
I NHOMOGENEOUS ELECTRON GAS

IV. CONCLUDING REMARKS

In the preceding sections we have developed a theory
of the electronic ground state which is exact in two
limiting cases: The case of a nearly constant density
(Is=np+rI(r), rI(r)/ep((1) and the case of a slowly
varying density. Actual electronic systems do not belong
to either of these two categories. The most promising
formulation of the theory at present appears to be that
obtained by partial summation of the gradient expan-
sion (Sec. III.4). It has, however, not yet been tested
in actual physical problems. But regardless of the out-
come of this test, it is hoped that the considerations of
this paper shed some new light on the problem of the

inhomogeneous electron gas and may suggest further
developments.
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"Thomson" scattering of a high-intensity, low-frequency, circularly-polarized electromagnetic wave by a
free electron is considered. We find that by neglecting radiative corrections and pair e6ects, the Feynman-
Dyson perturbation expansion is summable, and the sum can be analytically continued in the form of a sum
of continued fractions. By imposing the boundary conditions that at t =& ~ the photons and target electron
propagate as free particles, we obtain results which differ from those reported by Brown and Kibble and by
Goldman. In particular our results dier in two aspects. The 6rst difference is in the kinematics; namely, we
find no intensity-dependent frequency shift in the scattered photon. The second difference is in the dynamics;
that is, we obtain a different expression for the scattering amplitude. Both of these changes originate in the
choice of boundary conditions. Instead of treating the asymptotic radiation 6eld classically, we choose our
states as linear combinations of occupation-number states. Finally, contact is made with the results of Brown
and Kibble and of Goldman using a mixed set of classical and quantum boundary values.

I. INTRODUCTION

'HE advent of masers and lasers has stimulated a
great deal of interest in the interaction of intense

electromagnetic 6elds with matter. This activity has
been focused on three different aspects of the subject.
First, a great deal of attention has been devoted to the
dynamics of production of high-intensity light. A
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Phys. Soc. 8, 615 (1963).

f Present address: Lowell Technological Institute, Lowell,
Massachusetts; on leave from the U. S. Naval Ordnance
Laboratory.

$ National Academy of Sciences —National Research Council
Postdoctoral Research Associate, 1962-64.' J. R. Singer, %users (John Wiley R Sons, Inc. , New York,
1900); F. Schwabl and W. Thirring (to be published); W. E.
Lamb, Jr. , Lecture Notes, Enrico Fermi International School of
Physics, Varenna, 1963 (unpublished).

second area of concentration is the question of proper
description of the electromagnetic radiation emanating
from a laser; i.e. , questions of coherence and correla-
tion. ' And finally, the problem of interaction of laser
light with matter has attracted considerable interest. '
It is this latter question to which we are devoting our-
selves in this paper.

The particular problem of immediate interest is the
effect of the presence of the high-intensity field on the
Compton (Thomson) scattering amplitude. Recall that
the Thomson amplitude describes the scattering of a

' R. Glauber, Phys. Rev. 130, 2529 (1963);E. C. G. Sudarshan,
Phys. Rev. Letters 10, 277 (1963); E. Wolf, Proc. Phys. Soc.
(London) 80, 1269 (1962).

~ J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962); Z. Fried s.nd W. M. Frank,
Nuovo Cimento 27, 218 (1963).
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low-frequency photon by an unbound charged particle.
From the point of view of photons the question of course
is what, if any, effect does the presence of the other
photons in the scattering region have on the probability
amplitude for scattering of a single photon out of the
incident beam. This question can be studied of course in
perturbation theory. 4 One 6nds, however, that the re-
sults obtained in a power-series expansion diverge with
decreasing or (the angular frequency of the radiation).
Since this divergency is a direct result of the photon's
vanishing mass, it should perhaps be dubbed as the in-
frared divergence in the incident state. ' Clearly, per-
turbation theory is misleading. It has been recognized
by one of us (Z. F.) about a year ago that this divergence
disappears when the problem is treated outside the con-
text of perturbation theory. ' The major defect of that
treatment, however, is that only one part (p A+A p)
of the interaction Hamiltonian was included in the
calculation. Subsequently, Brown and Kibble' and
Goldman' have presented a more complete treatment
including the A A terms. They find: (a) that the scat-
tering amplitude is modified in a nontrivial fashion by
the presence of the external field, and (b) that there is a
frequency shift in the scattered photon which is a func-
tion of the incident photon density. Their treatment is
based essentially on the Volkov' solution of the Dirac
equation in the presence of an external field.

The aim of this paper is twofold. On the one hand,
we demonstrate that covariant perturbation theory
yields summable results. Specifically, we show that the
perturbation series can be summed, for sufBciently low
values of the parameter e'p/m. 'or, in terins of infinite
convergent continued fractions. The sum may then be
analytically continued to arbitrarily high values of
e'p/m'or. Consequently, this sum is no longer divergent
as co~o. Also, we wish to stress that by using the
Feynman-Dyson perturbation procedure and the adia-
batic switching hypothesis, one 6nds that there is no
intensity-dependent frequency shift in the scattered
photon. The lack of frequency shift is a direct conse-
quence of our way of treatment of this problem; viz. ,
that asymptotically we describe the radiation field as a
collection of freely propagating quanta. Another conse-
quence of this choice of asymptotic states is that the
scattering amplitude itself differs from the expressions
found in Refs. 7 and 8. Vfe will also show that with a
certain set of asymptotic states the perturbation series
reproduces the results of Brown and Kibble' and
Goldman. '

In Sec. II we explain our method of summation, where

4Vachaspati, Phys. Rev. 128, 664 (1962) and 130, 2598(E)
(1963);P. Stehle, J. Opt. Soc. Am. 53, 1003 (1963}.' This infrared divergence is completely classical. See Vachas-
pati, Ref. 4.' Z. Fried, Phys. Letters 3, 349 (1963).

7L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705
(1964).

8 I. I. Goldman, Phys. Letters 8, I03 I,'1964).
' D. M. Volkov, Z. Physik 94, 250 (1935).

for ease of presentation we consider a model theory with
an interaction Lagrange density I.r=g'p*(x)p(x)7f'(x).
p* and p are charged scalar fields whose quanta are
massive particles. This is the target particle. 7f(x) is a
neutral scalar massless 6eld whose quanta impinge on
the target. The relative simplicity of this model is due
to the fact that only one type of vertex appears in the
calculation.

In Sec. III we consider electrodynamics, and to sim-

plify the problem we treat the case of an incident beam
of circularly polarized photons impinging on a spinless
electron. The choice of scalar electrons does not greatly
affect the results, since for low frequencies, spin effects
are small. Here we content ourselves with leaving the
answer expressed in continued fractions. The present
state of the art in laser technology does not warrant a
numerical evaluation of the answer.

In Sec. IV we apply our methods to harmonic produc-
tion, while in Sec. V we attempt to elucidate the origin
of the earlier results reported in the literature. ' '

Finally an Appendix concerning continued fractions
and another on wave function normalization completes
our dlscusslon.

II. EXACT SEMICLASSICAL SOLUTIONS BY
GRAPH SUMMATION

In this section we will show that certain so-called
semiclassical problems may be solved exactly by sum-
ming all the Feynman graphs appearing in the perturba-
tion series. (The precise meaning here of the term
"semiclassical" will become apparent shortly. ) Specifi-
cally, we solve exactly to all orders in the coupling
constant, by graph summation, the problem of Compton
scattering of a single spin-zero boson (called a p particle)
of mass p by an intense beam of massless and spinless

y particles. That is, we are interested in the matrix
element"

in the limit that iV, the number of y particles in the
beam, and V, the normalization volume, become very
large, while the density of 7t particles, p= X/V, remains
6nite and constant. Here p„= (E,p) and p„'= (E',y')
are the initial and 6nal four-momenta of all x par-
ticle; k„= (or,k) is the common four-momentum of
all 7f particles in the beam; and k„'= (or', k') is the four-
momentum of the single x particle scattered out of the
beam. These momenta describe the asymptotic P and x
particles and. so satisfy P' =P"= fi', and k ' =k"=0.

' Strictly speaking, one should evaluate the S-matrix between
so called coherent states. )These states of the radiation 6eld are
discussed by Glauber, Phys. Rev. 131, 2766 (1963) and S. S.
Schweber, J. Math. Phys. 3, 831 (1962).jThe transition amplitude
(in the notation of Glauber) would then be a suin of terms

Z o&*rr-'oi'v(p', (cv —1)k,k'
( S i p, fl7k),

N=1

where nf,N are arbitrary complex amplitudes. In the limit as
LV —& ~, however, only one term survives.
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Also, 5 is the scattering operator defined in the usual
way" in terms of Dyson's time-ordering symbol T, and
the normally ordered interaction Hamiltonian in the
interaction picture Hr(x):

( i)"
S=1+ Q xd

X dx„T[Hr(x, ) Hr(x )i. (II.2)

In this model calcula tion we choose the interaction
Hamiltonian to have the form

Hr(x) =+g'&(@*(x)4 (x)x'(x)) (11,3)

"Our factors of i and 271., our choice of metric, and expressions
which we refer to as "usual" or "familiar" will be those found in
S. S. Schweber, An Introdnction to Relatieistic Qnantnm Field
Theory (Row, Peterson Company, Kvanston, Illinois, 1961).

"If the external field is large enough, then term by term an
external field vertex will always contribute more to the amplitude
than radiative corrections. If all the external vertex terms were
positive, we could also state unequivocally that the sum total of
radiative corrections is negligible. Since this is not the case we
cannot conclude as to the effect of radiative corrections on the
amplitude. In spite of this, it is still of great interest to study this
incomplete problem. All the omissions made are of a nature which
keeps the problem "classical"; i.e., all the parameters can be
expressed in terms of classical quantities such as electromagnetic
energy density, rest energy of the electron, and wave length of the
inci.dent light.

where iV indicates normal ordering, and p(x) and x(x)
are the scalar field operators for the @ and y particles,
respectively. In the following sections, where we discuss
electrodynamics the x particles will be given unit spin
and H» will acquire a linear term in accordance with
gauge invariance, but the following method of summa-
tion will be seen to be able to accommodate these com-
plications easily. Before embarking on the summation
program we will introduce an important simplification
which has the effect of de fining what we mean by
"semiclassical. " %e imagine the beam of y particles to
be very intense, and so ignore terms in the series (II.2)
due to radiative corrections and virtual pair creation.
Also we ignore processes in which more than one x
quantum is scattered from the incident beam. "

It is helpful at this point to make several observations
about the Feynman graphs arising from the perturba-
tion series. Each allowed graph consists of a single con-
tinuous Q particle line joined at a number of vertices
by x particle lines. The numbers of y lines emitted and
absorbed by the @ line are equal. All of the y lines ex-
cept one have momentum k„; the exception is an emis-
sion line with momentum k„.For convenience we will
refer to the vertex where this exceptional y particle
joins the @ line as the scattering vertex; all other ver-
tices are forward-scattering, or, for short, nonscattering,
vertices. The form of the interaction Hamiltonian makes
it apparent that there are only two kinds of scattering
vertex, and only three kinds of nonscattering vertex.
These are illustrated in Figs. 1 and 2.

FIG. 1. Possible scattering vertices. The single vertical line is the
@ particle, horizontal lines are the beam particles with momentum
k„, and the skewed line is the scattered x with momentum k„'.
Incoming x's are always drawn entering the diagram from the
left; outgoing y's leave the diagram to the right. The p line is
directed upward.

'(2~)'g'(p/—2") . (II.4)

By taking the limit at this stage we are implying that
the beam density is so great that depletion effects are
negligible. Consequently, all statistical factors become
gE, so the value of any nonscattering vertex, whether
it describes emissions or absorptions, is given by (II.4).
The contribution of the propagators to the value of a
graph is completely standard. The value of the propaga-
tor immediately following the vertex in Fig. 3 is

Z i 1.

(2~)' (p+2mk)' t"' (2n.)4 4—mp k

It is very convenient to adopt a simple condensed no-
tation for the graphs. Observe that every graph has
exactly the same number of nonscattering vertices as it
has p propagators. Starting at the bottom of a graph,
each nonscattering vertex is associated with the prop-
agator following it, until the scattering vertex is reached.
It is not associated with any propagator. After the

0 ~

~ &

(a)
FIG. 2. Possible nonscattering vertices.

(c)

Let us look closely at a typical nonscattering vertex
such as is shown in Fig. 3. The incoming virtual g
momentum is p„+2(m+1)k„, indicating that the p
particle has already absorbed a net number 2m+2 of
y's from the beam. Application of the usual Feynman
rules gives us the value of this vertex:

—i(2n.)'g'(~V —2m 1)'t'(N 2m——) ' '/2~ V,

where co is the beam frequency and V is the normaliza-
tion volume. The square-root factors come from the
boson statistics involved in the double emission pro-
cess; X is the very large number of p's initially in the
beam. In the limit X,V —+~, .7/V= p, the vertex value
becomes
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p +2rnk

p+2(m+ I) k

I"io. 3. A typical double-emis-
sion nonscattering vertex.

X2
I~

(a)

scattering vertex, each nonscattering vertex is associated
with the propagator preceding it. The propagators and
nonscattering vertices are thus paired in a simple and
unambiguous way.

Then, since all vertices give the same contribution,
we multiply each propagator value by the value of its
associated vertex to get the propagator-vertex value
appropriate to each segment of a graph. For example,
the propagator-vertex value associated with the seg-
ment of the graph including the vertex and the propa-
gator immediately following it in Fig. 3 is simply

X2m=
gp

2a& 4mp k 2m
(II.6a)

For the purposes of diagram summation the significant
feature of the propagator-vertex factor x2 is that it is
proportional to 1/m. For brevity we have lumped to-
gether the density dependence, the kinematic factors,
and the (p k) ' term into a single proportionality con-
stant n/2. If the propagator-vertex pair under considera-
tion occurs in the graph after the scattering vertex, we
label the corresponding x factor with a prim. e to indi-
cate this. Thus a typical segment following the scat-
tering vertex, and after a net number 2m of x's have been
absorbed, would be denoted x'2„„where the primed x's
are the same as the unprimed ones except that p is re-

placed by p'. That is

g2p
X2 '= ———

2' 4mp' k 2m
(II.6b)

Only the value of the scattering vertex (which is not
paired with a propagator) remains to be discussed. It is
easy to see that both types of scattering vertex, Figs.
1(a) and 1(b) have the same value. By including into
the value of the scattering vertex the kinematic factors
for the initial and final free p particles as well as the
over-all four-momentum-conservation delta function for
the entire graph, we obtain the following constant fac-
tor which appears in the value of every graph":

8(p+ k —p' —k') g'p—2ig(2x-) 4 —— . (II.7)
(16(ceo'EJ'.")'~' Vs

"The scattering vertex has an extra factor of v'Ã ivhen the
scattering is in the forward direction. This does not alter the
angular distribution in the differential scattering cross section,
1 or a clear exposition of this point, the reader is referred to
Schwabl and Thirring (Ref. 1).

X p
I

X p

(b)

(c)
FIG. 4. Two low-order graphs and one higher order graph,

all with a scattering vertex of the 6rst kind.

Because the factor in (II.7) occurs in every graph we will
ignore it in the summation and then tack it onto the
final result.

Our method of attacking the graph summation will
be to divide the graphs into several well-defined groups
and sum the groups separately. To begin with, we
temporarily exclude from consideration all graphs con-
taining "straight-through" nonscattering vertices such
as the one in Fig. 2(c). Since xs„has not been defined
for v=0, we also temporarily exclude all graphs con-
taining xo s. Then we consider the remaining graphs in
this order: first those in which the scattering vertex is
like that shown in Fig. 1(a) which we call type (a)
graphs; and then those with scattering vertex like that
in Fig. 1(b), which we call type (b) graphs.

Now we are ready to begin summing the type (a)
graphs. To provide familiarity with the notation we ex-
plicitly evaluate the three graphs given in Fig. 4. The
first two have the propagator-vertex factors keyed in.
They have the values x2x2' and x 2x 2', respectively.
The last graph in Fig. 4 is of much higher order but is
evaluated in the same way by assigning x factors to
each propagator-vertex combination and multiplying
them all together. Its value is xs(x4xs)'(xsx4)xs'. Now
notice that the value of any type (a) graph in which
the scattering vertex immediately follows an x2 graph
segment may be written with its x factors similarly
grouped. Every such graph consists, up to the scatter-
ing vertex, of an x2 factor and pairs of x factors of the
form x2„x2 2, and after the scattering vertex consists of
and pairs of x' factors of the form x2 'x2 2'. The value
of the general graph of the class may be written

xs(x4xs)~ (xsx4)"'(xsxs)"'
Xxs (x4 xs ) (xs x4 ) ' ' ' (II 8)
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that is, the general graph has mi+1 segments with the
value x2, mi+m2 segments with the value x4, and so on.
To obtain the total contribution from all these graphs
we sum over the m's and 1's. However, first observe by
comparing the graph in Fig. 5 with the high-order
graph in Fig. 4 that several topologically distinct graphs
may contribute the same value to the sum. We must
therefore, before carrying out the nz and l sums, multiply
the general expression in (II.8) by an appropriate
multiplicitly factor giving the number of different
graphs with the same value (for given m's and l's). So
our task. is to count the numbers of different graphs with
the same values. This is easier than it sounds. In the
first place, without any x4's in the graph there clearly
cannot be any x6's, and without x6's, x8's aren't possible,
and so on. Also, at any x2 segment an x4 segment can be
created simply by adding a two-p absorption vertex
such as in Fig. 2(b). But in order not to disturb the
structure of the rest of the graph, a two-y emission
vertex must also be added immediately after the ab-
sorption vertex. This process is illustrated in Fig. 6.
Thus, every time an x4 is added, an x2 is to be added
immediately after it. Of course, this can be done any
number of times in succession at any of the x2 vertices
in the graph. If it has been done once, then there is at
least one x4 in the graph, and by the same procedure one
or any number of x6x4 pairs may be inserted into the x4

segment. Thus we have the problem of counting the
ways of putting indistinguishable factor pairs x2,„+2X2~
into indistinguishable graph segments x2 . This is
easily solved. The number of ways to put k like marbles
into e like boxes is given by the binomial coeKcient

e k —1 . Referring back to the general expression
k

(II.8), we see we must multiply it by a product of bi-
nomial coef'Iicients giving the number of ways to insert:
m2 pairs with the value x6x4 into m~ segments labeled

X4, ms~ pairs with the value x8x6 into the m2 segments
labeled x6, and so on. The same instructions obviously
apply to the x"s separately from the x's; there is no way
to mix them. Thus, we obtain the following expression:

mi+m2 —1)

)
X2 X4X2 X6X4

m2

m2+mg —1
X X8X6 '3 X2 X4 X'2

823

t,+ li 1 — (l2+l3 —1
X (x6'x, ') 'i, (II.9)

/
X2X2

g (~)—
1—F2 1—F2

(II.10)

Here P2 is a convergent continued fraction which is
described in Appendix A. Explicitly, F2 can be written

p'

1 x4x6
(II.11)

1 x6x8

which is to be summed over all values of the m's and l's.
The summations are most easily done in stages in a
particular order. The method is demonstrated in
Appendix A. The result is found to be expressible in
terms of certain infinite continued fractions. In this
first example, in which the type (a) scattering vertex
occurs between the graph segments x2 and x2', the sum
is given by

F'2' is the same as I"2 except that the x's are replaced by
x s.

Next we consider all those type (a) graphs whose
scattering vertex follows an x4 graph segment (two such
graphs are illustrated in Fig. 7). The general graph

I''zo. 5. Graph with different
structure but same value as
graph in 1'ig. 4(c).

I ~

1~ ~ ~

~ ~

I ~ Xp

~ I

I ~

Xp

I.'"ro. 6. The insertion of an x4x2 pair into
an arbitrarily located x~ segment,
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~ I
The contribution to the scattering amplitude from all

allowed graphs having scattering vertex of type (a,)
is then the sum of all the 5's;

~ I
~I g (~)(n n')= P S& (~) (II.15)

~ ~

~ ~

~ ~

Xy
I~

~ ~

where Sp' ' ——1, from the single lowest order graph (it
cannot be modified without introducing xo factors, and
so retains its unmodified value). Because of the con-
nection between the So and Bessel functions (explained
in Appendix A), the final sum in Eq. (II.15) can actually
be carried out in closed form:

FIG. 7. Low-order graphs in which the scattering
vertex lies between segments x4 and x4'.

value, with multiplicity factors included, is obtained by
the same arguments that led to (II.9). It is

(mi+mp
X2X4 X4X2 X6X4

mo

(mo+mo —1)
~

"x,'x4'(x, 'x,')'
m i

(Ii+Ioi, , Io+4—11
&(

~

~(xo'S4')"
~

. (II.12)
&i, i

Note the slight diGerence in the multiplicity factors in
(II.12) compared with (II.9). The difference is due to
the fact that now all graphs must contain at least one
x4 and one x4' factor as well as at least one x2 and one
x2' factor. Again we must sum over all m's and t's, and
again the result is a product of continued fractions:

00

~"(~, ')=, Z J-( )J-( ')
Jo(n)&o(n')—

Jp(n —n')

&o(n)&o(n')
(II.16)

Next we consider all nonexcluded graphs in which the
scattering vertex is hke the one in Fig. 1(b). These will
be referred to as graphs of type (b), and their contribu-
tion to the amplitude will be denoted A 'o)(n, n'). Again
we will begin by summing all graphs which have an x2
segment immediately prior to the scattering vertex.
Momentum conservation at the scattering vertex then
dictates that the segment following the scattering ver-
tex should be xo', which has been temporarily forbidden.
Thus, when an x2 segment immediately precedes scat-
tering vertex (b), there can be no vertices following it.
That is, the graphs look like those in Fig. 8. The value
of any such graph may be written in a manner similar
to Eq. (II.S), except that no x's appear. After including
the proper multiplicity factors we find

So&')=Q xo(x4x2) &

j te)

X2 X4 X2
g (c)

1—F2 1—F4 1—F2' 1—F4'
(II.13)

(mi+mo —1)
x( X6X ~2 ~ ~ ~

m, i
where P2 is the same continued fraction found earlier.

X2m X2' /
X2'M

So ~ )= — — . (II.14)
1—F2 1—F2,„1—F2 1—F2

Continuing in this fashion we easily determine, in
terms of related continued fractions, the sums for all
the graphs with scattering vertices like that in Fig. 1(a).
If we denote by 52 ( ' the sum for all such graphs in
which the type (a) scattering vertex lies between graph
segments x2 and x2 ', then we 6nd

Xp

-Xp

~ ~

I~

It should be noted here that (II.14) holds for negative
as well as positive values of m. A negative value of m
merely signifies that the number of emissions prior to
the scattering vertex exceeds the number of absorp-
tions. From the original definition, Eq. (II.6a), we see
that x,„=—x„,; and since the F's are quadratic in the

I ~

Fio. 8. No x' factors occur in graphs in which a double emission
scattering vertex occurs immediately after an x2 segment.
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In general, for graphs of type (b), if the scattering vertex
immediately follows an x~„segment we 6nd

x2
(&)(n n') =

P2 1 F2n

1
xg

I
x2n —2

JL'F

X 000 (11.17)

Thus the contribution to the amplitude from graphs of

type (b) is also easily found by adding all the S2„&'&:

Jg(n n')—
A &'&(n,n') =P Sg„"&=— . (II.18)

Jo(n) Jo(n')

I ~

~ I

~ ~

JL
1P

With the amplitude evaluated to this extent we return
to the question of the excluded graphs. First we consider
the graphs with one or more xo's in them but still no
straight-through interactions. Individually they are
infinite; however, for each such graph it is possible also
to draw its opposite —another graph equal in magnitude
but with opposite sign. This is illustrated in two in-
stances in Fig. 9, and may be proved rigorously. Be-
cause the graphs are individually infinite, the sums of
the equal and opposite graphs must be examined in
detail. The problem involved is essentially one of wave-
function normalization, and can be handled in the
usual way by explicitly introducing an adiabatic damp-
ing factor into the interaction Hamiltonian. "A more

~ ~

FIG. 10. Graphs with straight-through
interactions in xo segments.

convenient method, for our purposes, which allows the
summation of all such pairs of graphs in closed form is
described in Appendix B. Of course both methods give
the same result, which is to multiply A(n, n') by the
additional factor Jo(n) Jo(n'). Thus, to this point the
wave-function-normalized amplitude A~(n, n'), with
the over-all factor of (11.7) included, is given by

(2~)'b(p+k —p' —k') ) p2ig'-
(16(u(o'EE')'~' &V'&

X [Jo(n—o.')+ Jy(n —n') j. (II.19)

I ~

~ I

I ~

I ~

(a)

~ I

~ I

~ ~

Next we include the straight-through lines, which
can occur in any graph, by considering them in two
classes. The first class consists of all graphs containing
lines through xo segments; some such graphs are shown
in Fig. 10. An involved but elementary calculation,
which we omit, shows that the summation of all of these
graphs only provides an over-all phase factor. "Thus
they have no effect on the transition probabilities and
we ignore them. The second class consists of all graphs
with straight lines through any and all segments x2,
where m/0. This 6nal modi6cation is not quite straight-
forward and has significant eGects; we will discuss it in
some detail now.

Let us consider the addition of straight-through inter-
actions in the same spirit as the foregoing developments.
A straight-through interaction can be inserted into any
segment x' without aG'ecting in any way the p momen-
tum assignment at any propagator either before or after
the insertion. The sole eAect on the graph is to increase

FK*'. 9. Pairs of divergent graphs containing xo segments which
when added together make finite contributions to the scattering
amplitude.

"The technique is &i&arly detailed ip $&&f 11p pp $39 $43.

"These graphs would normally lead to a mass shift for the
electron due to its photon cloud. However, since we are ignoring
radiative corrections, and since the external laser Geld is well
localized, we have qo such persistent eQ'ects. See, however, Sec. V.
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I'zc, 11. I owest order Compton scattering graphs. As before,
the single vertical line is the electron, the horizontal lines are
photons with wave vector k„, and the single skewed line is the
scattered photon with wave vector k„'. Incoming (outgoing)
photons are always drawn entering (leaving) the diagram from the
left (to the right). All graphs satisfy p„+k„=p„'+k„', where p„
and p„' are the initial and final electron four-momenta.

J-*+-(x)J-.+.(y)

J-*(x)J-.b)
x~ —x

+~ I (II 23)

x( g
Sin) O

8i(x,y) =(!U(x)~'b)) '"

by one the number of x2.,„segments in it. Or, in other
words, the x2,„ into which the interaction was inserted
becomes (xo~)'. Clearly, this can be done any number of
times in any segment. Thus, the entire e6ect of a,ll such
interactions is to niake the replacement

2n

xo. —+ $o„——xo Q (2xo„)'=———. (II.20)
1—2x2„

By returning to the original definition of the x's in
Eqs. (II.6a), (II.6b) one observes that this inclusion of
straight-through interactions is completely equivalent
to a change in the p mass:

ii ~ !i +g ii/oi (II.21)

The effect, on the amplitude of including the straight-
through interactions is nontrivial. The replacement of
xo„,by $o„, gives partial sums 5o '~ and 5o„,' ' which are
again expressible as products of Bessel functions, but
they are significantly more complicated than before.
(The new continued fractions and their relation to
Bessel functions are examined in Appendix A.) The
~va~ e-function-normalization factors are no longer
simply Jo(n) Jo(n )

The end result is that the fully normalized ampli-
tude has the form

(2m.)'b(p+k —p' —k') p—2zg—
(16coco'EI~ ) '" V'

&& L9o(«')+dr(«') j (II 22)

where (with oo ——1, o & i ——2):

Ao(x, y) =(~'(x)-~'b)) '"

iU(x) is defined by the relation go(x, x) = 1.
AVith the inclusion of the straight-through interac-

tions and the subsequent normalization, we have com-
pleted the summation of the semiclassical "Compton
scattering" diagrams in our model. Vje now turn to
electrodynamics.

III. ELECTRODYNAMICS AND COMPTON
SCATTERING

We w'ill apply to problems in electrodynaniics the
techniques described in the preceding section. The first
such problem to be considered is that of Compton
scattering in a high-intensity monochromatic laser beam
of wave vector k„= (co,k) .We will compute the scattering
amplitude, as before, in the limit of large numbers of
photons 'V, and volume V, such that the density p
given by the ratio iV( V remains fixed and finite. That is,
we are interested in the 5-matrix element

lim (p'; k')(!U 1)k ~5~ p—; Xk), (III.1)

where p„= (I':,p) and p, '=(I",p') are the initial and
final electron four-momenta, and k«'=(&o', k') is the
wave vector of the scattered photon. These four-
momenta satisfy k'= k"=0, and p'= p"=M', where M
is the free-electron mass. In electrodynamics the inter-
action Hamiltonian IIr(x) is somewhat more compli-
cated than that used in the model calculation in the
preceding section. It is given by the familiar expression

IIr (x) = + ieiU(&*8«&

(8«y*)y—)A « e'lV (y*y—A«A «) (III.2).

We have, for simplicity, represented the electron by a
scalar operator p(x); A „(x) is the customary field opera-
tor for the electromagnetic potential.

The calculation of the exact scattering amplitude will

be attacked in the same spirit as in the model calcula-
tion, by summing to all orders the Feynman graphs
appearing in the perturbation series (II.2). The lowest
order graphs are now three in number and are shown in
Fig. 11. As in the model calculation of the preceding
section, all higher order graphs will also consist of a
single continuous electron line joined at a number of
vertices by free photon lines. All of these photon lines
except one are described by the beam wave vector k„;
the odd photon has wave vector k„'. As before, we call
the vertex where the odd photon joins the electron line

xf E

in~) o

J-'+- (':)J-"+--i(y)

J. ,:(x)J „(y)
I + ( x)Jo+ +i( p)~

J.(—x)J,(—y)
(II.24)

(o) (b) (c)
j."iG. 12. Possible scattering vertices in scalar electrodynamics.
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the scattering vertex; all others are nonscattering ver-
tices. From the nature of the initialand 6nal states of the
5-matrix element of interest, Eq. (III.1), and from the
structure of the interaction Hamiltonian given in Eq.
(III.2), it is apparent that the nonscattering vertices
consist of 6ve kinds only. The terms in HI which are
linear in A„(x) give rise to vertices at which a single
photon is either absorbed from or emitted into the beam;
and the term in HI which is qua, dratic in A„(x) leads to
vertices at which two photon lines simultaneously meet
the electron line. It is also easy to see that there are
only three possible kinds of scattering vertex: two pho-
tons are simultaneously emitted with wave vectors k„
and 0„';or, one photon with wave vector k„ is absorbed
from the beam and another with wave vector k„' is
simultaneously emitted; or finally, a single photon is
emitted with wave vector k„'. These varieties of scat-
tering and nonscattering vertices are illustrated in Figs.
12 and 13.

As in the model calculation, we are able to make head-
way by dividing the possible combinations and mixtures
of scattering and nonscattering vertices into several
groups and then summing the groups of graphs separ-
ately. Ke chose to divide the graphs as follows. First, we
temporarily exclude from consideration all graphs con-
taining one or more electron propagators with vanishing
denominators; we also temporarily exclude all nonscat-
tering vertices arising from the quadratic term in H&

)that is, those vertices shown in Figs. 13(b) and 13(c)j.
Then we consider the remaining graphs in this order:
All graphs whose scattering vertex is similar to that
shown in Fig. 12(a); then graphs with scattering vertex
like that in Fig. 12(b); and finally graphs with scatter-
ing vertex like that in Fig. 12(c). These will be called
graphs of types (a), (b), and (c), respectively.

Now, for the first set of graphs we proceed as follows.
Except for the scattering vertex, each vertex can be
paired with a propagator in the manner described in
the model calculation. This gives rise to propagator-
vertex factors for each segment of the graph, just as in
the model calculation. Because the vertices are slightly
different, the value of the typical factor will be different
from the value in the model situation, but not in any
unexpected way.

The value of the propagator-vertex factor x associ-
ated with the graph segments illustrated in Fig. 14 is
determined from the usual Feynman rules for scalar
electrodynamics in the manner described in the model

Fzo. 14. Typical one-photon nonscattering vertices.

calculation. It is easily determined, in the limits
1V,V~", Ã/V=p, to be

''2p)ii2 ', p
@WE

2~) nk p n
(III.3a,)

Due to the existence of two-photon as well as one-
photon vertices in scalar electrodynamics, we must also
compute the propagator-vertex factor Y„associated
with graph segments of the types illustrated in Fig. 15.
For our purposes only the value of 15(c) will be needed.
In the limits X~, V —&~ it is

e'p 1 b

ym
2co mk'p sz

(III.4a)

VVe also label the Y factors with a prime if the segment
falls after the scattering vertex:

e'p 1 b'

2M tflk p Bl
(III.4b)

Now we are in a familiar position; we can write down
the value of any graph simply by writing the appropri-
ate product of propagator-vertex factors and multi-
plying it by the constant over-all factor coming from
the scattering vertex. In this case that over-all factor is
easily found to be +ieR&e e', where

2(2~)'8„+, „'g (e'p "-'
R,=

(16cu(u'F I-' )'" k U'
(111.5)

where a=e„(k), the polarization four-vector of a beam
photon. As in the model calculation, if the graph seg-
ment falls after the scattering vertex we label the
propagator-vertex factor with a prime:

i/') I /

(I11.3b)

JL ~ I ~ ~

(a) (b)
FIG. 13. Possible nonscattering vertices.

and e' means e„(k'), the polarization vector for the scat-
tered photon.

From this point everything goes exactly as in the
model calculation. The type (a) summations give rise to
products of infinite continued fractions; these in turn
are related to Bessel functions; and ultimately all the
summations can be performed explicitly. The result, to
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After performing the sums, we obtain for this third set
of graphs the result

p+mk p+mk

I ~
Jr(2a —2a')—

ieRg p'e+
-Jo(2a) Jo(2a')

k &' . III.i0

FxG. 15. Typical two-photon nonscattering vertices.

this stage of the calculation, is

Jo(2a —2u')
+1eRt-

Jo(2a)Jo(2a')
{III.6)

Js(2a—2a')
+t'.eRr

Jo(2a)Jo(2a')
(111.7)

Next we sum the set of type (b) graphs, those graphs
in which the scattering vertex is like that in Fig. 12(b).
The sixnilarity to the model calculation is apparent here,
too, and the result is

Now we may return to the excluded graphs. In just
the same way as in the model problem we may explicitly
include, in pairs, those graphs with zero denominators.
By introducing adiabatic switching explicitly, the di-
vergent terms are seen to cancel. The finite remainders
again contribute with the net effect of multiplying the
amplitude already obtained by the factor Jo(2a)Jo(2a').
Alternatively, as explained in Appendix 8, we may re-
gard the absence of these graphs -from the sum as de-
stroying the unitarity of the 5 matrix and leading to
the necessity for wave function normalization. The
normalization is easily carried out and leads to the
same result. Thus, after adding the separate sums
in Eqs. (III.6), (111.7), (III.10) and multiplying by
Jo(2a)Jo(2a'), we have the gauge-invariant expression

X LJo(2a—2a')+ Js(2a—2a') )XGr, (II.I11)

(III.12)

Having summed all the diagrams with only one-
photon nonscattering vertices Lthe type shown in Fig.
13(a)], we now go one step further and include two-
photon nonscattering vertices. It is vastly simpler at
this point to restrict the analysis to a circularly polar-
ized laser beam. This choice will destroy the explicit
gauge invariance we have maintained so far, but it also
will allow us to ignore double-emission and double-
absorption nonscattering vertices )shown in Fig. 13(c)j.
This simplification is easily verified by expanding
A„(x)Ao(x) in circular polarization operators, and using
the fact that

2(2sr)'b~s, , +o. 1
RR=

(g~~gg~)1/s p's/s
(III.S)

Also, by applying the rules for evaluating graphs and
summing them we And the same continued fractions as
before, but in slightly different combinations. It is
straightforward to determine that the sum of this set
of graphs is given by

—J„+t(2a)J.(2a')
(III.9)

Jo(2a)Jo(2u')
e~(k) e"(k) = cz(k) e~{k)=0,t'eRs Q Lp+(ss+1)kj e'

where e"(k) is the polarization four-vector appropriate
to a photon of wave vector k„and circular polarization
X. The only remaining two-photon nonscattering ver-
tices for consideration are the straight-through variety

Here the required Bessel function sumiriations are easily
carried out using known identities" and an additional
identity which may be derived easily:

However, the third set, those graphs with the scat-
tering vertex like that in Fig. 12(c), is new and has no
analog in the model. In the first Place, the contribution where g~ is the gauge-invariant quantity given by
of the scattering vertex itself is no longer a constant,
but depends on its position in the particular graph under p'e p e p'op
consideration. In a general graph, illustrated in I'ig.
16, in which the scattering vertex occurs between the
segments x„+~and x„', the contribution of the scattering
vertex itself is ieRs(p—+(ss+1)k) e', where

= Q (sss+1)J +t(s)J„(s').

"G. ¹ Watson, Theory of Bessei Fnncteons (Cambridge
University Press, New York, 1958), p. 145.

p'+ nk

p+(~+i) k

FIG. 16.Typical one-photon
scattering vertex.
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where X is the normalization factor; also

Xp

Vn and

I'=e"'~-~2 (2I~'l)P-~ (2I~'I')

tang'= Im(u')/Re(e') .

J L
0 F J E

1F

The normalization factor X is obtained in the same
way as before (see Appendix 3) and is found to be

Fxc. 17. Graph alteration due to the insertion
of "straight-through" interactions.

~-~+-(2I ~'I)--'
K '=-,' Q e +{ b' —+—b'). (III.15)z, (2Ie'I)

I shown in Fig. 13(b)], and. in the model calculation we
have already indicated how they may be included with
very little work.

The procedure for including the straight-through ver-
tices is as follows. Into any graph segment, say one
labeled x for definiteness, a straight-through interaction
may be inserted as shown in Fig. 17. This makes two
graph segments out of the original one, and changes
the contribution to the graph value from x to x y .
But there is no restriction on the number of times this
process may be repeated. Adding a second straight-
through vertex gives x (y )', and a third gives x„(y )'
for the value of the resulting segments. Just as in the
model calculation, the net eGect of adding an arbitrary
number of straight-through vertices in every graph seg-
ment is to replace x by $, where now $ =x /(1 —y ).
We can write $ explicitly in terms of the constants a
and b, and we obtain

2(e'p/2a)'"p e u
(III.13a)

(p+mk)' —M' —e'p/ Mm

in the case of an absorption vertex, and

2 (e2p/2~) 1i2p . &4

(III.13b)
(p+mk)' M' —p/ear —m b—

for emission. The complex conjugates enter, of course,
because of the decision to work with circular polariza-
tion states.

The replacement of x's by $'s alters the form of the
basic continued fractions almost exactly as it did in the
calculations of Sec. II; and again the resulting covariant
sums, the analogs of those in Eqs. (II.23) and (II.24),
cannot be carried out. However, in this case we may
simplify things considerably by completing the cal-
culations in the laboratory reference system. This is
because p e= p e*=0 if the electron is at rest. The re-
sulting amplitude may be written

2(2~)'~~. ' ~r p ~'"--2ie-
(16mo'EE')'" k V')

&&XI e e'*+I'e* e'*), (III.14)

lim (p'; k', (iV—m)k
I SI p; Ek). (IV.1)

N, V -+ ee

N/V =p

When +=1 the matrix element of course describes
Compton scattering; when e& 1 it describes harmonic
production at the harmonics of the beam frequency.
The explicit calculation of the matrix element for any
m~&1presents no difhculties which have not already been
discussed. We will discuss brieQy the case e&~1, ex-
cluding for brevity the double-photon nonscattering
vertices.

The graphs to be considered are graphs with m —1
more photons absorbed than emitted. Some low-order
erst harmonic graphs are illustrated in Fig. 18. Non-
scattering vertices and electron propagators are again
associated in the manner described earlier, so that each
graph may easily be evaluated in terms of x factors.
The graphs are again divided into groups according to
the kind of scattering vertex and are summed first
without including "straight-through" interactions or
Xo S.

The general scattering vertex types which occur are
labeled (a), (b), and (c), and are illustrated in Figs.

'% F

J 1lF
J L
VF

FIG. 18. Low-order graphs involved in Grst harmonic
production. In all of the graphs p+2k= p'+k'.

IV. HARMONIC PRODUCTION

As we mentioned before, the number of photons pres-
ent is so large that depletion of the beam due to a net
absorption of 1, 2, or e photons from it cannot be ex-
pected to change the beam's characteristics in any im-
portant way. Thus one should expect, in the scattering
of electrons in a laser beam, to 6nd all of the (incoherent)
processes which are represented by the matrix element:
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p+( &+I-n) k p'+( II.
—]-n) g p'+(& —n) k covariant quantity G„b~ A, „+~,wher'e G„ is

p'e p 'e p'e p 'e
G =e e'+

nk p' nk p
(IV4)

p+kk

(~)

' p+JIk

(b) (C)

FxG. 19.The three types of scattering vertex for
the (44 —1)st harmonic. In each graph P+Nk= p'+k'.

19(a), (b), (c), respectively. In each case, immediately
prior to the scattering vertex, the electron has momen-
tum p„+1k„,having at that point absorbed a net num-
ber l of photons, where l can of course be any positive
or negative integer. The momentum conservation rela-
tion for the (n 1)st harmon—ic, p„+nk„=p„'+k„', then
determines the rnomenturn of the electron immediately
following the scattering vertex. Following the earlier
discussions in Secs. II and III one may directly write
down the sums of all the graphs associated with each of
the three scattering vertices for given values of e and l.
One finds, after translating the continued fractions into
Bessel functions,

Jg(2a) J4+4 (2g )/Jp(24t) Jp(2a ), (IV.2a)

J/(2u) J4 ] ~(2$')/Jo(2a) Jo(28'), (IV.2b)

Jt(2~)J (2a')/Jo(2a) Jo(2&'), (IV.2c)

2ie(2m) 4—8„+.(, „+!, e'p ,
'"

(164oco'EE') '!p Vp

XLJ„,(2a —2a')+ J +t(2a —2a') jXG„. (IV.3)

for the sums of graphs associated with the scattering
vertices of types (a) through (c), respectively.

It merely remains now to multiply each of Eq.
(IV.2a)—(IV.2c) by the value of the appropriate scat-
tering vertex and sum over all values of /. The vertex
values for the general eth harmonic do not depend on e,
and so are the same as given in the discussion of Comp-
ton scattering. The sums are easily performed using the
Bessel function formulas already given. The normaliza-
tion factor is also the same as in Compton scattering.
So finally, after some simple rearrangement, the result
of including everything in the sums except. the straight-
through interactions is found to be

The consideration of the remaining (two-photon)
vertices ha, s the same complicating effect on the ampli-
tude (IV.3) as on the Compton scattering amplitude
(III.11).Since it would add nothing new to the discus-
sion, we will not explicitly write out the resulting com-
plete amplitude for harmonic production.

We may point out here a consequence of the fact that
we have ignored the spin of the electron. Notice that be-
cause J (0) =8~p, Eq. (IV.3) says that harmonic pro-
duction in the forward direction (where a= a ) vanishes.
This is easily understood, since the total spin of e in-

coming photons with frequency M cannot be carried
away by the single forward-scattered photon with fre-
quency e~ if e) '1. If the electron were given spin, how-

ever, forward scattering in the first harmonic only
would also be possible, since the electron by reversing
its spin could carry off one extra unit of a,ngular
mo'ITlelltuITl.

or
p„+!Vk„=p„'+(!V—1)k„+k„'

p„+k„=p„'+k„',

(V.1)

where p, p' are the initial and Anal momenta of the tar-
get electron and k' is the momentum of the scattered
photon. The above equality is of course independent of
iV. Hence, we obtain no intensity-dependent frequency
shift. Furthermore, this analysis remains valid even if
we describe the incident and final states of the radia-
tion field in terms of "coherent" states. "In that case
the incident and final states are

V. DISCUSSION AND CONCLUSIONS

It remains for us to compare our results with those
found in Refs. 7 and 8,. and to comment on the origin of
the differences obtained. In particular, we must indicate
why we 6nd no intensity-dependent frequency shift in
the scattered photon, and also why our amplitude
differs.

The answer to the first question is implicit in our
treatment of the problem. We compute the transition
amplitude for a scattering event in which one and only
one photon is removed from the incident beam. Hence,
if there were initially cV photons in state k, then in the
final state "V—1 photons. will occupy state k. Since the
5 matrix commutes with the momentum (energy) opera-
tor we immediately have

This is seen to be almost identical with the comparable
expression, Eq. (III.11), obtained for Compton scat-
tering. The sole differences are the change in the Bessel
function indices and the simple generalization from the
gauge-covariant product 615„+.y, „+~ to the gauge-

(U.2)



HIGH —INTENSITY, LOW —FREQUENCY ELECTROMAGNETIC WAVE 8883

respectively. The 5-matrix element is given by

+ Q nNp*zz i((»—1)k)k',p'IS —1Ip,»k). (V.3)

In obtaining the right-hand side of Eq. (V.4) we make
no use of perturbation theory. Our only assumption is
that asymptotically, i.e., at t= &~, the electron and
photons do not interact. We also note that the argu-
ment of the function does not depend on A'. The only
dependence on iV is in the T-matrix element. It is only
at this stage, in the computation of the T-matrix ele-
ment, that we pass to the "classical" limit in the sense
that any depletion or enhancement eftects due to the
Hose-Einstein statistics are ignored: Any factor of the
form g(!V&m) is replaced by g»z in the limit as
E —+~.

In contrast to this, the treatment given in the litera-
ture' ' is, as far as the radiation field is concerned, ub ohio

classical. Hence after switching on the external field the
electron can absorb and emit radiation in a completely
continuous fashion. Similarly, the energy of the external
field can be shared in a continuous way between the
electron the incident radiation mode and the scattered
radiation mode. Thus there is no counterpart to Eqs.
(V.1) and (V.4), and an intensity-dependent frequency
shift cannot be ruled out on purely classical arguments.
Indeed, as shown by Brown a,nd Kibble' and Goldman, '
such frequency shifts appear.

Interestingly enough, we can, after suitable manipu-
lation, also obtain such results. Briefly, we split the in-
teraction Hamiltonian density, Eq. (III.2), into two
parts

where
Hz(x) = Hz ' (x)+Hz (x) (V.S)

Hzi') (x) = ie!V{y*a„y)A ~

—c2»{y+y(g (+)/Pi+)+. zf (—)/Pi —)) (V 6)

Hz&')(x) = —e'»{Q*P(A„'+)A~& )+A„& )A)'&+))) . (V.7)

By replacing Hz&')(x) by its c-number value and in-
corporating it with Ho(x) of the electron field, one ob-
tains a new momentum energy relationship for the
electron:

(V.S)

I'ollowing Brown and Kibble we set

p=p+6m'(2p k) 'k; p'=p'+Ate'(2p' k) 'k. (V.9)

Since the states lp»zk) are eigenstates of the total
momentum operator P„, and [S,P„]= 0, Eq. (V.2)
may be rewritten as

(~z IS l C'&= (4 zl 4'¹~(2~)'~(p+k—p' —k')

&& Q nzzP*zz i((»—1)k,k', P'I T
I P,»zk). (V.4)

N=1

And now upon evaluating

»in», V~ &I-', (» -1)k,k'I~lp, »k),
where the perturbation series for 8 contains only H")
and not H'@, we obtain agreement (in the case of scalar
electrons) with Brown and Kibbled and Goldman. s Of
course the frequency shift follows now simply from the
standard Compton relations with p and p' replacing
p and p

p„+k„=p„'+k„'. (V.10)

To recapitulate, agreement with Refs. 7 and 8 can be
obtained both as regards the frequency shift and the
scattering amplitude within the context of perturbation
theory, but only at the expense of choosing asymptotic
states for the electron which do not represent free
particles.

»ote added iN proof. It should be pointed out that
if one were to subject our results to empirical verifica, —

tion, the experimental setup would have to be such as
to satisfy the assumption that the passage time of the
laser pulse past the target electron is of relatively short
duration. That is to say, by the time the scattered
photon is detected, the target electron 'sees' no more
photons. Only then can we insist that the outgoing state
for the target describes a free-particle state. (Notice
that such considerations are not necessary for standard
two-particle scattering problems. ) If, however, the
passage time of the laser beam past the target electron
is of such a large duration that we can start detecting
scattered photons while the target electron is still inter-
acting with the rest of the photons in the 'coherent'
beam, then we are faced with a problem which differs
fundamentally from standard scattering problems. ['See
in this connection M. L. Goldberger and K. M. Watson,
Phys. Rev. 134, B919 (1964) and references therein. $

It is somewhat surprising that a classical treatment
of the radiation field with correct asymptotic values for
the electron propagation should yield identical results
with a quantum treatment of the radiation 6eld and
asymptotically altered electron states. This does point
out, however, that our di8ering scattering amplitude
is a direct result of the lack of frequency shift. Within
the framework of the Feynman-Dyson perturbation
procedure, the two diBering scattering amplitudes cor-
respond to solving the differential equation for the U
matrix with different boundary conditions.

Finally, we wish to allay any misgivings about
the use of perturbation theory by noting that the
use of Dyson's U matrix in which Hz(t) is replaced by
e ~'~Hz(t) is eminently suitable for this type of problem.
Since self-fields are ignored and only external fields of
limited space-time extent are considered„ the factor
e I'I automatically accomplishes the asymptotic separ-
ation of the electron from the laser beam.
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x2
M2„——

j. x2X4
(A4)

graphs with only x2, x4, ,x2„segments in them is

APPENDIX A: CONTINUED FRACTIONS

In the text in Eq. (II.15) the scattering ampli-
tude is written as a sum of products of continued
fractions. The calculation of the first term in the sum
S&& ' is typical of the other S2 and will be described in
this appendix. Additionally we will mention some of the
pertinent analytic properties of the continued fractions,
and conclude from them that the formal manipulations
involving continued fractions implied in the text may
be performed rigorously.

Recall that S~' ' was defined to be the sum over all
m's and l's from 0 to ~ of the general graph value given
in Eq. (II.9). That is,

222g+ 2222 —1
52= P x2(x4x2)"' (x,x4) "2

I fnl m2

(
m2+ 'lS3 1

x8x6 3 . xg x4 x2
m3

ly+l2 —1 l2+l2 —1
X x6 x4 (x2'x4') t4 . (A1)

l2 l.3

Clearly, the m and l sums are independent and may be
done separately. Denote them by M and I-, respec-
tively, so that S2' &=M&I. and consider M first. Ob-
viously a subset among the set of graphs which sum to
S2 comprises those graphs which have only x2 and x4
segments in them. The contribution of these graphs to
M is easily computed by setting m2= ms= m4= =0
and performing the sum over m&. Call the contribution
of the subset M4, then one finds, assuming o. is small
enough so that the x's are small and the series converges,

x4x6

x2n —2&2n

x2/(1 —F2) =J,(n)/Jo(n), (A5)

The quantity of interest is, of course, M = lim„M&„.
One can establish that the infinite continued fraction"
obtained in the limit exists as a well-behaved function
of o, . In fact, with the aid of theorems due to Van
Vleck, " it can be shown not just that the continued
fraction converges for sufficiently small o., but that it
converges to a meromorphic function of n which is regu-
lar at a=0. Even more, the convergence is uniform
throughout the entire f42uIe n p/a42e away from the iso-
lated poles of the function. Thus the sum M may be
written as a convergent continued fraction which
analytically continues the power series from its region
of convergence near the origin into the entire finite o,

plane. Since o, is directly proportional to the density p,
it is by means of this analytic continuation that one is
able to evaluate the Feynman perturbation series out-
side of its region of convergence.

It is evident that there is no essential difference be-
tween the summation and limit leading to M and the
one leading to I.. Thus, the results of the preceding
paragraphs may be taken over bodily to evaluate I, in
terms of a continued fraction. The result for I. is the
same as for M except that n is replaced by n'.

The continued fractions obtained here are well known
in classical analysis. It can be shown" that

3f4 x2/(1 x2x4) . —— — (A2) and more generally that

A larger subset which contains the M4 subset is the set
of all graphs which have only x2, x4, and x6 segments in
them. The contribution of this subset to M, denoted M6,
is also easily computed. Set m3 ——m4=m~= =0, and
sum first over m2, then mj. One finds, again assuming
small enough o., +2m x2mx2m+2/(1 I 2m+2) ~ (A6)

x2./(1- ~2.) =~.(-)/~-2(-),
where J (a) is the usual cylindrical Bessel function of
the first kind, and where Ii2 is defined by the recursion
relation

x2
M6 ——

x2x4

and the boundary condition F2 ——0(422) as n ~ 0.
(A3) Matters become more complicated when the straight-

through interactions of the text force the replacement of

x4x6

By continuing this procedure to larger and larger sub-
sets of the whole, one is rapidly convinced that the
pattern is generally true. A proof by induction is then
simple to construct in order to establish rigorously that,
for any integer 2n, the contributioli to III made by those

"That the result of the summation should be expressible as a
continued fraction is not surprising in light of the close similarity
of our procedure and that of the Feenberg perturbation theory
I'cf. P. M. Morse and H. Feshbach, 3IIethods of Theoretical I'hysics
(McGraw-Hill Book Company, inc. , New York, 1953), Vol. II,
pp. 1010-1018.

Cf H 8 %'all2 Continued Fractions {'0. Van Nostrand and
Company, Inc., New York.

&
1948),
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X2m by /2m. NOW the fraCtiOnS, Written %2m are de6ned
by the recursion formula

+2m $2m52m+2/(I F2m+2) q (A7)

APPENDIX 8: WAVE-FUNCTION
RENORMALIZATION

To complete our computational program, we have to
account for all the graphs excluded up to the present
point. We are of course interested in evaluating the
matrix-element (p', (N —1)k,k'~5~p, Nk) as a power-
series expansion in the limit as E~~. Some of the
expansion coefBcients refer to transitions which pro-
ceed via the initial state. This is characteristic of per-
turbation theory in general. In the case of a discrete
spectrum, these transitions give rise to vanishing de-
nominators, which cannot be computed in a direct
manner. In nonrelativistic (noncovariant) stationary
state perturbation theory the algorithm for calculating
these coefficients is well known. "Ke shall, nevertheless,
recapitulate it here in order to bring out the similarity
of our procedure to that employed in noncovariant
stationary state perturbation theory. Briedy, one is
given a Hamiltonian H=He+Hr, and the spectrum
and the state vectors of He, viz. , H&~ n)= e~n) The.
state vector

~
4;) which is an eigenstate of He+Hr can

with the same boundary condition. These 5's are less
straight forward to analyze because $2 is not pro-
portional to 1/2m as x2 was. However, Wall" shows
that they are still related to Bessel functions. We may
write

bm &m—a(C2)

1—F2 J„r (n)

and this is the form we have employed to express the
complete amplitudes in Eqs. (II.22), (II.23) and
(III.14), (III.15).

Our procedure, aside from some necessary modi6ca-
tions, is similar. To make our discussion as transparent
as possible, it will help to recall that in the scattering
matrix element of interest the nonforward scattering
line occurs at one vertex only. This observation allows
us a convenient way to separate the interacting part of
the Hamiltonian as follows: We write B~ of the model
problem [Eq. (II.3)] in the interaction picture as

Hr H+)h~——), „
where

According to Dyson, the 5-matrix element can be
written as

(p', (N —1)k,k'
i
5

t p, 1Vk) = (p', (N—1)k,k'
i

XPexp i [8(t—)+Ah(t) jdt
~ P,1Vk) (32)

Since our computations are to erst order in X (and to all
orders in H), it is convenient to rewrite Eq. (32) as

now be computed to be:
~
C;)=P„u i'I

~
n). The compu-

tation of the a &') is done in two steps. First, one com-
putes a &", where denotes the instruction that all
terms with one or more vanishing denominators are to
be omitted from the calculation. Next, by making use of
the normalization requirement (4;~4;)=1, one obtains

8
(p', (N—1)k,k'

(
5—1

~ p Nk) =g—(p', (1V—1)k,k'
(
P exp i [H(t)+Ah(t)ddt (

—p Nk)
BA. X=o.

(32')

Fu.l therI1101 e

8
g—(p, (iV—1)k,k'~ P exp —i [H(t)+Ah(t)ddt

~ p,Nk)
BX 0

—i =g(p', (N —1)k,k'
~
P exp i 8(t—)dt

0 oo

h(t')dt'P exp i—8(t)dt i p,Nk)

i=g(p', (—'V 1I)k,.kr'~ U——'(0, +~) (33)

"L. I. SclntI, Quootom Mechanics (McGraw-Hill Book Company, Inc. , New York, 1955), p. 152—154.
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wheae

U(0, —~)=P exp —i H(t')dt'

U—'(0, +~)=P exp i— H(l')dt'
a 0

This equality can be most easily ascertained by expanding both sides of Eq. (83).
In passing we wish to point out that at this stage wave-function renormalization can be carried out by simply

writing
U'(0, —~)

i p, ~uk)
U(O, —~) ip, Wk)=

((p,ski U't(0, —~) U'(0, —~)
i p,Ãk))'"

U(0, +~)
i p,Nk) = U(0, —~)

i p, 'Vk) . (BS)

where the prime is a shorthand notation for the per-
turbation development of the U matrix in which
vanishing energy denominators have been excluded.
However, such a task is arduous and is fundamentally
noncovariant.

Ke now come to the crucial part of our wave-function
renormalization method. Since 8 is that part of the in-
teracting Hamiltonian which contains no radiative cor-
rections or pair effects, we obtain an important identity,
viz.

This identity can be established by expanding both sides
in a power series. Performing the integrations we note
that the lower limit on the integrals play no essential
role. The only place where the damping factor from the
infinite limits of integration enters the scene is when a
transition occurs back to the initial state. Since the in-
termediate states entering into the expansion are, for
fixed p„, discrete in character (i.e. , i

m) =
i p,mk);

Ho
i
m) = (po+mko) i m)), the sign of the damping factor

is immaterial.
With the aid of Eq. (BS) one obtains

g(8/BX)(p', (Ã—I)k,k'
i
P exp i LH(t)+Xk(t)—]dt i p, &'k)

ig(p', (—V 1)k k'—
i
U '(0+~) k(t')dt'U(0, +~)

i p, &Vk). (86)

In the limit of forward scattering p' —+ p, k'~ k and
the S-matrix element is now equal to

(p, Vk iS—l.
i p i~rk) =F(pk)(pp k

i

)& U—'(0, +~ ) U(0, + ~ ) i p)Xk) =F(p,k) . (87)

The meaning of Eq. (87) is simply that the covariant
forward scattering S-matrix element is equal to the
normalization of the incident state times some factor.
So the task of normalization of the incoming (or out-
going) state consists of factoring a part of the 5-matrix
expansion in which the scattering occurs. Although
this can be done, the procedure as it stands is still
cumbersome.

At this stage, however, one ca,n easily resort to
a trick which will facilitate the task. Introduce a new
Hamiltonian

H'= H+ HU'+rtHr',

where II is the sanie as the model Hamiltonian of Sec.
II, II&' is the kinetic energy part of the Hamiltonia, n
appropriate to a new scalar field ((x). This new field

interacts only with P(x) through the interaction
Hamiltonian

V*(.)~( )e(*)d"-

The S-matrix element for the scattering of a single $
quantum oG the target particle (p quantum) in the pres-
ence of S particles of the x field is given by

(p', tVk, (j i
5

i p,Ãk, q) = (p', Ykt, q'
i
P

)(exp i (Hr+—rtHr )dt
i p, &Vk,q), (8&)

ip, Ãk, q)=j„& 'ip„Xk),

i
p', Nk, q') = P; &='

i
p', iV4),

and ip, Xk), ip', rVk) are eigenstates of H, (model) as
before. If we again neglect radiative corrections and
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pair effects, then Eq. (89) is simply

(p', Nk, q'~ S 1—
~ p,Nk, q) =i(p', Nk

~ p, , ~-&

X U(0, )~ H, 'dt U(0, )],&+&
i p,Nk), (811)

which in the limit of forward scattering is

&p,Nkv
I

s'—1Ip,Nka) =»~(2~)'
X (16qo'EI'V') '"(p,ivk

i

X U't(0, +~)U'(0, +~ ) ~ p,Nk); (812)

where the primes have been added to indicate that the
equality holds also when vanishing denominators are
omitted from the calculation.

The simplicity of factorization in the latter method
stems from: (i) lt is easy to identify the scattering ver-
tex by virtue of the fact that it consists of a line depict-
ing a different particle, and (ii) that there is only one

type of vertex, namely, the scattering can occur only at
a point in which one $ particle is annihilated and another
created. To recapitulate our method, the procedure is as
follows:

(a) Compute the S-matrix element in a completely
covariant fashion omitting all propagators which are on

Fxo. 20. x-particle-factored forward scattering
graphs through order e2p.

the mass shell. Denote this part of the result symboli-
cally by

(p', (N —1)k,k'~ S'—1~ p, ~Vk).

(b) Evaluate

(p', (~V—1)k~Ut(O, + )U(O, + )~p', (N —1)k)

(p, (iV—1)k~ U t(0, y~) U'(0, + ~)
~ p, (~V 1)k)—

by the method of (812).In doing so omit again propaga-
tors mth vunisA'kg denominators.

(c) Combining (a) and (b)

&p', (N —1)k',
i

S'—1
i p,Nk)

(p', (N—1)k,k'i S—1ip, Nk) =
((p', (N —1)k

~
U'(0, +~)U'(0, +~)

~

p', (~V—1)k))'"

X (813)
((p, (JV—1)k

i
U't(0, + ~ ) U'(0, + ~ ) i p, (N —1)k)) '"

In terms of Feynman graphs the procedure can be
stated simply. One first computes the 5-matrix element
of interest, omitting contribution from graphs contain-
ing on-mass-shell propagators (i.e., in the language of
the text, omitting graphs containing xo factors). Then
the normalizations of the initial and final states are
computed by the method of Eq. (812). For example,
consider the renormalization factor through order pe'.
One draws the graphs through this order (shown in

Fig. 20) with the straight dotted line to indicate that the
X-particle vertex has been factored out. By collecting
the factors from the propagators and the remaining
vertices one obtains

op p'E
1+2— +0(e'p'),

2(u pk
which agrees with the expansion of (Jo(2a)) '.


