2s

l
n

l
2s2s) —(2p2p [n l 2p2p)

+Z(2p2slnl2p2s). (23)

The numerical values are given in Table IV. Although
the notation has so far been suppressed, excited states

"E.T. Wtuttaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, Cambridge, 1927}, Chap. XIll, p. 265.
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P 2P
l7lg= 0 Ntt =

TAaLz VI. Diagonal contributions to E„„(2s,2s} from p states. '

p 2 P 2P
(= I1 m(=-

.l.owest
stateb

Sum of bound
states'

Continuum
states~

Bound
+continuum

(a)

2s kp k' 2s

Fn. 4. Changes in excited states due to nondiagonal interac-
tions. (a) Hole-particle interaction. (b) Particle-particle interac-
tion. (c) Two nondiagonal interactions.

are labeled by m& and m, in addition to m and /. The angu-
lar factors for matrix elements, which may be obtained
from Condon and Shortley, "affect (2p2pI e

I 2p2p) dif-
ferently according to the m& values of the 2p excited
states. When we write the sums over m& explicitly,

E„„(2s,2s ~ mp, np) = 2
I (mpnp I

e
I
2s2s)

I
'/

D(m~= &1)+ I (mpnp I
&

I
»») I'/D(m~=0) (24)

The results of Eq. (24) are given in Table V for m=2
and m variable.

The sums over continuum states are readily per-
formed as described in K. In the following term one
excitation is into a bound state and one into the
continuum

2p
3P
4p
5p
6p
7p
8p
9p

10p
11p
12p

r rip

—4.3155—3.003—3.89—9.61—3.36—1.44—7.10—3.75—2.16—1.33—9.0

X10~
X10 4

X1o '
X10 '
X10 '
X1o '
X1o '
X10 '
X10-7
X10-'
X10 s

—3 804X10 '
—5.225X10 '
—1.794X 10-4
—8.210X10 '
—4.456X10-'
—2.693X10 5

-1.754X 10-5
—1.209X10 5

—8.680X10 '
—6.440X10 '
—4.910X10-s

—4.6959X10 '
—8.228 X10 4

—2.183 X10 4

—9.171 X10 '
—4.792 X10 ~

—2.837 X10 '
—1.825 X10 '
—1.247 X10-~
—8.900 X10 '
—6.570 X10 '
—5.000 X10 '

—414 X1Q 7 —2.470X10 ' —2-510 X10 '

Bound+continuum total: —4.8245X10 '
Continuum —continuum states: —1.6827X10 '

Diagonal total —4.9928X10 '

Note that diagonal bound-state contributions are in-

cluded. The continuum particle interaction with the 2s
hole is treated as in K and similarly for the particle-
particle interaction. That is, we consider

2
a„,(k) = —— dk'(2sk

I
t

I
2sk')D '(k')

a All energies are in a.u. Second-order and only diagonal higher order
bound-state contributions are included. See Eq. (24). Sums over mt have
been made.

b One of the two excited states has this quantum number. The other state
has a principal quantum number greater than or equal to this.

o The sum is over all bound excited states with principal quantum number
greater than or equal to that at the left. In the first row the sum runs from
2P to ~. In second row the sum runs from 3P to ~, etc.

d Hole-particle and particle-particle interactions are included.

P E,.„(2s, 2s —+ n p, kp)

and
X (n pk'

I
o

I
2s2s) (npk I

tj I 2s2s) ' (27)

dk
I
(»»

I ~lnpkp) I'/D(k) (25)

where

D(k) = es,+ es,—e„„—ks/2+E„„(2„2,)+4800„(2s,1s)
—(2s2s I

o
I 2s2s)+ (np2s I

w
I np2s) . (26)

TmLE V. Bound-state contributions to E„„involving 2p states.

2
3

5
6
7
8
9

10

L~~„(2s2s ~ 2pnp) in a.u.

—0.037244—0.003781—0.001011—0.000423—0.000219—0.000129—0.000082—0.000056—0.000040

Total

—0.000170

—0.04316

'4E. U. Condon and G. H. Shortley, The Theory of ~torfiic
Spectra (Cambridge University Press, Cambridge, England, 1957),
p. 178.

00

t„„(k)=- dk'(npk I
n

I
npk')D (k')-'

X(npk'InI2s2s)(npkIeI2s2s) '. (28)

In Eq. (28) there is also a sum over m&. As found previ-
ously in K for two continuum excitations, both a„„(k)
and t„~(k) were almost constant, with a very small

dependence on k. The ladder or particle-particle inter-
actions and the continuum particle-hole interactions
are then summed by multiplying Eq. (25) by the factor

(1—a„„(k)—t ~(k)) ', (29)

where an average value for k is used. The term t „dif-
fers by 4% for np(nz&= +1) and np(m&= 0)

For n = 2 as'(0 4) =0 3385 t 2~(04):0 323(m(: +1)
and ts~(0.4)=0.337(m~ ——0). The factor of Eq. (29)
is then 1.0109, a small correction.

Contributions to the 2s correlation energy from the
various excited. l=1 states are given in Table UI. The
principal contribution is seen to come from 2p
excitations.

Some typical nondiagonal terms are given in Fig. 4.
Changes from one continuum state to another have
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already been included in Table VI. All calculations are
made with the shifted denominator of Eq. (18). All
nondiagonal terms with a significant contribution to
E,.„(2s,2s) are listed in Table VII. The total contribu-
tions of Tables VI and VII are added to give E„„(2s,2s)
X(I=1)=—0.04357 a.u. In the previous calculations
of K, E„„(2s,2s)(l=1) was found to be —0.04256 a.u.
The value calculated here is believed to be a much more
accurate result than the calculation of K. If the new
value for E„,„,(2s,2s) (/= 1) is added to the other contri-
butions to the total correlation energy calculated in K,
the total correlation energy of Se is changed from
—0.091 to —0.092 a.u. which improves agreement with
the value —0.0953 a.u. deduced from experiment.

V. t,
———Z' Q Q (r'/r'"+')Ps(cose;),

i=l k=1
(32)

where the polar axis has been chosen along the lien
between the nucleus and r' and the contant, spherically
symmetric part of V. & has been omitted. The perturbed
wave function

%=4p+Z' P +,&'&/r'"+'+O(Z") .
k=1

(33)

The dipole polarizability is

The interaction potential between the external charge
Z' at r' and the atom is given by

N ps Z)
H= —Z +—I+El '— I

'
2 r, J

(30)

"tt. POLARIZABILITIES AND SHIELDING FACTORS

A. Dipole Polarizability for Bt:

An atom perturbed by an external charge Z' becomes
polarized; and the effect of the external electric 6eld
on the atom depends upon the atomic dipole polariza-
bility O.d. An extensive discussion of atomic polariza-
bilities and shielding factors has been given by
Dalgarno" and his notation is used in this section.

The unperturbed Hamiltonian is

cry=2(@p( P r,Pr(cos8, ) ~%ti' )/(%p)+p), (34)

where Z' is assumed small. The wave function C~&"
then is the function %0 perturbed once by the term
—U~ where

UA, ——Q r;sPs(cosd;) .

In our case the function 0'0 is not known at the outset;
so we start from the Hartree-Pock 40 and use BG
theory to calculate 0'.

The perturbation is

Atomic units are used in all formulas. The ground-state
wave function 0 0 satisles"

H'=P ~r;—r;j —' —Q V,—Z' P UI,/r"+'. (36)

(H E)+p 0. — —— ( ) The BG linked cluster result is derived as usual' and

2p2p ~ 2p2pb 4058X10 3

TABLE VIl. Nondiagonal terms in L"„„(2s,2s) for l= 1.' 1
+=XI

& (Lp Hp—(37)

& (2P2P ~ 2pap)

2p2p ~ 2p&p

2.016X10 4

—2.655X10 4

Z (2p2p ~ 3pap)
n=3

2p2p ~ 3pkp

i (2P2P Np ~
Pj'

2.45 X10-»

4.11 X 10-4

3.66 X10 '

1.399X10 '

Nondiagonal total 6.355X10 '

"A. Dalgarno, Advan. Phys. 11, 281 (1962)."' Note that 4'p is unperturbed with respect to interactions with
the external charge Z. However, 4'0 includes correlation. effects
and is perturbed with respect to the Hartree-Fock solution.

& Hole-particle diagrams and ladder diagrams are included.
& This includes 2P+(ms = &j.)2P (ms =W i) ~ 2P+(mt = &i)2P (mr = &1)

2p+(m& ~ ~i)2p-(mr ~~1) ++ 2@+(mt =0)2p-(mt =0).
& This includes sum m& e.

where Qz indicates that we sum over all linked terms. '
The function Co is given by the sum of all terms of +
in which there are no interactions involving UJ,. The
term %~(') is the sum of all terms of 0' in which —UI
acts once and only once, Z'/r" being factored out. %p
obtained from Eq. (37) is not normalized to unity. How-
ever, in the numerator of Eq. (34) we may factor the
disconnected terms into a product of terms involving
U~ times all other terms. If we neglect the exclusion
principle, the second factor is (%p

~
@p) and cancels the

denominator. This factorization proceeds as in the deri-
vation of the linked cluster result. However, the ex-
clusion principle must be considered in this factorization
and it will be shown to have a signi6cant effect for small
systems.

The terms contributing to Eq. (34) may be repre-
sented by diagrams as in Fig. 5. The ordering of inter-
actions from the bottom to the top of the diagram cor-
responds to interactions proceeding from right to left
in Eq. (34). The interaction lines labeled Dp for dipole
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25 np

DP

2s

--+DP

25 ITlP

DP

mp
25 (lp

2s

(a)

--- DP

(b) (c)

25

2$

---e DP

Np

llP

---e DP

(d)

--—eQP
2s lip

2$+ 2p

25 2p--—DP

(e)

polarizability indicate interactions through the operator
U&. The diagrams are calculated by the usual perturba-
tion theory rules' and multiplied by —2 to give nz. The
factor 2 comes from Eq. (34) and (—1) from Eq. (36).
The lowest order contribution to nd is positive; it is
shown in Fig. 5(a) and has the value

re(2s~np)= —4~(2s~(r c s8o~mp)~'/(es, —e „). (38)

Equation (38) includes a factor 2 because there are two
2s electrons. Transitions to continuum states are given
by

P rrd(2s -+ kp)

dk[ (2s)r cos8jkp) ['/(es, —k'/2), (39)

where the continuum states are normalized so that

EI, (r) =- sin(kr+ (1/k) ln2kr+ 6) (40)

as r —+Do and PI, ——(2/vr) JP dk as shown in K. The

Fzo. 5. Lowest order terms contributing to the dipole polariz-
ability o.d. The interaction labeled DP refers to the dipole polariz-
ability operator rcose. (a) Second-order term (b) .and (c) are
third-order terms with one correlation interaction. There is also
the term obtained by inverting (c). (d) Hole-particle interaction
diagram which does not occur when the single-particle states are
calculated as in this paper. (e) Fourth-order diagram which is an
iteration of the diagram (b).

second-order contribution to a~ from is electrons is ob-
tained by replacing 2s by 1s in Eqs. (38) and (39).
Numerical results for e~ in second orde~ are given
in Table VIII. The validity of the e—' rule for
)(2s~rcose(mp)(' may be checked in Table III. It is
interesting to note that almost the entire contribution
to n~ comes from 2p excited states and that excitations
of Is electrons contribute negligibly. The second-order
n& is 12.15 A' as compared with 4.54A' obtained by
Kelly and Taylor" in a second-order calculation using
the set of Hartree-Pock states described in K in which
all excited states are in the continuum. It was pointed
out" that this second-order calculation is equivalent to
the uncoupled Hartree-rock approximation of
Dalgarno. " In higher order calculations using this
continuum set it is necessary to calculate the diagram
of Fig. 5(d) and higher iterations. This type of diagram
was called a second class EPV diagram in K. It arises
from the fact, that for this set the interactions of an
excited particle with the Hartree-Pock potential do not
cancel the interactions with the occupied unexcited
states. This is the analog of Fig. 1(d).

In K these diagrams were found to be comparable in
size to the second-order term and of the same sign. In
the calculations of this paper the single-particle states
were calculated so that interactions of excited states
with the potential are canceled by interactions with the
occupied unexcited states when there is only a single 2s
excitation. Another way to look at this problem is to
note that all terms of the type of Fig. 5(d) have been
summed and need no longer be considered when the
states of this paper are used. Since these terms are all
of the same sign as the second-order term, it is under-
standable that the second order result of this paper
should be much larger than that reported in KT.

The third order terms of Figs. 5(b) and (c) which
reduce the second-order result are found to be large.
This is expected since they differ from the second-order
term by one l= 1 correlation interaction, and in Sec. IV

--~DP

25

TABLE VIII. Dipole polarizability in second order. '
(a)

--~ DP —-e DP

(b)
ns(2s ~ eP) k'

11.9371
0.01213
0.00939
0.00513
0.00298
0.00187
0.00124

aq (1s ~ np) A'

0.001091
0.000202
0.0000753
0.0000362
0.0000202
0.0000124
0.0000081

np

DP --

np

DP—

25

a 9

continuum

0.00393

0.17049

a i A~~10~ Cm'.

2s total 12.1443 3,'

0.0000257

1s total 0.007319K '

Z

continuum 0.005848

(c)

Fro. 6. Fourth-order diagrams which modify single-particle
excitations. Diagrams (a), (c), and (d) are rearrangement diagrams
discussed in Ref. 18.

"H. P. Kelly and H. S.Taylor, J. Chem. Phys. 40, 14M (1964),
hereafter referred to as KT.
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DP

(b)

Diagrams (c) and (d) result from the linked cluster
factorization and may be added to give the negative
product of the second-order term for e~ and the second-
order correlation energy term. Higher order diagrams
like (c) and (d) give additional factors of correlation
energy terms and the result is a geometrical series which
may be summed to give the second-order term for 0.~
with the shifted denominator'

D= es& e»+E,o»(2s&2s)+2E&o &(2s&1s), (42)

DP

Fit . 7. Basic fourth-order diagrams contributing to the dipole
polarizability na are given by diagrams (a), (b), (c), (d), and (e).
Diagrams (a), (b), and (f) may be inverted. In diagrams (b) and
(d) the first DP interaction may also occur on the other particle
line. A fifth-order diagram modifying (a) is given by (f). Similar
diagrams modify (b) and (c).

these correlations were large. It is desirable to include
as many higher order effects as possible when the basic
third-order diagrams are calculated. This is achieved
by first considering modifications to the single-particle
excitations shown in Figs. 6(a), (b), (c), and (d). These
modifjLcations will be shown to be included by an effec-
tive shift in the energy denominators for single-particle
excitations and they are found to be small compared to
other effects. The modification which is numerically
largest is shown in Fig. 5(e). That is, whenever we have
a single-particle excitation we include all correlation
interactions which interchange the excited and unex-
cited 2s electrons. Due to the dominance of excitations
into 2p states as seen from Tables II and VI, it is possible
to sum exactly the principal part of this modification
by considering the geometrical series

~F= 1+((2p2s I
tt

I 2s2p)/(ep, —e»+d))+
= L1—(2p2s I z12s2p)/(e&, —e»+d) j—'.

The term d is due to the modifications of Fig. 6. When-
ever there is a single excitation into the state 2p, the
term is multiplied by MIi. In Fig. 5(b) for m=2 and
e/2, we multiply by MF and have included all dia-
grams like that of Fig. 5(e) to all orders. If we multiply
the diagram of Fig. 5(a) by 3IF then we must be careful
not to include ii= m= 2 in Fig. 5(b) as this is already
included in MF. In these calculations, ME=0.696.
When the diagram of Fig. 5(c) is calculated, the denomi-
nator D of Eq. (18) is used to account for higher correla-
tion effects. The nondiagonal terms discussed in Sec. III
must also be included. When m=2, this diagram is
multiplied by MIi. The inverted diagram is numerically
identical.

Modifications due to the diagrams of Fig. 6 are now
considered. Diagrams (a), (c), and (d) are "rearrange-
ment" diagrams discussed by Brueckner and Goldman. is

' K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207
(1960).

TABLE IX. Contributions to nz from diagrams of Fig. 7.'

Diagram Value in A.'

0.8484
0.4257
0.5957
0.3383
0.3389—0.4232

Total 2.1238

& 1 A=10 ll Cm.

Calculations of 6(a) and (b) were made for ri=tz'= 2
as 2p excitations are dominant. The ratio of diagrams
(a) and (b) to the second-order diagram of nq estab-
lishes the ratio of terms in a geometric series which is
also summed to give a shifted denominator. In calcu-
lating (b), m and m' are the possible excited bound and
continuum states consistent with the rules for allowed
angular momenta of single-particle states in Coulomb
matrix elements. " That is, we may have mpm's,
mp m'd, md m'p, etc. In calculating 6(b), only s, p,
and d states were considered. The shift in Eq. (42) due
to diagrams like 6(c) and (d) is —0.0465 a.u. However,
this number is largely canceled by the shift due to dia-
grams like 6(a) and (b) and the net shift is only —0.0156
a.u. For comparison, e~,—e~„=—0.1299 a.u. Also, this
e6ect for third-order terms in this case tends to cancel
that for second-order terms. The second- and third-order
diagrams were calculated with the modifications just
described to account for iterations of certain terms
beyond third order. The result was nd 5.569 A'. ——

In fourth order, new types of diagrams enter and
examples are shown in Fig. 7. We may note that we have
now included terms in which the correlations and DP
interactions have assumed all possible relative positions.
Diagrams 7(a), (b), and (f) may also be inverted and in

7(b) and (d) the first DP interaction may occur on the
other particle line. When we have a single 2p excitation,
we multiply by the factor MF of Eq. (41). When the
diagram begins or ends with a single excitation as for
7(a), (b), and (c), there is also the modification of the
type shown in 7(f) which modifies 7(a). Numerical
calculations of the diagrams of Fig. 7 are given in Table
IX. Excited bound and continuum states were included
for l=0, 1, and 2.

The factor which results from the normalization
(+pI+'p) in the denominator of Eq. (34) for u~ must be



HUGH P. KI".LI. Y

Ip

electric Geld at the nucleus due to Z' is deGned as the
dipole shielding factor P„.

DP

(a)

I'xo. 8. Disconnected diagrams which factor when added. States
p and q must be different from r and the excitations of p and q
must differ from k because of the exclusion principle. Diagrams of
this type give the factor of Kq. (45).

included. This effect of this factor is reduced when we
consider the higher. order terms of Fig. 8. When 8(a)
and 8(b) are added, the disconnected parts factor into
the product nd in second order (trq&'&) tines the lowest
order contribution of p, q to the correlation part of the
normalization which is

!Vm(p, q) =P f (pq f
e

f
kk')

f
'/D',

= 2(%'p
f Q Et(cos8,)/r, ' f @tt")/(@e

f
4'p),

5,=P P, (cos8,)/r, 2. (47)

Therefore, P„may be calculated analogously to ns, the
second one-body interaction being S~.

The formulas for P„ in second order are

where Z' is assumed small and terms of second and higher
powers of Z' are neglected. The formula for P„differs
from Eq. (34) for ns only by the replacement of the
second interaction V~ by the shielding term

(4'o f%'e) = 1++ 1Vm(P, q) . (44) Q P„(2s~ np) = —4 Q (2s f
r ' cos9

f NP)

Although the nondiagonal terms have not been ex-
plicitly written in Eq. (43), they are assumed included
in lVrrs(p, q). The diagrams like those of Fig. 8 and
the normalization (%e f

4'e) ' combine to multiply
hard&" (r —+ k) by the factor

(1+ Z &'~'(P, V))/(1+2 -'V~(P I)). (45)

The sums Pq extend over all unexcited states except
in the numerator where p and q must not equal r be-
cause of the exclusion principle. The prime in the
numerator indicates that the excited state k is not to be
included in calculating lVsrs(p, q). The higher order dia-
grams for n~ are treated similarly. Only connected
terms are then retained, the corrections from discon-
nected terms being contained in Eq. (45). For a large
system, Eq. (45) becomes effectively one. However,
for a small system such as Be, the restrictions on the
sum in the numerator of Eq. (45) may have an impor-
tant effect. Calculations of the normalization terms
1Vsrs resulted in lVm(2s, 2s) =0.110'7, JV mrs(1s, 1s)= 0.0028,
and Em(1s, 2s) =0.000125. In calculating (%p f

0'e),
41Vsrs(1s, 2s) is included to account for the four 1s—2s
pairs. The total value for n~ before normalization is
7.69 K' and after normalization becomes 6.93 A'. For
Be the normalization eifect is approximately 10%%u~.

This correction may be especially large for Be due to the
low-lying 2P excitation which enhances the effect of
D' in Eq. (43).

X(e2,—e„~) '(rsP fr cosgf2s) (48)

X(e2,—k'/2) '(kpfr cos8f2s). (49)

7Am. z X. Second-order contributions to the
dipole shielding factor P„.

P-(2s eP)

3.88977—0.02783—0.01276—0.00612—0.00337—0.00205—0.00134

P (1s~rsp)

0.03267
0.00635
0.00240
0.00116
0.00065
0.00040
0.00026

—0.00422
n 9

continuum —0.01766

0.000829
n=9

continuum 0.4373

The is contributions are obtained by replacing 2s by
1s in Eqs. (48) and (49). These equations are analogous
to Eqs. (38) and (39) for nq The se. cond-order contribu-
tions to P„given in Table X add to 4.296 which is in
poor agreement with the theoretical value 1.00," and
so it is necessary to consider the higher order terms.
There are terms of the same type as considered for o.,~
and shown in Figs. 5, 6, and 7. In addition there are
now important contributions from the 1s electrons. This
is not surprising as P„ involves matrix elements of r '

3. The Dipole Shielding Factor 2s total 3.814 1s total 0.482

When an external charge Z' is placed at r', the electric
6eld at. the nucleus due to the electrons divided by the '9 R. M. Sternheimer, Phys. Rev. 96, 951 (1954).
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2s

2S 'I

np

--HAPP

(o) (b)

1s

-~D5 —~DS

1

ts

2$

2sI

kp ls

np --~ 05

(c)

p
—-~DP

(e)

replacing the upper DP and by including the normali-
zation factor of Eq. (45). The higher order diagrams
included not only the basic structures of Fig. 7 but also
the possible additions to them by adding on 1s—2s
interactions in the same way that diagrams in Figs.
9(b), (c), (d), and (e) may be considered as additions
to the basic diagram of Fig. 9(a). Before normalization
the higher order terms contributed 0.532, giving a total
1.030. After normalization the total dipole shielding
result was 0.972. The normalization factors signihcantly
affected (by approximately 10%) only the terms in
which there was at least one 2s electron excited.

C. Quadrupole Polarizability

Fto. 9. (a) Second-order diagrs, m for the dipole shielding fs.ctor
P . (b), (c), (d), and (e) are third-order diagrams involving Is and
2s states. In diagrams (d) and (e) the two hole states must have
parallel spins.

The quadrupole polarizability is defined by

u, =—2(+sj P r, P (scoes, ) j+i )/(+sj+s). (50)

which emphasizes the inner atomic regions. In the most
important of these 1s—2s terms shown in Fig. 9 the 2s
electron contributes to the r matrix element and the 1s
electron to r '. The line labeled DS represents the inter-
action with the shielding operator St. Diagram (c)
may be inverted except that the DS interaction must
appear above DP. Diagrams (b) and (c) are similar
to 2s—2s third-order diagrams except that one of the
hole states is labeled ls. In diagrams (d) and (e) the
hole states must have parallel spins.

When diagram 9(b) was calculated with the factor
JIIF of Eq. (41) the result was —0.592. The sum of
9(c) and its inverted form was also —0.592. Diagram
(d) was calculated to be —0.0489 and (e) was —0.126.
Additional modifications to these diagrams come from
the fact that when there is a single 1s excitation, the
interactions with the potential do not exactly cancel
interactions with the occupied unexcited states. This
was found to give approximately a 10'%%uo increase to
diagrams like (b) and (e). This increase was approxi-
mately canceled by inclusion of higher order 1s—1s
interactions which modify a single 1s excitation in the
same way that the single 2s excitation in Fig. 5(a) is
modified by 5(b) and (c).

The result of calculating the modified second- and
third-order diagrams involving two 2s electrons was
found to be 1.248. The basic diagrams are shown in
Figs. 5(a), (b), and (c) except that the topmost inter-
action is now D S rather than DP. The appropriate modi-
fications to the basic diagrams were discussed in Sec.
IV A. Similar calculations involving the two 1s electrons
gave the result 0.438. Calculation of the 1s—2s diagrams
of Figs. 9(b), (c), (d), and (e) gave the result —1.189.
This number includes the modifications discussed above
and a very small contribution from interations of the
basic diagrams. The modified total result through third
order is then 0.498.

The 6nal result was obtained by considering higher
order diagrams of the type shown in Fig. 7 with DS

The term %t"& is defined by Eq. (33) and is obtained
from BG theory by collecting all the terms of 4 given
by Eq. (37) in which the perturbation —Us acts once
and only once. The calculation of o,, proceeds in the
same manner as that of o,d except that the operator
U& is replaced by U2.

The second-order formulas are

P u, (2s ~ md) = —4 P j (2s jr'Ps(cose) j Nd) j
'

TABLE XI. Second-order contributions to the
quadrupole polarizability.

3

5
6
7

9
10

e, (2s ~ rid) L'

6.7760
1.9161
0.8059
0.4184
0.2467
0.1583
0.1079
0.07701

3

5
6
7
8

10

oq(1s ~ rid) A'

6889Xi0 '
4.028X10 '
2326X10 ~

1427X10 '
9-293X10 s

6.355X10 8

4-525X10 s

3.330X10 s

ra 11

COIItlIluuin

0.3218

4.262O

1s total 15.0901 A.'

1.444X10-7

contin uuIr1 0.000609

1s total 0.000611 A.'

a 1 A~ =I.O «em~.

X (es.—e.a) ', (51)
co

P u, (2s ~ kd) = —— dkj(2sjr'Ps(cos8)j kd)j'

X (es, —ks/2) —'. (52)

The angular integrations contribute a factor 5 on the
right-hand side of Eqs. (51) and (52). Both equations
contain a factor 2 for two 2s electrons. The 1s terms are
obtained by substituting is for 2s in Eqs. (51) and (52).

The results of the second-order calculations are given
in Table XI and the total second-order result is 15.09 A'.
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TABLE Xn. Second-order contributions to the
quadrupole shielding factor y„.

3
4
5
6
7
8
9

10

y„(2s ~ nd)

0.19430
0,07383
0.03537
0.01968
0.01208
0.00796
0.00552
0.00399

3

5
6
7
8
9

10

y„(ts ~ nd)

2.546X10-'
1 514X10 '
8.778X10 '
5.385X10-6
3 517X10 '
2 405X10 '
1.719X10 '
1.252X10 '

0.01928
n II

continuum 0.51589

2s total 0.88790

n 11

continuum

6.888X1o '

0.16987

1s total 0.16994

D. The Quadrupole Shielding Factor

The quadrupole shielding factor y„ is defined as the
change in the gradient of electric field at the nucleus due
to the electrons divided by the gradient of electric field
at the nucleus due to the external charge Z'.

The contribution from is terms is negligible. The third-
order terms correspond to those in Figs. 5(b) and (c)
for nq including the inverted form of 5(c). The interac-
tion lines labeled DP now are labeled QP and correspond
to the interaction U2. The excited states are zd and kd.
Since the correlations between two 2s electrons are given
almost entirely by excitations into p states, ' the third-
order terms fol Aq were expected to be much less im-

portant than they were for n&. This w'as found to be
true; the third-order terms contributed —1.034 A',
giving a total result 14.06 A' for second- and third-
order terms. Fourth-order terms were not calculated
and the normalization factors were omitted for con-
sistency as they correspond to fourth-order and higher
t.erms. Most fourth-order terms are expected to increase
the value for o,„and e, is reduced by the normalization
factors so there should be some cancellation between
these two eGects. However, since /= 1 states may enter
into the fourth-order terms, the fact that third-order
terms are small does not necessarily imply fourth-order
terms are also small.

and similarly for excitations of 1s electrons. The second
order contributions to y„are given in 'fable XII. Both
1s and 2s contributions are now significant. More than
half of the total result 1.058 comes from continuum
states; this is not surprising since the wave function for
lsd states is generally far from the origin due to the
centrifugal barrier and so the r ' matrix elements are
small. However, the continuum states have sufficient
energy to overcome much of the barrier.

The third-order 2s—2s terms which were calculated
correspond to the third-order correction terms for e~
shown in Fig. 5. However, the bottom interaction is now
QP and the top interaction is through the quadrupole
shielding (QS) term r 'Pp(cos8). Excited states have
l= 2. Third-order terms involving 1s—2s interactions
of the types shown in Fig. 9 but with changes to QP,
QS, and 1= 2 excitations were also calculated. Correc-
tions were made which account for the fact that for 1s
excitations the interactions with the potential do not
cancel interactions with occupied unexcited states. This
effect gave a 7%%u~ increase to the terms with is excita-
tions. The contributions from third-order 2s—2s terms
was calculated to be —0.144 and from 1s—2s terms
—0.163. The 1s—1s terms were small. The final result
of these calculations is 0.751. The fourth-order and
higher texas were not considered in calculating y„
and it is possible that they might contribute significantly
since excitations into l= 1 states are now possible. Very
rough calculations of some fourth-order terms indicated
that y„might increase by as much as 20% and n,
change less. Any increase, of course, would be partly
offset by the normalization factor. It is possible that
the second-order result could turn out to be in better
agreement with experiment than the result including
third-order terms.

(Pote added in proof. The results of this section are in

good agreement with those of Professor A. Dalgarno
who has used the coupled Hartree-rock approximation
for Be. An analysis of the coupled method indicates that
it includes the second- and third™order diagrams of this
section and higher iterations of these basic diagrams,
and so the coupled method actually includes some of the
correlation effects. I am grateful to Professor Dalgarno
for forwarding his results prior to publication. )

y„—=2(%'pI P r, 'Pp(cos8, ) I%&'t'))/(VpI+p). (53)
i=1

The second-order terms are

P y„(2s~ nd) = g —4(2s
I
r 'Pp(cos8) I nd) (pp, p.g) '—

n=2

X (nd I
r'Pp (cos8) I 2s), (54)

oo

P y„(2s—+ kd) = —— dk(2s
I
r-'8; (cos8) I kd)

&( (p„—k'/2) —'(kd
I
r'l'p(cos8)

I 2s), (54a)

VI. OSCILLATOR STRENGTHS

The oscillator strength f„ for a transition between
an initial state i and an excited state n is given in atomic
units by"

(55)

where Zo~ ——g; Ps;. The energy difference between
states m and i is given by cv,,„i in a.u. The ground state of
Be is (Is)'(2s)' '5 and transitions are calculated to ex-
cited states (1s)'(2s)(np) ' Pwhich may be wri. tten in

~ H. A. Bethe, Intermediate PueNtwm iVechavics (EV. A. Benja-
min, Inc. , New York, 1964), Chap. 13, p. 147.
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TABLE XIII. Excitation energies in a.u. from
(2s)' 'S to (2s) (Np) 'P. &&Op

Z
I'l 2S It k k'

Is Is
j(2S

2
3
4
5
6
7
8

Ionization limit

0.1935
0.2467
0.2749
0.2877
0.2946
0.2986
0.3012
0.3094

0.1939
0.2742
0.3063

0.3426

second quantized notation

& Calculated from Eq. (58).
b Experimental values obtained from Ref. 21. Only values up to n =4

were listed.

FIG. 11. Higher order
diagrams contributing to
oscillator strength matrix
elements. (a) and (b) are
disconnected diagrams. (c)
Transitions 2s)' 'S ~ (Ns)
X (2p) 'P are ossible when
correlations among the two
2s electrons are included. - &

rl Is+

&&np

Z
'

k k'

2S 2S
Is

(b)

I
2snp 'P) = 2 ''(r)„+—rl„„+ r)s;+-r)„—„++)

I 0), (56)

If we use the ground-state Hartree-Fock solution for
(2s)' 'S and Eq. (56) for (2s)(np) 'P with the np
single-particle orbitals determined by Eq. (13),

~„;=as~ —es,+ (2snp
I
e

I
np2s) . (58)

The ls and 2s orbitals used in (2s) (np) 'P are the same
as for (2s)' 'S.

Excitation energies calculated from Eq. (58) are
given in Table XIII and are compared with the ob-
observed energies obtained from the Charlotte Moore

2 p'2S

ii np

Z ] Z

+ ~
vP

2S 2S

Z ~~2S 2S " Z

mp+ np

"2S~ 2s"

&~np+ mp l~

II

li2s+ 2s i(

when correlations in these states are neglected. The
notation 2s+, np indicates 2s electron with spin up,
etc. The state IO) is the "core" state (1s)''S. The
operators g+ satisfy the usual Fermi-Dirac anticommuta-
tion relations. ' The excitation energy

cu„;= (2snp 'P
I
H

I
2snp 'P) —((2s)' 'S

I
H

I
(2s)' 'S) . (57)

]'t2p 2p
II Qt

i't2$2Sil

(c)

Tables. " The discrepancy between calculated and ob-
served values increases with the excitations and is
mostly due to omission of correlation corrections for
the calculated energies. When a 2s electron has been
raised to a highly excited state it is expected to have
little correlation energy with the remaining 2s electron.
If the 2s—2s correlation energy of the ground state is
included with the ionization limit calculated from Eq.
(58), the result is 0.353 a.u. which improves agreement
with the observed value 0.343 a.u.

When the oscillator strengths are calculated in the
first approximation,

(59)

This approximation for the matrix elements (nI Zo„Ii)
is illustrated by diagram (a) of Fig. 10. Unlike the usual
many-body diagrams, both particle and hole lines point
upwards; the lines at the bottom of the diagram cor-
respond to the initial unexcited states of i and the lines
at the top correspond to the unexcited single-particle
states of the anal state n. The ground-state Hartree-
Fock determinant i is connected to each of the excited-
state determinants in the linear combinations (56)
through the matrix element (npI zI 2s). It is also desir-
able to include the effects of correlations among the two
2s electrons in the ground state and these are represented
by Fig. 10(b). The contribution to (nI Go„Ii) from dia-
grams (a) and (b) together is

(b)

FIG. $0. Diagrams contributing to oscillator strength matrix
elements. (a) Hartree-Fock approximation. (b) Correlation terms.
These diagrams differ from the usual diagrams of Ref. 2 in that
both hole and particle lines are directed upwards. The lines at the
bottom of the diagrams represent single-particle states occupied
in the initial state i. Lines at the top of the diagram represent
single-particle states occupied in the Qnaf state p,

(n I
zo Ii ) =%2 ((np I

s
I 2s)yp (2s I

s
I tnp)D

X (mpnp I
e

I 2s2s)) . (60)

"&tornic J.'.'nergy I~eels, edited by C. E. Moore, Natl. Bur, Std.
Circ. No. 467 (U. S. Government Printing 05ce, Washington,
D. C.) 1949)) Pol, I,
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f '(HF)'

2.0293
0.00541
0.00530
0.00318
0.00194
0.00125
0.00084

0.00295

f„p(corr)b

1.2540
0.01676
0.01013
0.00549
0.00321
0.00202
0.00135

0.00467

TABI.E XIV. Oscillator strengths for transitions (2s) z5-+ 2szzp zP. excited states are propagating in the presence of differ-
ent unexcited states above and below the s interaction,
the denominators as given by Eq. (18) are different in
these two cases. The correlation part of Fig. 11(b) is

I
(2$2slvlkk')I'/D„D, ,

where D, is the denominator for (1s)' occupied and D„
is the appropriate denominator when 1s+ and np are
occupied. For 1s transitions, Eq. (55) then becomes

a Calculated from Eq. (59) using Hartree-Fock single-particle states.
b Ground-state correlations are included in these values.

I

P f.,'=cV (61)

When 1s~ np or 1s —&kp transitions are calculated,
terms of the form shown in Fig. 11(b) should be in-
cluded. These account for correlations among the two
unexcited 2s electrons. These correlations should also
be included in the normalization for both the ground
state ~ and excited state n. because the particles in

22 P. L. Altick and A. E. Glassgold, Phys. Rev. 133,A632 (1964}.
'z K. Sawada, Phys. Rev. 106, 372 (1957).

The denominator D is calculated by Eq. (18) to a,ccount
for higher order terms and account is also taken of non-
diagonal terms as explained in Sec. IV. There is still
the normalization correction to be considered because
the correlated ground state is obtained by BG theory
and in Eq. (55) it is assumed that states n and i are
normalized to unity. Most of the normalization correc-
tions come from 2s electrons and the very small effects
from 1s contributions to the normalization are essent;i-
ally canceled by terms of the form shown in Fig. 11(a).
A more detailed analysis of this point is given later in
this section. Oscillator strengths calculated by Eq. (59),
using single-particle Hartree-Fock states of Eq. (13),
are compared in Table XIV with those calculated with
correlation and normalization corrections. The ob-
served excitation energies listed in Table XIII were used
and extrapolations were made to obtain higher excita-
tion energies. The values in Table XIV may be compared
with the results of Altick and Glassgold" who used
Hartree wave functions and employed the methods of
the random-phase approximation. " Their oscillator
strength for the n=2 transition is 2.34 using Hartree
single-particle states and 1.71 including correlations by
the random-phase approximation. For the higher levels,
their Hartree oscillator strengths are larger than the
Hartree-Fock values listed here but their correlated
values are lower than the Hartree-Fock values of the
present calculation.

It is of interest also to compute the oscillator strengths
of is excitations to bound excited states and those for
1s and 2s transitions to the continuum so that we may
evaluate the Thomas-Reiche-Kuhn sum rule. "

f-'=2~-I &nl Zo. lz) I'(1+2'I &»2~[ vlkk') I'/D-D')'

X I (1++I (2s2s I
v

I
kk')

I
'/D ')

X (1+P I
(2s2s

I
v

I
kk')

I
'/D, s)] '. (63)

The prime in the 6rst sum indicates k,k' do not equal
the excited single-particle state in n. The subscript c
after

I (n[Zovli) I' indicates that only connected terms
are included. This means that terms as shown in Fig.
11(b) are not to be included as they are accounted for
by the factor following

I (n I Zov I i) I
.s. All normalization

corrections are accounted for by the last factor of Eq.
(63). The sums over k and k' include all excited states
although for Be the (2p)(2p) excitation dominates. The
terms

I
(2s2sl v

I
kk') I' should include appropriate factors

to account for the small nondiagonal correlation terms
discussed in Sec. V. For example, we may multiply
(kk'

I
v

I
2s2s) by the factor

1+ ( 2 &kk'I v Ik"k'")D-'&k"k'"
I v I »»&)

X (kk'
I

v
I 2s2s&

—', (64)

which accounts for nondiagonal particle-particle inter-
actions, and similarly for particle-hole interactions. D,
is given by Eq. (18) with p, q replaced by 2s, 2s and D„
becomes

D = (ez, —(2s1s[v
I
2s1s)+ (2snp

I
v

I 2snp))
+ ( es, —(2s1s

I
v

I
2s1s)+ (2s1s

[
v

I
1s2s)

+&»np[v I 2snp) —(2snp I
v

I
np2s)

—(ey —(k1s [
v

[
k is)y (knp I

v [knp))
(e' —&k'»

I
v[k'1s)+ (k'1s

I v[ 1sk')

+ (k'np[v[k'np) —&k'np
I

v
I
npk')) —(2s2s[v[2s2s)

—&kk'
I
v[kk'&+ &k2~ I

v
I
k2~)+ (k'»

I
v Ik'»&

+E„,„(2s,2s; 1snp unex)+2E„„(2s, 1s; 1snp unex)

+2E„„(2s,np; 1snp unex) . (65)

The correlation terms in Eq. (65) are written so as to
emphasize the fact that the correlations are computer]
for the stat~ (1s)(nP)(2s)'. The terms added to the
single-particle energies e account for the fact that the
single-particle states were computed in the potential
field of the nucleus and (1s)'(2s) but one 1s electron
is now in the state np.
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TA&LE XV. Sum-rule evaluation for oscillator strengths in Be.

Transitions

2s~np
2s~kp
1s~np
1s~kp

(»)' ~ (») (2p)

Total

Hartree-Pock

2.0499
0.6420
0.2091
2.0663

4.967

Correlated

1.2977
0.5969
0.2029
1.9744
0.0690

4.141

o.l.
——47r' g f (2snp 'I'(~r. ) f&o„f (2s)' '5) f' (66)

MI,=—I.

where the continuum electron has energy k'/2, o~s is
the ionization potential plus k /2, and n is the fine struc-
ture constant. " The continuum function in this case
ha, s the normalization factor (2/7r)'i'. The cross section
0-~ is plotted in Fig. 12. The curve labeled "corr"
includes correlation effects from the two 2s electrons in

C
4P

eo
t —&

&corr

0
0

I I I I

0.2 0.4
ENERGY ABOVE THRESHOLD IN A.U.

I

0.6

Fro. 12. Photoionization cross sections for Be(2s ~ kp).

~ The term "Hartree-Pock result" means that correlations are
not included and the calculations used the single-particle states of
Eq. (13), except for y~„obtained from Ref. 8.

'5 M. J. Seaton, Proc. Roy. Soc. (London) A208, 408 (1951).

When the state np is in the continuum the matrix
elemen. ts of Eq. (65) which involve this state are zero
because of the continuum states' normalization (2/Rs) ' ",
where Eo is the radius of a large sphere tending to
infinity. ' For ep in the continuum, D„=0.438 for k,
k'=2p, 2p and mi ——&1 from Eq. (65). For comparison,
D„=0.3212 for two 2p excitations and mi ——&1. Calcu-
lation of the factors on the right of Eq. (63) which
multiply I (e IZo„fi) f.s gave the result 0.993 for ep in
the continuum.

The sum rule of Eq. (61) was evaluated and the re-
sults are given in Table XV. The transitions (2s)' 'S ~
(es)(2p) 'I' are possible only when correlations of the
two 2s electrons are included. The process is shown
in Fig. 11(c).The most important transition is (2s) —+

(3s) (2p) 'E for which the oscillator strength was found
to be 0.0642. The correlated sum rule result 4.14 is in
considerably better agreement with the theoretical
value 4.00 than is the Hartree-Fock result 4.97.'4

The Be photoionization cross section (TI, for transitions
of a 2s electron into a continuum p state is

the ground state and also the normalization factor. The
excited state (2s) (kp) 'P is obtained from the Hartree-
Fock single-particle states of Eq. (13) and does not
include correlations. The curve labeled 0-Hp omits the
correlation and normalization corrections of the ground
state.

VII. DISCUSSION AND CONCLUSIONS

In the previous sections it was shown that many-body
perturbation theory may be used to obtain many varied
atomic properties from correlation energies to oscillator
strengths. Much of the value of this approach lies in
the fact that once the set of single-particle states for the
perturbation theory has been calculated and used for
one property, it is relatively easy to use the same states
and many of the matrix elements from the first calcula-
tion to obtain additional atomic properties. Also, from
the evaluation of diagrams for one calculation, one often
develops a physical feeling as to which diagrams will be
important in other calculations since many of the matrix
elements and denominators are equal in different dia-
grams. In many cases it is possible to relate quantita-
tively the diagrams for different calculations.

The convergence of the perturbation expansion is
strongly dependent on the choice of the basis set of
single-particle states, and in Sec. II it was pointed out
that it is desirable to choose the potential in such a
way that the excited states correspond essentially to the
physical single-particle excitations. This approach,
which is a departure from the previous use of the
Hartree-Fock potential in Ref. 5, was justified in Sec. II.
For all atoms there is now an infinite number of excited
bound states and the continuum to be included in the
perturbation expansion. However, it was shown in the
calculations of Secs. III, IV, U, and VI that perturba-
tion calculations are readily made using this set of
states and the convergence of the expansion is much
more rapid than in Ref. 5. The sums over the infinite
number. of bound excited states were easily carried out
by use of the e ' rule which was demonstrated in Sec.
III.

The correlation energy for Be 2s electrons excited
into l= 1 states was found to be —0.0436 a.u. as com-
pared with —0.0426 a.u. calculated in K. This particular
calculation was repeated in this paper since in K the
perturbation expansion converged very slowly for 2s
correlations and the accuracy of the calculation was
estimated to be approximately 5'%%uo. However, with the
basis set of this paper the convergence was quite rapid
and the accuracy of the result is estimated at better
than 1%.

The perturbation theory may also be used to calculate
other quantities such as polarizabilities and shielding
factors as shown in Sec. V. The perturbation is more
complicated than in the correlation energy calculation
because there is now an additional perturbation due to
the presence of an external charge. The second-order



result for the dipole polarizability o,~ was found to be
12.15 A' but when the higher order terms were included
the result was changed to 6.93 A' with an expected
accuracy of a few percent. The higher order terms are
particularly important in this case because the two 2s
electrons have strong correlations into 1= 1 states. This
result may be compared with the second-order calcula-
tions of Kelly and Taylor" which gave 4.54 A'. As
pointed out by KT,' their approach is equivalent to the
uncoupled Hartree-Fock approximation of Dalgarno"
which also yielded 4.5 A'. The second-order result of KT
differs greatly from the second-order result of this paper
because of the different basis sets of single-particle
states. There are propagation corrections to the second-
order calculations of KT because the interactions of
excited states with the occupied unexcited states do not
cancel the interaction with the Hartree-Fock potential.
Since there is partial cancellation between the propaga-
tion corrections shown in Fig. 5(d) and the correlation
terms of Figs. 5(b) and (c), the approach of KT can
give reasonable results in second order when the cor-
relations are strong. In this case the second-order re-
sults of this paper are poor and higher order terms must
be included. However, when the correlations become
small the propagation corrections do not necessarily
also become small; and the second-order calculations of
KT and of Dalgarno's uncoupled Hartree-Fock method
may give results which are less than the correct solution.
In general, it should be preferable to use either the
coupled Hartree-Fock. method of Dalgarno" or the
perturbation theory approach presented in this paper
for calculating polarizabilities and shielding factors.
Dalgarno has previously pointed out that the coupled
Hartree-Fock method is much more accurate than the
uncoupled method. "

The dipoLe shielding calculations gave the second-
order result 4.296 which is considerably higher than the
1.77 result of KT. This second-order difference has the
same explanation as for e~. After the higher order terms
were included, the 6nal result was 0.972, with an esti-
mated accuracy of approximately 5%. This value is in
good agreement with the theoretical value 1.00. In
order to obtain the value 0.972, it was necessary to
consider all types of diagrams and the calculations were
more complicated than for n~ because of large effects
from diagrams involving 1s—2s correlations. The calcu-
lation of higher order diagrams may also be carried out
with the basis set used by KT as shown in K. However,
it is then necessary to sum diagrams like that of Fig.

5(d). The basis set of this paper sums these diagrams
exactly and geems to be both more accurate and more
convenient when higher order terms are to be included.

The calculated quadrupole polarizability was 15.09 A'
in second order and was changed to 14.06 A' by inclu-
sion of third-order terms. Again the second-order result
is much higher than 9.26 A' as calculated by KT. The
accuracy of the second- and third-order calculations is
expected to be within 2%. However, there is no assur-
ance that the fourth-order terms which have been
omitted are small. The calculated quadrupole shielding
factor y„was 1.06 in second order as compared with
0.67 computed by KT. After inclusion of third-order
terms y„was reduced to 0.75. The 1s—2s correlations
contributed significantly to the third-order terms for
y„just as for P„.

The methods of Sec. V may be readily applied to the
calculation of higher order polarizabilities and shielding
factors and it is probably a good approximation to
limit these calculations to second order because correla-
tions in higher / states are expected to be quite small.

In Sec. VI it was shown that the basis set of single-
particle states of this paper is also useful in calculating
quantities such as excit;ation energies, oscillator
strengths, and photionization cross sections. Correla-
tions generally were included only for the ground state
where they are expected to be most important. However,
in a more detailed calculation the correlations in the
excited states could also be included. The accuracy of
these calculations is indicated by the evaluation of the
sum rule which is theoretically 4.00 and was calculated
as 4.14 including ground-state correlations and 4.97
without correlations.

The numerical calculations of this paper were for Be
which has only four electrons and a simple closed shell
structure. However, the perturbation theory is appli-
cable to other atoms and may be particularly useful for
atoms with a large nuniber of electrons. In addition,
many of the features of the perturbation theory which
were used in the previous sections may be applied not
only to other atoms but to other types of finite systems.
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