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The partial-wave equation

dw/dft ~(1/2ih] Q (2l+1)(1—at)Pt(cos8) ~'

L=o

has been used to fit most of the recent 71-+p differential cross-section measurements above 1 GeV/c. The
a& were determined by the method of weighted least squares, with the further requirement that they be real
and they satisfy either constraints of the form 1)1—at)0 (which allows the scattering to be interpreted
as purely absorptive) or the more relaxed constraints 2&1—a&&0. This equation with the requirements
does not allow the scattering amplitude to have a spin-Rip part or a real part, but for one set of data further
terms were added to allow these additional parts of the scattering amplitude. For each differential cross
section at the various energies, a set of a~ values was determined which in almost all cases 6t the measured
cross sections quite well. These sets of a& parameters have two properties in common. First, all a& except cp
satisfy 1)1—at) 0. The ae parameters (s-wave amplitudes) required 1—ae) 1 except for the higher energies
where 1 & 1—u0&0 was obtained. Second, graphs of 1—c~ versus l (one graph for each different cross-section
measurement) show that 1—at decreases rather smoothly with increasing l and that the curve is either
roughly linear or concave upward. No striking variations in the u& parameters are observed when the energy
is close to one of the m+ p total cross section resonances. The a~ parameters are interpreted using 1—ug as a
measure of the absorption of the lth partial wave by inelastic processes. Differential cross section measure-
ments of s. +p at 2.01 GeV/c and of n +p at 2.02 GeV/c, previously published only in graphical form, are
given in the Appendix.

I. INTRODUCTION

''N the last few years a large amount of data on
~ ~ elementary particle elastic scattering above 1 GeV/c
has been produced. ' Most of it has been analyzed from
the standpoint of the simpler form of the Regge theory
of elastic scattering in which the data were to be 6tted
with only a few parameters, some of these parameters
having physical significance. "The hope that such a
simple theory would be satisfactory has not been ful-
filled. More parameters were required than were first
thought necessary, '—' and the theory was found to be
much more complex than first supposed. Therefore, it
is desirable to look at these recent data from some other
theoretical viewpoint. Ideally one would like a theory of
elastic scattering derived from a general form of quan-
tum field theory or S-matrix theory, this theory at the
same time containing only a few parameters to be de-
termined by experiment. 5t would be even more satis-
factory if at some level the theory, or its parameters,
had direct physical significance or gave some physical

*Supported in part by the U. S. Atomic Energy Commission
and in part by the U. S. Once of Naval Research.

' Table I and Refs. 4-7.
2 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev.

126, 2204 (1962).' S. D. Drell, in Proceedings of the 196Z International Conference
on High Energy Physics at CERN, edited by J. Prentki (CERN,
Geneva, 1962), p. 897.

4 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 (1963).

'D. O. Caldwell, B. Elsner, D. Harting et cl., Phys. Letters
8, 288 (1964).' S. Brandt, V. T. Cocconi, D. R. O. Morrison, A. Warblewski,
P. Fluery, G. Kayas, F. Muller, and C. Pelletier, Phys. Rev.
Letters 10, 413 (1963).

7 M. L. Perl, L. W. Jones, and C. C. Ting, Phys. Rev. 132, 1252
(1963).

insight. No such theory exists and, therefore, we have
turned back to some older concepts which while not
directly related to any profound theory at least provide
a way of fitting the data so that the values of parameters
provide physical insight. These concepts are the partial-
wave analysis of scattering theory combined with the
assumption that at high incident momenta, most of the
elastic scattering is absorptive.

We have analyzed the sr+ p elastic scattering above 1

GeV/c using empirical partial-wave amplitudes with
two purposes in mind. First, looking upon this analysis
as a generalization of the optical model, we wished to
discover how well a generalized optical model could fit
not only the diffraction peak part of the elastic scat-
tering, but also the entire differential cross section.

Secondly, the resonances recently discovered above 1

GeV/c in sr+ p total cross sections are sometimes related
to a particular angular momentum state, whose identity
is sought by studying the elastic differential cross
section at the resonance energies. Thus, the large peak in
the back hemisphere in sr++p elastic scattering at 1.5
GeV/c has been related by both Cook et al. ' and
Helland' to the sr+p total cross-section maximum at
1.4 GeV/c; and the second peak in the sr +p differential
cross section at 2.02 GeV/c has been related by Damouth
el al. 's to the 2.1 GeV/c sr +P total cross-section maxi-
mum. However, Simmons" has shown that this second

' V. Cook, B. Cork, W. R. Holly, and M. L. Perl, Phys. Rev.
130, '162 (1963).

J. A. Helland, University of California Radiation Laboratory
Report No. UCRL-10378, 1962 (unpublished).

"D. E. Damouth, L. W. Jones, and M. L. Perl, Phys. Rev.
Letters 11, 287 (1963)."L.M. Simmons, Phys. Rev. Letters 12, 229 (1964).
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peak in m +p differential cross section at 2.07 GeV/c
can be explained by a simple optical model. We have
investigated this point further.

In this paper the analysis is almost completely re-
stricted to purely absorptive scattering; that is, we

usually neglect the effects of nonabsorptive elastic
scattering and spin-Rip elastic scattering. Originally we
intended to include these effects, but as will be described
later the 6tting problem becomes very complex when
these effects are included, and we have found no solution
to the problem.

But a second amplitude appears also, B(8), where

B(8)= [1/2ik] P [a~+ exp(2ie~+) —a~ exp(2ih~ )]
l=1

Xsine[dP i(cose)/d(cose)) (5)

and do (8)/« is now given by

d~(0)/«= IA(e) I'+ IB(e) I'. (6)

This B(0) results from that part of the elastic process in
which the orientation of the spin of the proton is
changed. B(8) is referred to as the spin-flip amplitude in
this paper.

Equation (4) may be rewritten as
II. THEORY AND METHOD OF ANALYSIS

+l(a~ cos28~ —1)]P~(cose)+i+ [(/+1)
l=0

X (a(+ sln25[+)+l(a) slI12b[ ))P$(cose)}

A general discussion of theories of elastic scattering
has been given by Perl, Jones, and Ting, 7 and the reader

referred to that paper and its references for the back A ( ) =[1/2ik] {P [(f+ 1) (a P+ co 28 (+—1)
l=0

ground. We begin here immediately with the partial
wave analysis of ~+p scattering. For spinless particles
when no inelastic processes occur, Schiff" shows that
the differential cross section in the barycentric system
da. (8)/dQ is given by

where

da(0)/do= IA(e) I', =A;(0)+A, (8) . (4a)

A(8) =[1/2ik] P (2l+1)[exp(2ie~) —1]P~(cose). (2)
l=0

Here I is the orbital angular momentum quantum num-
ber of the partial wave, k is the wave number in cm—' in
the barycentric system, 8 is the scattering angle in the
barycentric system, P&(cose) is normalized so that
P~(1)=1, and e~ is the phase shift always taken to be
—m &bL&x. For the remainder of this paper all quanti-
ties will be in the barycentric system and P &(cose) will

always be normalized as above.
If inelastic processes can occur, then Eq. (2) is

modified by the addition of quantities a L where 0&a L
& 1

and

If all 5~+ and e~ are zero then the real term A, (8) is zero
and A(8) is then referred to in this paper as purely
absorptive. This name simply indicates that there is no
phase shift of the partial waves, only absorption of
them. When some 6L+ or 8L are not zero, then some
nonabsorptive scattering is said to be present. When
this phrase nonabsorptive is used, one should recall that
it means not only that the real part A „(8) is nonzero but
also that the imaginary part A;(8) is modified.

Just as A (8) can be separated into real and imaginary
parts, so can B(0). Thus Eq. (6) is rewritten

d (0)/«=
I
A '(0) I'+

I

A (0) I'+
I
B (0) I'+

I

B «) I'

where

00 A;(8) = [1/2ik] P [(1+1)(a~+ cos2h ~+—1)
A (8) = [1/2ik] Q (2l+1)[a~ exp(2ie~) —1]P~(cose) . (3) i=o

L=O

If there are no inelastic processes in the 1th wave, then
aL=1; if the 1th wave is completely absorbed by
inelastic process, then cL——0. Thus, cL is the degree of
elasticity.

Finally, if one of the particles has spin 2 and the other
spin 0, as in the m.+p system, then for each / there are
two possible total angular momentum states j=l~1;
Eq. (3) becomes

A (8) =[1/2ik] P [(/+1)[a~+ exp(2ie~+) —1]
l=0

+l[aq exp(2ieq )—1]]P~(cose). (4)

"L.Schiff, Quantum Mechanics (McGraw-Hill Book Company,
Inc., New York, 1949), p. 103.

+l(aq cos28~ —1))P~(cose),

A„(8)= [1/2k] P [(3+1)(a~+ sin2eq+)
L=O

+l(a~ sin25~ ))P~(cose),
(6a)

B,(8) = [1/2ik) P [a,+ cos28,+—a,—cos28,—]
l=0

Xsin8[dP ~ (cose)/d (cose)],

B,(8) = [1/2k] P [a~+ sin28~+ a~ sin28~ —]
L=O

Xsine[dP ~ (cose)/d (cose)] .

Now the partial-wave analysis is useful only if a
small number of / values contribute to the scattering.
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Our second observation is that these approximate
analytic methods which are very useful for under-
standing the behavior of do (il)/dQ for various assump-
tions as to a & behavior, are not appropriate or necessary
for z.+p elastic scattering in the 1 GeV/c to, say, the 10
or 20 GeV/c range. They are not appropriate because in
many cases the maximum / value at which u~ is still
significantly less than 1, is only 4 or 5, and thus the sum
cannot be replaced by an integral. They are not neces-
sary because it is possible to calculate the exact der (0)/dO
for any set of a~ values.

But more important, with a computer it is possible to
do the reverse problem. Namely, given an experimental
differential cross section, one can find the set of real c~
values which gives the best 6t to the equation for the
differential cross section with purely absorptive scat-
tering

do'(8)/dQ=
~

(1/2ik] P (2l+1)(at—1)Pq(cos0) ~'. (10)
L=o

The purely absorptive scattering demands that 0&a~&1
but with some loss of consistency one may require
—1&at&+1. This is equivalent to allowing 8~&0, so
that (a~—1) —+ (a~ cos28~ —1). The loss of consistency
comes from not including the (at sin26~) terms.

If there were no constraints on the a~ values then the
fitting of the equation

Ldo (e)/dQj'"= L1/2k] P (2l+1) (at—1)P~(cos8), (10a)

which is linear in the parameters a~, can be treated by
the standard weighted least-squares methods. The con-
straints on a ~ make the problem much more difIicult and
we were fortunate in having available a program written
by Moore, " entitled cURvz, w'hich fits parameters by
the standard method of minimizing the weighted sum of
the squared residuals.

Given an initial estimate of the parameters a~, the
program evaluates the function and obtains the residuals
at each of the data points. It is these residuals which are
then fitted by using matrix inversion to solve the
standard system of normal equations, formed by taking
the derivatives with respect to each of the parameters.
This procedure yields the correction increments to be
applied to the original values of the parameters. In the
linear case without constraints, only one iteration is
sufhcient. However, in the nonlinear case, the function
having been first expanded by means of a Taylor series,
repeated iterations are required, always fitting suc-
cessive residuals to obtain smaller and smaller correction
increments to be applied to the previous set of values of
the parameters.

In the case of constraints, the situation becomes
slightly unpredictable, since a constraint equation is
added to the system if, and only if, the parameter to be

"C.Moore (private communication).

TABLE I. List of experimental differential cross sections below and
at 3.15 GeV/c which are analyzed in Sec. IIL

System
Initial laboratory

momentum in GeV/c

1.33
1.33
1.50
1.50
1.55
1.59
2.00
2.01
2.02
2.50
2.92
3.15

Reference

Cod

a L. Bertanza, R. Carrara, A. Drago, P. Franzini, I. Mannelli, G. V.
Silvestrini, and P. H. Stoker, Nuovo Cimento 19, 467 (1961).

& J. Helland, University of California Radiation Laboratory Report
UCRL-9507, 1962 (unpublished).

o M. Chretein, J. Leitner, N. P. Sanios, M. Schwartz, and J.Steinberger
Phys. Rev. 108, 383 (1957).

d K. W. Lai, L. W. Jones, and M. L. Perl, Phys. Rev. Letters 7, 125
(1961).

e V. Cook, B. Cork, W. Holly, and M. L. Perl, Phys. Rev. 130, 762
(1963).

f J. Alitti, J. P. Barton, and A. Berthelot, Nuovo Cimento 29, 515
(1963).

D. E. Damouth, L. W. Jones, and M. L. Perl, Phys. Rev. Letters 11, 287
(1963).

h M, L, Perl, L. W. Jones, and C. C. Ting, Phys. Rev. 132, 1252 (1963).

constrained falls outside the designated range due to the
fact that it was adjusted by too great an amount on the
previous iteration. A test on all the constraint cases is
made at the end of each iteration, and if a constraint is
violated, the appropriate constraint equation is added
to the system, and another iteration is required.

III. EMPIRICAL PURELY ABSORPTIVE m++P
PARTIAL-WAVE AMPLITUDES

BELOW 3 GeV/c

In order to make a meaningful application of the
least-squares method described at the end of the last
section, it is necessary to have data on the differential
cross section at all angles. Above 3 GeV/c existing 7r+ p
differential cross-section measurements concern only the
di6raction peak; there are no large-angle measurements.
Therefore, the least-squares analysis is only applied to
the data at 3 GeV/c and below, which is listed in
Table I.

In the fitting of data by an infinite series, the question
of how many terms to use always arises. Ke have used
the criterion that the series be extended until the ratio
of x'/D approaches a minimum and then levels off or
rises again. Here y' has the standard meaning of the
sum of the squares of the ratios of the residuals to the
errors at each data point. D is the degrees of freedom
which we have taken as the sum of the number of data
points and number of constraints used minus the
number of parameters. Table II gives the values of the
parameters (1—aq) for each set of data for several
maximum values of l around this minimum xz//D point.
The parameters are also given for the kinds of con-
straints, 0&ug&1, which is designated by I, and
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Tmx.z II. 1—a~ values for various m++p and ~ +p systems. The plot column indicates the type of curve, if plotted. The constraint
type is defined in Sec. III. Maximum / refers to the highest degree coeKcient which was fitted. The number of degrees of freedom in
each fit is indicated by D. The second x probability given takes into account the systematic errors in the experimental data, which
would be approximately equal to the statistical errors, thus increasing the probability of the fit.

System

Incident
lab momentum
(GeV/c)

Plot
Constraint type
Max l
D
x'
&(x')
&(x'/23
1 —ao
1 —ag
1 —ao
1 —as
1 —a4
1 —as
1 ao
1-ay
1 —as
1-ao
1 —azo
1 —all

System

1.33

none
II

5
14

289.69
&0.005
&0.005

2.000 &0.001
0.123 %0.017
0.303 ~0.019
0.207 &0.014
0.0237 ~0.0088
0.00008 ~0.0001

1.33

solid curve
II

6
13

193.06
&0.00S
&0.005

2.000 &0.000
0.166 &0.018
0.405 &0.022
0.235 ~0.015
0.502 &0.0092
0.00009 ~0.0001
0.0776 &0.0079

1.33

dashed curve
II

11
15

142.79
&0.005
&0.005

2.0004 &0.001
0.205 ~0.010
0.438 &0.011
0.279 &0.011
0.065 &0.007
0.0001 &0.0001
0.077 &0'.008
0.019 +0.008
0.0001 &0.0001
0.03 &0.005 .

0.005 ~0.005
0.003 ~0.005

1.50

none
I

7
9

517.61
(0.005
&0.005

1.0005 &0.001
0.027 &0.030
0.0001 &0.0001
0.146 &0.022
0.0001 &0,0001
0.0001 &0.0001
0.0001 ~0.0001
0.045 ~0.012

1.50

solid curve
II

4
12
26.01

0.02
0.40

2.000 &0.001
0.253 &0.032
0.205 +0.028
0.260 &0.022
0.056 &0.018

1.55

solid curve
II

6
14
59.39
&0.005

0.008
2.0001 ~0.001
0.712 &0.026
0.423 &0.026
0.359 &0.019
0.195 &0.015
0.025 &0.015
0.086 &0,012

2.QO

none
I

6
11

315.70
&0.005
&0.005

1.0003 &0.001
0.405 %0.042
0.094 &0.027
0.183 %0.030
0.0001 &0.0001
0.028 &0.021
0.0001 +0.0001

2.00

none
II

5
11
13.63

0.25
0.75

1.956 +0.05 7
0.701 &0.047
0.292 &0.036
0.303 &0.034
0.092 &0.024
0.054 &0.022

Incident
lab momentum
(G V/c)

Plot
Constraint type
Max l
D
x'
&(xo)
&(xo/2)
1 —ao
1 ag
1 —ao
1-as
1 —a4
1 —as
1 —ao
1 —a7
1 —as
1 a9
1 —aso
1-aye

System

Incident
lab momentum
(GeV/c)

Plot
Constraint type
Max l
D
x'
~(x)
&(x'/2)
1 -ap
1 —a3,
1-ao
1 —as
1 —a4
1 —ao
1 —ao
1-ay
1 —as
1-ao
1 —alp
1 a/1

System

2.00

solid curve
II
6

11
9.91
0.55
0.93

2.000 ~0.001
0.715&0.043
0.343 ~0.037
0.317&0.032
0.129&0.025
0.068 &0.022
0.040 &0.019

2.92

solid curve
II

7
17
38.87(0.005
0.31

1.03 &0.07
0.652 +0.043
0.354 +0.033
0.36 &0.04
0.155 &0.024
0.115&0.023
0.042 ~0.024
0.051 &0.019

none
I

6
18

439.05
&0.005
&0.005

1.0005 ~0.001
0.922 %0.030
0.197 &0.022
0.336 &0.023
0.048 ~0.017
0.072 &0.017
0.0001 &0.0001

2.92

none
II

8
16
26.04
0.06
0.65

1.14 &0.06
0.456 &0.037

.0.547 &0.038
0.28 ~0.02
0.290 ~0.029
0.019 &0.024
0.107 ~0.017
0.0001 &0.0001
0.072 +0.016

2.02

solid curve
II

6
17
33.74
0.01
0.45

1.708 &0.042
0.696+0.029
0.381&0.027
0.271 &0.021
0.147~0.022
0.065 ~0.016
0.019&0.015

2.92

none
II

9
15
15.27
0.43
0.93

0.87 &0.05
0.71V ~0.045
0.317 &0.035
0.50 &0.03
0.128 ~0.029
0.184 ~0.026
0.0001 &0.0001
0.084 &0.015
0.010 &0.016
0.060 &0.012

2.02

dashed curve
II

9
16
26.56
0.048
0.60

1.88 W0.05
0.78 +0.03
0.43 &0.03
0.31 &0.02
0.1V1 &0.024
0.080 ~0.017
0.030 &0.017
0.0001 &0.0001
0.0001 &0.0001
0.028 ~0.010

1.33

none
I

19
430.59
&0.005
&0.005

1.0006 &0.001
0.37 &0.02
0.35 +0.02
0.200 &0.014
0.061 &0.013

2.02

dotted curve
II

10
14
20.6S
0.125
0.72

1.93 &0.07
0.78 &0.03
0.48 ~0.06
0.31 &0.02
0.211 &0.049
0.083 ~0.018
0,063 &0.037
0.0001 W0.0001
0.020 &0.027
0.023 &0.010
0.034 &0.017

1.33

none
I

5
19

430.62
&0.005
&0.005

1.0006 +0.001
0.37 &0.02
0.35 +0.02
0.200 &0.014
0.061 &0.013
0.0001 &0.0001

2.50

none
I

5
9

125.17
&0.005
&0.005

1.0002 %0.001
0.495 &0.033
0.298 &0.025
0.165 &0.025
0.053 &0.019
0.058 W0.018

1.33

solid curve
II

4
18
35.26
0.008
0.45

1.71 &0.04
0.39 &0.02
0.40 &0.02
0.202 %0.014
0.079~.013

2.50

solid curve
II

5
8

10.83
0.22
0.72

1.498 ~0.047
0.614&0.035
0.390&0.027
0.219&0.026
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6
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solid curve
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II
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FIG. 3. Data and iitted curves for ~ +p systems. do/dQ is
normalized by dividing the experimental di6erential cross section
by (ko.«&/kr) . The vertical bars indicate the statistical experi-
mental errors. The meaning of the solid and dashed curves is given
in Table II and in the text.
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—1&a&& 1, which is designated by II. Constraint II, by
allowing the additional range —1&a~&0, implies that
e.) ~8~~ )-', 7r is being allowed, or that at least 25t=tr is
being allowed. Thus constraint II allows at least a 90'
phase shift in addition to the 0' phase shift of con-
straint I.

Ke 6rst observe that the II constraint always gives
better 6ts, and sometimes substantially better 6ts, than
the I constraint. However, we also observe that it is only
ao which requires the II constraint. That is, it is only the
S wave which is not purely absorptive. There is no par-
ticular reason known for the S wave to be exempt from
the I constraint, but it is probable that the improvement
in the fit when 1—uo& 1 is due to the 5 wave taking up
some of the neglected nonabsorptive and spin-Qip
scattering.

%e have taken the II constraint parameters as being
most meaningful and Figs. 2 and 3 show the kinds of
fits which are achieved. To simplify the comparisons,
experimental cross sections at each momentum are
divided by the quantity (ko«t/47r)'. This is the 0'
differential cross section given by the optical theorem if
the scattering amplitude has no real part. Since the real
part is small, this normalized do-/dQ goes roughly to 1.0

at O'. The fitted curves follow the data quite well and
in no case is there a deviation between the two which
could not be taken account of by a small amount of non-
absorptive or spin-Qip scattering. These neglected scat-
tering terms could also account for the low g' proba-
bilities which are listed in Table II. However, these g
probabilities should not be taken too seriously because
the errors used were purely statistical. No account was
taken of systematic errors in the instrument or the
analysis. In many of the experiments it is reasonable to
take the systematic errors as very roughly equal to the
statistical errors, which in~ediately increases the
probabilities drastically. These p' probabilities are also
listed in Table II.

A few comments on Figs. 2 and 3 will now be made.
All the plots were made semilogarithmic so that the
behavior of the cross section at the larger angles would
be easier to see. However, one must realize that for
many of the energies the large-angle cross sections are
relatively much smaller than the small-angle cross
sections. This leads at the larger angles to relatively
larger statistical error bars, and to relatively larger
systematic errors such as contamination by inelastic
events. Therefore, the deviations of the 6tted curves
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I'xo. 4. Values of 1—a& for m.++p systems. The vertical bars
indicate the statistical errors in the coefBcients. These coeScients
apply only to the solid curves of Fig. 2.

0
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from the data at these larger angles may seeni to be
more important than they really are. Conversely, the
diffraction peak has a very strong effect on the a~ values
because of the relatively high statistics of the points on
the peak.

For «+p at 1.33 GeV/c, the fit at large angles is

poor; since this momentum is relatively low, the purely

absorptive assumption may be quite poor here. How-
ever, some of the fluctuations in the data occur over such
a small region of cos8, that there is some possibility that
there are errors in the data, or that higher / values are
needed. For «++p at 1.33 GeV/c the purely absorptive
assumption is definitely wrong. The reason for the fitted
curve lying almost always below the data is that 1—ao



PARTIAL —O'AUE ANALYSIS OF x+ p ELASTI C SCATTERI NG

2,

ir tp
1.33 GeV/c

1r tp
1.50 GeV/c

VD

0
0

0
0

(b)

vr +p
1.59 GeV/c

1F 0 p

2.01 GeV/c

O
I

0
0

0
0

ili

5

(c)

ll' e p

3.15 GeV/c

FIG. 5. Values of 1—a& for m +p systems. The vertical bars
indicate the statistical errors in the coeScients. These coeKcients
apply only to the solid curves of Fig. 3.
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0
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&2 was required. A further increase in 1—ao immedi-
ately improves the fit. This 1.33 ir++ p data of Helland'
has been fit by birn with an equation of the form

P C;(cos|I) "'

i=a

with no constraints on the C;. He obtains a good fit but
this series cannot be resolved uniquely into our u& and
6~ values, so we cannot interpret it. To see if small
amounts of higher I states would improve these low
rnomenta 6ts we have tried higher order 6ts which are
the dashed curves in Figs. 2(a) and 3(a). The ir +p
curve for these higher orders fits the data well, but the
7r++p fit remains poor. This may be related to the
resonance in the ~++p total cross sections at this
momentum.

Whether the fitted do/dQ turns up or down as II ap-
proaches j.80 depends on the data near that point. In

general, we find either large uncertainties or possibly
unrealistic fluctuation in do/dQ near 180'. Thus the
do/dQ in 1.50-GeV/c ir++ p at 180' very probably turns
up the way it does at 1.55-GeV/c e.++p; however, the
statistics of the last point at 1.50 GeV/c are not suK-
ciently high to force the turn up, unless I, , is increased.
The backward peak in the 2.92-GeV/c vr++ p and 3.15-
GeV/c ir +p data comes from the 6t at smaller angles
and there is no proof of its existence.

Finally, in the 2.02-GeV/c ir++p we have also tried
higher /,„.„fits (the dotted and dashed curves) although
the statistics do not warrant doing this. The dotted
curve which has / „. =10 turns up at 180' while the
dashed curve which has I,„=9 turns down, although
both of these curves follow the data quite well. Once
again this indicates the uncertainties at 180 in do/dQ. .

Of course, there is no proof that the parameters of
Table II are unique. It is certainly possible by using
large amounts of nonabsorptive and spin-Qip scattering
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i o.sI-

+ p

4,13 GeV/c

TABLE IV. 1—o& values for 7r +p at 4.95 GeV/c.

0
0

O.5—

I I I I

2 3 4 5 6
J
8 9 IO I I

+p
4,95 GeV/c

0
1
2
3
4
5
6
7
8
9

10
11

0.89
0.82
0,69
0.57
0.46
0.35
0.24
0.18
0.13
0.09
0.07
0,05

I I I I I I I

2 3 4 5 6, 7 8 9 I 0 I I

e

Fio. 6. Values of 1—u& for s +p systems at 4.13 and 4.95 GeV/c.

to get drastically different answers. However, on the
assumption that the scattering is mainly absorptive, the
parameters of Table II provide a set of partial-wave
amplitudes which describe quite well all the varied
shapes of the existing data. To visualize how these
partial-wave amplitudes vary with l, 1—a& is plotted
versus t for m.++p in Fig. 4 and s +p in Fig. 5.

IV. EMPIRICAL PARTIAL-W'AVE AMPLITUDES
ABOVE 3 GeV/c

To 6t the data above 3.15 GeV/c we have extended a
method of Minami" in which the data are first expressed
in the form

do/dQ= fA (8)g'

A (8)= exp(as+ai cos8)+c+exp( —bs —b, cos8).

This is a form suggested by the simple Regge theory in
which the first term is the exponential diffraction peak,
the last term is a possible peak for 180' scattering and c

TABLE III. 1—o& values for w +p at 4.13 GeV/c,
given by Minami (Ref. 16).

is a constant background term. Minami uses this form
to show the effect of the possible, but so far undetected,
backward peak on the partial-wave amplitudes. For this
simple form the partial-wave amplitudes can be found
analytically. For ~ +p at 4.13 GeV/c, Minami gives a&

for the case in which there is no backward peak and for
the case in which the backward peak is 1/24 of the
diffraction peak in height. His values in the form 1—a~
are given in Table III. The major difference between the
1—ag values in the two cases is that if there is no back-
ward peak, 1—a& decreases monotonically, whereas if
there is a backward peak, 1—a~ oscillates for small l.
This is a phenomenon which we frequently observed in
the course of these fits at momenta above 2 GeV/c. The
diffraction peak can be fit by a monotonically decreasing
series of 1—a~ values or by a series in which either the
even / or odd / values of 1—a~ are larger. However, the
second situation always leads to a backward peak. This
can be understood by realizing that for 0 close to 0, all
Pi(cos8) are positive and the partial waves add. For 8
close to 180', the Pi(cos8) are positive for even t and
negative for odd l. If the amplitudes are monotonically
decreasing, then there will be almost complete cancella-
tion at 180'. But, if the even / or odd l amplitudes are
unusually larger, there will be a residual backward peak.

For 4.95-GeV/c s. +p, we have used the exponential
fit of Perl et al. ~

1—ai
Xo backward peak

0

3

5
6
7
8
9

10
11
12

1.00
0.73
0.61
0.50
0.48
0,27
0.18
0.11
0.06
0.03
0.02
0.01
0.004

"S.Minami, Phys. Rev. 133,.B1581:(1964l.

1—ai
Backward peak

0.76
0.95
0.44
0.62
0,31
0.30
0.16
0.12
0.06
0.04
0.02
0.01
0.004

do/dQ= exp(3. 64+8.9t+2.0t'+0. 1ts),

where t is the square of the four-momentum transfer in
LGeV/cj'. The expansion in partial waves,

Lexp (3.64+ 8.9t+2.0t'+0. 1ts)]'"

= L1/2k) Q (1—at) (2t+1)Pi(cos8),
L=O

was carried out by numerical integration. The 1—a&

values are listed in Table IV.
Figure 6 shows the 1—a~ versus l plots for the no

backward peak case for 4.13 and 4.95 GeV/c. The 1—a ~

versus l behavior is a clear continuation of the behavior
at lower energies.
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FIG. 8. Plot of 1—a(p) versus p where p= (f+ ,')/k pis i-n un.its
of 10 "cm and k is the wave number in the barycentric system.
Plus signs are for all the m++p data analyzed in this paper except
the 1.33 GeV/c s.++p, and fdled circles are for all the s. +p data.
S designates the curve for 19.6-GeV/c p+p elastic scattering
derived from the analysis of Serber in Ref. 20. K designates the
curve given by Krisch in Ref. 19 for p+p elastic scattering
above 10 GeV/c.

and medium Gaussian cutoff models, we have held the
parameters constant up to some maximum /, and then
let them decrease by following a Gaussian curve in
which the mean is f, ,„, and the variance is l,„/3 and
21,„/ 3,respectively. The pure Gaussian model repre-
sents an immediate Gaussian decrease in the values of
the 1—a~, with no constant sequence at the beginning;
that is, the mean is equal to /, „,which is equal to zero.

Figure 7 shows the fit for the sharp cutoff rectangular
model (A), the fit for the best of the Gaussian models

(8), and the fit of Sec. III (C), for 2.01 s +p and
3.15 s +p. In considering the goodness of fit of the
models, one can neglect the points at which the calcu-
lated curves go to 0. These points look very bad because
semilogarithmic plots are being used, but a small
amount of nonabsorptive or spin-Rip scattering can
adjust these points. However, the important observa-
tions are erst, that the Gaussian models are no im-

provement over the rectangular model in spite of the
usually held idea that a Gaussian model is more realistic.
Secondly, both models deviate from the data both at
large angles and in the diffraction peak. Finally, they
clearly need major modification (such as adding a con-
stant term) to improve the ftt, so that one might as well

go directly to the 6ts of Sec. III.

VI. DISCUSSION OF THE PURELY ABSORPTIVE
WAVE AMPLITUDES

The conclusion from the last three sections is that we
have found a set of a~ values which change in a smooth
way with energy and which fit the data quite well.
Except for the S wave all the 1—a~ are less than one.
The maximum / used is roughly 1.5 to 2 times kR if R

is taken as 10 "cm. All of this is in accord with some
optical models which have been previously used. How-
ever, there is a very important difference between all
previous models and these sets of parameters. In previ-
ous models the values of 1—ag are taken as 1 up to some
l', and then 1—

a& drops to 0 quickly or slowly depending
on how sharp a cutoff is assumed.

However, looking at Figs. 4 and 5, it can be observed
that, for all our sets of parameters, 1—a~ decreases
continuously to 0 with no indication of a break or
change iri the shape of 1—ag versus /. There is no evi-
dence of a surface region. The shape of the 1—a~ versus I
curve lies between linear and concave upward, and no
inelastic channel is completely absorbed except for the
S channel. In terms of the pion-nucleon interaction this
means that the rough picture is one in which the forces
decrease smoothly with distance, and which indicates no
surface region in which the forces change rapidly.

Of course, this is the picture given by field theory
also, and the diffuseness of the pion-nucleon interaction
is, therefore, no surprise. Perhaps the main point of this
analysis is not the behavior of the large / value ampli-
tudes, which have always been assumed to be decreasing
smoothly to 0. The point is that even the low l states,
such as p and d, are incompletely absorbed.

It is interesting to compare these results with two
recent analyses of very high-energy p+p elastic scat-
tering carried out by Krisch'~ and Serber. "Krisch fits
some of the p+p differential cross-section data above
10 GeU with a single energy-independent function con-
sisting of the sum of two exponentials. By means of Eq.
(10a) he numerically evaluates quantities exactly equiv-
alent in meaning to our 1—a~ parameters. His graph of
1—al versus f shows the same behavior as our s.+p
graphs of 1—a~. 1—ao is close to 1.0, 1—a~ decreases
smoothly and monotonically with increasing l, and the
maximum / value used is about 2kR.

Serber" approximates Eq. (10a) with an integral by
means of the semiclassical relationship kp=l+-, . His
equivalent of our (1—a&j, which he writes as
L1—exp( —2X~)j is then replaced by the continuous
function L1—exp( —2X(p))). He 6ts the p+P differ-
ential cross sections with a purely absorptive potential
which behaves like a Yukawa potential for small dis-
tances and as a Gaussian potential for large distances.
Serber gives the g(p) corresponding to this potential for
19.6-GeU/c p+ p scattering.

Sy means of the relation kp=l+-', we can compare
our results with those of Krisch and Serber. Figure 8
contains the 1—a~ parameters t designated on the graph
as 1—a(p)$ for the best fits to the s+p data analyzed
in this paper. The 1.33-GeU/c s.++p was the only one
not used, and this is because our fit to that data is so
poor. The 1—a(p) is plotted for each p given by
p= (f+s)/k where k is the wave number in the bary-

"A. D. Krisch, Phys. Rev. Letters 11, 217 (1963)."R.Serber, Rev. Mod. Phys. 36, 649 (1964).
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centric system. The points designated by a plus sign are
for sr++ p and by a filled circle are for m +p. This 6gure
shows that our parameters are very roughly energy-
independent, although there is certainly too much
variation between them to attempt to use a single set of
parameters or a single energy-independent potential to
represent these data. In particular, the 1—uo parameter
varies from 2.0 to 0.9.

The x(p) versus p function of Serber" has been
changed into a L1—exp( —2x(p)) j function and is given
in Fig. 8 (designated by S). Finally by making use of the
1 Fermi mark which Krisch" gives in his plot of 1—a~

versus /, we are able to give his equivalent curve of
1—a(p) versus p (designated by K) in Fig. 8. From
Fig. 8 it can be seen that the description of very high-
energy p+p elastic scattering given by Serber and by
Krisch is quite similar to our description of high-energy
~+p scattering. Of course there are special features in
both differential cross sections. The high-energy ~+p
has peaks at nonzero angles, while the p+ p seems to be
smooth at all energies above 1 GeV. The very high-
energy p+p large-angle scattering leads to the second
exponential in the Krisch analysis which he interprets
as a core term. (No ineasurements of large angle, very
high energy, ir+p differential cross sections exist, so it
is not known whether the ir+p at very high energies
can also be given this core interpretation. ) But the
interesting thing is that these special features have only
a small effect on the purely absorptive partial-wave
amplitudes, and that from ~+p at momenta close to
1 GeV/c to p+ p at momenta above 20 GeV/c the same
model can be used for these amplitudes.

One would like to be able to connect this analysis
with the low-energy phase-shift analysis of p+p and
m+ p elastic scattering. ""Unfortunately, the gap is too
large and there is no way to make the jump from the
low-energy analysis where the phase shifts are all
almost completely real to our case where they are all
almost purely imaginary. It is not even possible to say
if the number of I values used changes in a consistent
way from low to high energies. This is because at low
energies, for example at 310 MeV, the highest phase
shifts are of the order of a few degrees in size, and such
small, purely real, phase shifts have no significance in
the purely absorptive high-energy analysis.

We now turn to the relation between these a~ fits and
the higher pion-nucleon resonances. As discussed in the
Introduction, Simmons" has shown that the sharp
cutoff rectangular model can explain the second peak at
2.0 GeV/c in the m.++p differential cross section.
Reference to Table II shows that the fitted values of
1—a&, which reproduce the data quite well, exhibit no
particularly large 1—a~ value; that is, no l state seems

to predominate. Therefore, we agree with Simmons that
the ~++p differential cross sections give no evidence as
to the angular momentum states which cause the 2.1-

GeV/c maximum in the vr +p total cross section.

Furthermore, the several fits to the z.++p data in the
1.5-GeV/c region show no dominant high angular mo-
mentum state. Therefore, the large backward bump in
the differential cross sections at these momenta may not
be related at all to the or++ p total cross-section maxima
at 1.4 GeV/c. As has been stated before, these fits may
not be unique and there may be a set of amplitudes,
particularly when nonabsorptive and spin-Qip scattering
appear, which do show that a higher l state is particu-
larly large.

In connection with this, it is important to know that
the sizes of the coefficients c„in an expansion of the form

d~(e)/dn= P c.Lcosej"
n=o

are not directly indicative of the importance of a par-
ticular / state. For example, if one considers a sharp
cutoff rectangular model of the form

9.1,
c2= 15.4,
c3= —52.4.

c4= —91.2,
c5= 115.7,
c6= 136.1.

Thus, one might be tempted to ascribe particular im-
portance to 7=2 or 1=3 states since the c4, cs, and c6

coefficients are so large, whereas all states actually enter
with exactly equal absorption.

As another example, consider a model with

1—co= 1)
1—a,=1/3,
1—a2= 1/5,
1—aa ——1/7,

1—a4 ——1/9,
1—ay= 1/11,
1—ay= 1/13,
1—ate=0, l) 6.

The relative c„coeKcients are:

co=+ 1.0,
ci——+0.8,
c2= —2.8 )

c3= —4.6,
c4= —8.4,
cg= —0.0,
c6———5.0.

ci——+41.5,
&8=+43 9,
cg = —71.4,

ciao= —64.o,
cii——+38.5,
ci2——+35.0.

Here again, the higher l states seem to predominate,
whereas there is actually a smooth dropoff in the
absorption as / increases.

1—ai ——1, 0&1&3,
1—ai=0, l&3,

then the relative sizes of the coeScients when do/dQ is

expressed in the form of Eq. (11) are
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I I I I I I I I I I I I I

lf +P
2.0I Gev/c

TanLz VI. Fitted values of Eq. (12) given by solution in Table V
for z +p data at 2.01 GeV/c. Both terms have been normalized
to show relative size of b; term.

cos8
Z b;(cos8)'

P.l 00—

O.OIO—

0.935
0.850
0.750
0.620
0.540
0.460
0.380
0.300
0.220
0.140
0.060—0.020—0.100—0.240—0.400—0.560—0.720—0.880

0.36740
0.12990
0.03650
0.00822
0.00499
0.00538
0.00754
0.01014
0.01194
0.01220
0.01085
0.00847
0.00595
0.01268
0.00335
0.00257
0.00064
0.00139

0.03565
0.02025
0.00894
0.00183
0.00026
0.00000
0.00052
0.00014
0.00240
0.00324
0.00383
0.00410
0.00406
0.00339
0.00215
0.00109
0.00058
0.00030
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Fio. 9. Data and plot of curve for 2.01-GeV/c z +p system,
fitted with infusion of terms for nonabsorptive and spin-Rip
scattering.

VII. INCLUSION OF NONABSORPTIVE AND
SPIN-FLIP SCATTERING

Our original hope of being able to make complete fits
using the full Eq. (6a) was not fulfilled for two reasons.
First, the computer problem proved to be very dificult
since Eq. (6a) is nonlinear and there are constraints on
a~+ and 8g~. Unless the program was given initial values
for the parameters quite close to the best-fit parameters,
the computation converged either very slowly or not at
all. Frequently, as the iteration proceeded, some con-
straints went in and out of the calculation repeatedly so

TAnLz V. 1—o~ values and b; values for z +p at 2.01 GeV/c.

that the iteration became cyclic. Therefore, in many
cases when we attempted a complete fit we found no
solution, and in no case could we be sure that we had
found the solution with the lowest y'.

The second reason is that much more extensive data
are required. Not only is there the obvious need for
polarization data to give the spin-Rip scattering, but for
the differential cross section both good statistics and
close data spacing are required. For example, we find at
2.01-GeV/c z- +p that the exact shape of the diffraction
peak strongly controls the values of a&. This is the reason
that the fit to the second peak is not exact. Also, even
though there are 7000 events in this measurement, the
statistics at large angles are insufficient. On the other
hand, in the 1.55-GeV/c z-++p data there are good
statistics at large angles, but the diffraction peak was
not measured at small enough angles, so its slope is
relatively unsure, and the values of a& may be somewhat
inaccurate.

However, as a first look at more complete fitting, we
have taken the 2.01-GeV/c z. +p data of Damouth
et a/. ' These data, which have only been published
previously in graphical form, are given in the Appendix
along with the 2.02-GeV/c z-++p data of Damouth
et al." The differential cross section is written in the
fol lrl

&max

do (8)/dQ= L1/4k']([ P (23+1)(1—a()Ei(cos8)]'
l=o

tmax

0.99
0.689
0.383
0.172
0.226
0.117

0.50566—0.29936—3.12056—0.5424
5.8152
4.11546

+ P b, (cos8)").
i=o

The b; series is designed to allow for spin-Rip scattering
and the sin28~ part of the nonabsorptive scattering. The
a~ were constrained so that 0& 1—u~& 2, and the b;, were
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constrained so that
&max

b, (cos8)'&0, for all 8.
i=o

(13)

APPENDIX

Pion-proton difIerential cross section in barycentric
system. The errors are statistical and do not include an
over-all normalization error of &8% for vr +p and
+10%, —20% for m++ p.

Figure 9 indicates the improved 6t to the data, given by
the solution in Table V. Table VI lists do(8)/d. Q and the
contribution of the b; series for a selection of coso
values. In the very small angle region the b; contribution
is always less than 10%, which agrees with the require-
ment that the real part of the scattering amplitude and
the spin-Qip scattering amplitude be small in this
region. For some of the large angles, however, the b;
contribution is the major part, but here there are as yet
no theoretical ideas with which to compare these
predictions.
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cos8
0.935
0.925
0.915
0.905
0.890
0.870
0.850
0.83
0.81
0.79
0.77
0.75
0.73
0.71
0.69
0.66
0.62
0.58
0.54
0.50
0.46
0.42
0.38

0.93
0.91
0.89
0.86
0.82
0.775
0.725
0.650
0.55
0.45
0.35
0.25

s +p scattering at 2.01 GeV/c

do/dQ (mb/sr)
6.04&0.28
5.28&0.27
4.74&0.25
3.92&0.24
3.16+0.15
2.54&0.14
2.13&0.13
1.86&0.12
1.45&0.11
1.02&0.09
0.79&0.08
0.63&0.07
0.54w0.07
0.35&0.06
0.25&0.05
0.20&0.03
0.14&0.03
0.06&0.02
0.10+0.02
0.05&0.02
0.08+0.02
0.11m0.03
0.17&0.03

cos8
0.34
0.30
0.26
0.22
0.18
0.14
0.10
0.06
0.02—0.02—0.06—0.10—0.16—0.24—0.32—0.40—0.48—0.56—0.64—0./2—0.80—0.88—0.94

6.54w0. 74
4.89&0.64
3.42&0.38
3.35&0.27
2.35&0.23
1.56+0.17
1.06&0.14
0.43&0.07
0.29&0.05
0.18&0.04
0.25&0.05
0.26&0.05

0.15
0.05—0.05—0.15—0.25—0.35—0.45—0.55—0.65—0.75—0.8S—0.93

s++p scattering at 2.01 GeV/c

d~/da (mb/sr)
0.15a0.03
0.18&0.03
0.23&0.03
0.25&0.04
0.18&0.03
0.23a0.03
0.14a0.03
0.16&0.03
0.11+0.02
0.16&0.03
0.14%0.03
0.09+0.02
0.08&0.01
0.06&0.01
0.06&0.01
0.05&0.01
0.06&0.01
0.04&0.01
0.02&0.01
0.01&0.01
0.01&0.01
0.02%0.01
0.03%0.02

0.32a0.05
0.09&0.03
0.13+0.04
0.14&0.04
0.12&0.04
0.18+0.04
0.07%0.03
0.12a0.04
0.09&0.04
0.03&0.03
0.04m 0.03
0.06&0.05


