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Newton and Wigner have previously discussed the definition of "localized states" in terms of invariance
conditions. However, their localization conditions are not Lorentz covariant. The present work presents a
modi6ed set of invariance postulates which includes a Lorentz invariance condition. It is shown that for spin-
less systems there do exist states satisfying the modified set of postulates; these states are calculated ex-
plicitly. The procedure appears to preclude the existence of Lorentz covariant "position operators. "

INTRODUCTION

A RELATIVISTIC elementary system has been
defined» as a set of states which forms an ir-

reducible representation space for the inhornogeneous
Lorentz group. The concept of an elementary particle
is somewhat more restrictive since one requires not
only that its states form an elementary system, but
also that in some sense it shall not be useful to consider
the particle as a composite of other particles. '

The principles of relativistic quantum mechanics for
elementary systems readily provide expressions for the
operators corresponding to the energy-momentum four-
vector and the angular-momentum tensor. Other op-
erators, such as "position operators, " are not so easily
defined, Thus it has been proposed in NW that op-
erators corresponding to other physical observables
should be defined in terms of general, invariant theo-
retic principles.

POSTULATES FOR LOCALIZED STATES

Invariance principles have been proposed by Newton
and Wigner for the definition of "localized states"
which may be interpreted as eigenstates of position
operators. It has been postulated that states "localized"
at the point x, y, s at the time 3 should satisfy the
following conditions:

(a) The set S of all such states forms a linear mani-
fold invariant under all those spatial rotations, spatial
inversions, and time inversions which leave invariant
the point of localization. (Linearity, symmetry. )

(b) If a state from S is subjected to any finite
spatial displacement, it will become orthogonal to all
states of S. (Orthogonality. )

(c) All infinitesimal operators of the Lorentz group
are applicable to all states of S. (Regularity. ')

We will refer to these as the NW postulates.
*Based in part upon a doctoral dissertation submitted to the

faculty of Princeton University in candidacy for the degree of
Doctor of Philosophy. Research supported in part by the National
Science Foundation.

'T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400
(1949);hereafter referred to as NW.

'Two recent articles which deal with the usefulness of the
concept of elementary particle are those of G. F. Chew, Phys.
Today 17, No. 4, 30 (1964), and W. Heisenberg, address at the
Niels Bohr Commemoration meeting (unpublished).

The regularity condition, as stated here, is not sufliciently
explicit; it is discussed in detail in the original paper (NW).

B

It is found that for all elementary systems of non-
zero mass and arbitrary integral or half-integral spin
there exist linear manifolds of states localized at each
space-time point. For massless particles, localized states
exist only for spins 0 and —,'. In each case the localized
states belong to the continuous spectrum of three
Hermitian operators (components of the "position op-
erator") whose eigenvalues are the coordinates of the
point of localization. These operators satisfy the proper
commutation relations for position operators.

Unfortunately this definition of "localization" is not
Lorentz invariant. (This was already recognized in
NW. ) A state which satisles the localization postulates
in one coordinate system will not satisfy the postulates
when viewed from another coordinate system in uni-
form relative motion. Moreover, the three components
of the position operator are apparently not part of any
simple covariant quantity.

LORENTZ INVARIANT LOCALIZATION

The present paper proposes an alternative set of
localization postulates which includes a Lorentz in-
variance condition. States localized at the point x, y, s
at the time t must satisfy the following conditions:

(a) The set S of all such states forms a linear mani-
fold invariant under all those spatial rotations, spatial
inversions, and time inversions which leave invariant
the point of localization. (Linearity, symmetry. )

(b) The set S is invariant under all Lorentz ac-
celerations. (Lorentz invariance. )

(c) The eigendifferentials formed by the superposi-
tion of states localized in a small finite region are
normalizable. (Normalizability. )

(d) The set S contains no subset which satisfies
the conditions (a), (b), and (c). (Irreducibility. )

We will call these the LI (Lorentz invariant) postulates.
In this paper, application of these postulates is limited
to the simplest physical case, elementary systems of
nonsero muss urtd sero sPsn.

Since no set of localized states determined by the
NW postulates is Lorentz invariant, at least one of the
NW postulates must be omitted in formulating the
new (LI) set of postulates. We have chosen to relax

T. O. Philips, dissertation, Princeton University, 1963
(unpublished).
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the requirement of orthogonality. An unfortunate con-
sequence of this procedure vill be our inability to
define Hermitian position operators.

Spinless states will be represented by wave functions

$(pip2p3) defined on the positive mass shell. We use
the usual form of the scalar product

(4 ~)= 4 (pip2pa)*v (pipip3)d'p/po

where

po
——y (~ y~ 2+ yg')'i' and d3p= dp, dp2dp3.

Ke denote by So a set of states localized at the
origin at t=0 according to the LI postulates. States
localized at other space-time points can be obtained
using the displacement operator

&(~)4(y) =em( —~~ p)0(y),

where the Lorentz-invariant product is

a p=a'p' —a y.

Any set of 2j+1 functions of the form

v»-(y)=Yi-(8, v)f(P), ~= j, i+~, ——
, +j, (3)

with j a fixed non-negative integer, satisfies the linearity
and symmetry conditions for states localized at the

origin. Here p, 8, p are the spherical polar coordinates
of (Pi,P~,P3), and the Y; are the normalized spherical

ha, rmonics. The function f(p) is arbitrary, but may be
assumed real without loss of generality; this is a direct
consequence of the requirement of time-reversal in-

variance. A manifold such as that of Eq. (3) exists for

each non-negative integer j and each choice of the
function f(p) The set So.must therefore consist of one

or more sets of the form in Eq. (3).

THE LORENTZ INVAMANCE CONDITION

Before we can apply the Lorentz invariance con-

dition, we must obtain a representation of the infini-

tesimal operators of Lorentz accelerations. Since any
homogeneous Lorentz transformation may be written

as the product of a rotation and a Lorentz acceleration

along one particular axis, we need consider only the

infinitesimal generator I.3 of Lorentz accelerations along

the xs axis. In spherical coordinates this infinitesimal

operator is

I-3=p08/8p3= poL(cos8)8/8p (sin8)p '8/88] (4)

AVhen La is applied to states y; of the form in Eq.
(3), we obtain

L.&, (y) =»;.Y; (8,~)P.[f'(P)+(i+1)P 'j(P)3-
+»,+,-Y, .-(8,9)poof'(p) jp 'j(p) j (5)—
» =L(j'-~')/(2j+1)(2j —1)3"'.

Note that from states p; with angular factors V;,
application of the operator 1.3 generates states with
angular factors F; ~,~ and I';+q, ~.

If the state q; is in So, the Lorentz invariance con-
dition requires that (I-3)"y; be in So for any N. This
means that So may in general contain an infinite
number of linearly independent states with different
angular factors Y; . Note that the choice of f(p) for
the functions with a particular j completely determines
the set So, since all other states in So are generated by
repeated application of the operator L3. (We are here
implicitly applying the irreducibility condition. )

Many different sets of functions may be generated
by the application of L3 to sets of the form (3). We
will sort all possible sets into three classes. Each class
will then be investigated to discover which sets (if any)
satisfy the normalizability condition.

Class I. The linear manifolds being considered are
spanned by a basis consisting of states with angular
factors I'; . Class I w'ill consist of those sets for which
there exists a finite maximum value of j (which we

denote by J). For this to obtain, the set must include
a state

pg =constantXYg (8,p)p~. (6)

Then the state L3pg is found to have an angular
dependence I'J- ~, , the term which wouM. contain
I'g+~, vanishes. Repeated application of I.3 generates
a set with j=0, 1, , J. One set of this type exists
for every non-negative integer J.

Class II. This class consists of those sets with a
nonzero rninirnum value of j (which we denote by J').
For this to obtain the set must include a state

«o=f(p)

Repeated application of I-3 generates a set of states
satisfying the Lorentz invariance condition. For certain
choices of f(p) this will be a Class I set with no values
of j larger than some finite maximum value J. Class
III will consist of all sets generated starting from any
other choices of f(P); for such sets j taxes on all non-

negative integral values.

EIGENDIFFERENTIALS OF IOCALIZED STATES

Let P(y;x) represent a state localized at the point
x at time t=0. In particular suppose that the state

0(y;O) = j(p) Y -(8,~)

= constant&& Yq. (8, p) p
~' '.

Then the state I.3yg. has an angular dependence
Vg.+~ . Repeated application of L3 generates a set
with j=J', J'+1, J'+2, , with rio finite maximum
value of j. One set of this type exists for every positive
integer J'.

Class III. One can arbitrarily choose a function
with angular dependence I'00.'
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4'(11' «) =
4'7l 6 $(e,x)

3
P(p; x') /f3x'.

After substituting (10) into (11) and performing the
integration, we obtain

(12a)
where

X(s) =3s 3(sins —z coss) =3z—'j, (s); (12b)

ji(s) is a spherical Bessel function. In the limit
~
s~((1

X(s) 1——,',s'+0 (s4) .

Using the form (10) for the localized states a,nd the
form (12a) for the eigendifferentials, we can calculate
the norm of the eigendifferentials:

p'&'( p)'f(p)'dp/po. (13)

This norm is independent of the point x at which 1P is
formed. In order that the normalization condition (c)
of the LI postulates be satisfied, the integral (13) must
converge. If f(p) has the asymptotic expansions

If(p)l-p" for p

If(p)l-p' for p~O (14b)

is localized at the origin at t=0. Using the translation
operator (2), we obtain the state localized at an
arbitrary polllt x (at j=0):

k(u; x) =~'*'0(I; o) =~'*'f(P)I'-(/j, v). (»)
Eigendifferentials will be formed as the superposition

of states localized in the sphere $(3,«), which has
radius c and center x. The radius e is arbitrarily small
but finite. We define these eigendifferentials by the
expression

3

for J=O may a Class I set be considered a set of
localized states for spinless systems.

Class II. For a given integer J' the states with the
angular factors I",-, j~J', have a radial dependence
which is the sum of terms of the form

f(P)=P e 1'", m=integer, 7~0,
fail to satisfy the normalizability condition. We con-
jecture that this will be the case for a/I choices of f(p)
which generate sets of Class III. This would then mean
that no Class III set may be considered a set of local-
ized states.

We could also choose to eliminate the sets of Class
III by means of an additional postulate: A set S of
localized states must have a 6nite basis. Such a postu-
late wouM also eliminate sets of Class II. However in
the case of Class II, and we believe also in the case of
Class III, the additional postulate is superQuous.

THE LORENTZ INVARIANT LOCALIZED STATE

If the conjecture concerning Class III is correct,
there is a single uniquely defined state which is local-
ized at the origin at time 1=0:

4(p; 0)=(2~) "' (17a)

p j J'p —j 1 —
p
—j-Z'—2p

—j+1 p j J' 4p
——j—+3

As p —+0 the most strongly divergent term is p j';-
thus condition (15b) is satisfied only for j=O. But all
Class II sets contain states with j)0. Thus no Class
II set Inay be considered as a set of localized states.

Class III. It has not been possible to prove rigor-
ously that all sets of Class III violate the requirement
that all eigendifferentials be normalizable. However,
this violation can be demonstrated for a variety of
choices of the function f(p) in (8). For example, all
functions of the form

It is easily seen that this state is Lorentz invariant,
since L31p(p; 0) =0. It should be recalled that this is a
state of a system with zero spin. In configuration
space this localized state has the form, at /=0 (up
to a normalization factor),

we can find necessary conditions upon e and l such
that the integral converges:

(a) 43(1, and (b) t) —3. (15)

With regard to these conditions we consider the three
classes of sets defined above.

Class I. For a given J, the states with the angular
factors I";, j~J, have a radial dependence which is
the sum of terms of the form

4(x) = (m/r)E, (mr), (17b)

where r = x
~

. This state can be compared with the
corresponding localized state found using the NW
postulates:p g jpj p

Z j 3pj+—3 —p—~J j 4pj+4——

PNw(p) = (24r)
—3/&(p3+ m3)1/4

+Nw(x) = (m/r) 3/4Ec3/4 (mr) .
Asymptotically as p —+ ~ each of these terms behaves
as p~. Condition (15a) is satisfied only for J=O. In
this case there is a single state

(18b)

y(p) = constant
For the LI localized state (17) the eigendifferential

(1Q) centered at the point x is

which h@s a normalizable eigendifferential. Thus only 'tP(p ~ «) —.(21r)
—/'+(4p)~ix y.
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the scalar product between two eigendifferentials ft
and Ps, centered at x and y, respectively, is

(lbt, g,) = (2sr)
—'nt'

Since the Bessel function Er(s) is always positive for
s&0, this scalar product is positive and nonzero for

arbitrarily large distances ~x—yI between the spheres
in which the eigendi6erentials are formed. Thus
I.orentz-invariant localization, as we have formulated
it, does not lead to orthogonal localized states.

The nonorthogonality of the eigendiGerentials means
that there is no self-adjoint operator ("position op-
erator") which has the localized state (17) in its
continuous spectrum. This constitutes an unfortunate
consequence of the decision to drop the orthogonality
requirement included in the NW postulates.
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Many-body perturbation theory as formulated by Brueckner and Goldstone is applied to atoms to obtain
corrections to Hartree-Fock wave functions and energies. Calculations are made using a complete set of
single-particle Hartree-Fock wave functions which includes both the continuum and an infinite number of
bound states. It is shown how one may readily perform the sums over an ininite number of bound excited
states. In order to demonstrate the usefulness of many-body perturbation theory in atomic problems, calcu-
lations are made for a wide variety of properties of the neutral beryllium atom. The calculated 2s-2s cor-
relation energy is —0.0436 atomic unit for 1=1 excitations. The calculated dipole and quadrupole polariz-
abilities are 6.93&(10 ' cm' and 14.1X10 ~ cm', respectively. The calculated dipole and quadrupole
shielding factors are 0.972 and 0.'H. Results are given for oscillator strengths, photoionization cross sections,
and the Thomas-Reiche-Kuhn sum rule, which is 4.14 as compared with 4.00, the theoretical value.

I. INTRODUCE TION

" ANY —BODY perturbation theory as developed
~ ~ by Brueckner' and Goldstone' has proven very

useful in the study of many-particle systems. As shown

by Brueckner, the appropriate form of perturbation
theory as the number of particles becomes large is

Rayleigh-Schrodinger theory modified so as to eliminate
the "unlinked clusters. " The principal applications of
the Brueckner-Goldstone linked cluster expansion (BG
expansion) to many-fermion systems have thus far been
investigations of nuclear structure' and of the electron
gas. 4 However, the BG theory, which corrects both wave
functions and energies, should also prove very useful
in calculations of atomic structure and in other 6elds.
In applying this theory to atoms, where the interparticle
forces are well known, one also gains information as to
its general applicability to 6nite systems.

*Work supported in part by the U. S. Atomic Energy Com-
mission.' K. A. Brueckner, Phys. Rev. 97, 1353 (1955); 100, 36 (1955);
The Many Body Problem (John W-iley tk Sons, Inc. , New York,
1959).

s J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
'K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023

(1958); K. A. Brueckner and K. S. Masterson, Jr., ibid. 128, 2267
(&.962).' M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).

A previous application of BG theory to the calculation
of correlation energies in the neutral beryllium atom
yielded excellent results. ' However, it was found neces-
sary to calculate high orders in the expansion. This
difFiculty was related to the set of single-particle
Hartree-Fock states which were used. The purpose of
this paper is to investigate the use of a different basis
set for the expansion and to show the usefulness of
perturbation calculations using this set. The states used
are the ground-state Hartree-Fock orbitals and single-
particle excitations calculated in the Hartree-Fock
potential field of the nucleus and E—1 of the E ground-
state orbitals. The use of this set is justi6ed in Sec. II.
In Sec. III it is shown how sums over an in6nite number
of bound excited states may be carried out. In Sec. IV
the t'= 1 correlation energy among the two 2s electrons
of Be is calculated. In Sec. V calculations are given for
the dipole and quadrupole polarizabilities and shielding
factors for Be. In Sec. VI many oscillator strengths and
the photoionization cross section curve are calculated.
Section VII contains the conclusions.

1

~ H. P. Kelly, Phys. Rev. 131, 684 (1963},hereafter referred to
as K. Correlation energies are defined in K.


