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Gauge Theory of Elementary Interactions
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Il and D couplings of baryons and mesons are shown to arise naturally with a simple extension of the gauge
formalism to a (SUpXSUI)sX(SU~XSU, )s group structure. In its general formulation the theory needs

parity doubltets of (0+) and (0—) ninefolds. It admits of (two types of F and D coupled) (1+) and (1—)
vector and axial-vector meson multiplets, a specially attractive combination of currents which emerges from
the formalism being an equal mixture of vector F with axial-vector D /the case of (SUp)sX(SUg)ag. The
theory also admits an approximate (Bronzan-Low) type of quantum number.

I. INTRODUCTION

~

~

~

~

ITH the discovery of SU3 as the strong inter-
action symmetry group, ' with the discovery

that the electromagnetic current (for strongly inter-
acting particles) is part of the SUs structure s and that'
(at least in their semileptonic aspects) weak currents
of strongly interacting particles also belong to SU3, a
complete theory of elementary interactions seems not
too distant. In this series of papers we make a pre-
liminary attempt towards determining their underlying
group structure and to construct a gauge theory of
strong, weak, and electromagnetic interactions. We
believe that the gauge principle4 must be an essential
ingredient of any attempt to construct a fundamental
theory. The gauge principle is the only known way to

~ Permanent address: Johns Hopkins University, Baltimore,
Maryland.

'The remarkable discovery of 0 first predicted by M. Gell-
Mann (CERN Conference Report (1962)] and discovered by
V. E. Barnes et al LPhys. Rev.. Letters 12, 204 (1964)j, seems to
leave little doubt about the correctness of SU3 symmetry. The
unitary group was first introduced in elementary-particle physics
by M. Ikeda, S. Ogawa, and Y. Ohnuki LProgr. Theoret. Phys.
(Kyoto) 22, 715 (1959); Y. Yamaguchi, Progr. Theoret. Phys.
Suppl. (Kyoto) 11, 37(1959)7. These authors correctly predicted
the completion of the (0—) multiplet (ri,s,~) though they followed
Sakata in assigning baryons to the threefold representation.
Following this the work of A. Salam and J. C. Ward )Nuovo
Cimento 20, 419 (1961)g stressed the eightfolds of both (1—) and
{1+) gauge particles associated with the unitary group (the
group-structure SU3XSU3). (The importance of spin-one multi-
plets lies in the fact that the gauge particles must belong to the
regular representation of the symmetry group, and therefore
provide the 'invariant signature' of the 'group' in contrast to
any of its other representations. ) The eightfold way was completed
by Y. Ne'eman LNucl. Phys. 26, 222 (1961)g, and M. Gell-Mann
(Phys. Rev. 125, 1067 (1962)g, and California Institute of Tech-
nology Report CTSL 1961 (unpublished), who first pointed out
that in addition to {0—) and (1—) multiplets the known baryons
can also be associated with an SU3 multiplet of eight. For some re-
cent attempts to make use of the fundamental threefold unitary
multiplet see M. Geii-Mann [Phys. Letters 8, 214 (1964)7, J.
Schwinger LPhys. Rev. Letters 12, 237 (1964)], F. Giirsey, T. D.
Lee, and M. Nauenberg LPhys. Rev. 135, B467 (1964)j, and G.
Zweig, Phys. Rev. (to be published).

'M. Gell-Mann. Phys. Rev. 92, 833 (1953); K. Nishijima,
Progr. Theoret. Phys. (Kyoto) 10, 549 (1953).' N. Cabbibo, Phys. Rev. Letters 10, 531 (1963).

4 C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954); R. Shaw,
dissertation Cambridge University, 1954 (unpublished); R.
Utiyama, Phys. Rev. 101, 1597 (1956); S. Bludman, Nuovo
Cimento 9, 433 (1958);A. Salam and J. C. Ward, Nuovo Cimento
11, 568 (1959); J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960);
J. Schwinger, Proc. Trieste Seminar, IAEA (1962); M. Gell-
Mann and S, Glashow, Ann. Phys. (N. Y.) 15, 437 (1961).

g

write down currents J„which are not simple "static"
expressions of a conservation property, but also form
part of the interaction Harniltonian (H;„t J„A„). ——
And on a pragmatic level, gauge theories seem to be
the only spin-one theories which have so far been
renormalized. ' Our major tool is a new extension of the
gauge principle to include what we call double gauges.
This extension is made possible by the fact that the
'unitary' group possesses two elementary represen-
tations which admit of independent transformations.
We use this new formalism to construct a theory of
strong interactions in the present paper, while the
problem of weak and electromagnetic interactions will

be considered elsewhere.

2. THE DOUBLE GAUGE FORMALISM; LEFT
AND RIGHT GAUGES

We erst summarize the conventional "single-gauge"
formalism. Let f be a set of spin--', particles, corre-
sponding to an elementary (Sakata) representation of
the group U3. The single-gauge principle starts with
the free-kinetic-energy term

which is invariant for the unitary transformation

P'= UpUQ.
Hel e

Up ——exp(ie'),
U= expi(T'e'),

T~ (n= 0, 1, , 8) are nine Hermitian matrices which
satisfy'

PT' T&]=ic""T", i, 'j, 4=1, , 8,
(T' T~) = (g-')8'~'T +dP' T"~, i, j, k=1, 8 (5)

Tr(T~)s=-'

P Abdus Salam, Phys. Rev. 130, 1287 (1963);Abdus Salam and
R. Delbourgo, Phys. Rev. 135, B1398 (1964).

The Greek indices run from 0 to 8, the Latin indices from 1 to
8. For dehnition of C'&" and d'&~, we use the notation of M.
Gell-Mann (Ref. 1).
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aIld

1
X„'=VX„U '+—UB„U '

Zg

t9E
go/ Xo

g t9$II,

(8)

The relation (8) can be inferred from the requirement

(~.~)'= U(~.~) (9)
Deaning

If we now require that the e 's in (2) depend on space-
time x„, one must replace B„=B/Bx„ in (1) by the
'covariant' derivative

'I}„=B„+igX„+igX„', (7)

where X„=V2T'X„'and X„'are eight vector fields with
the transformation character,

The single-gauge formalism would start in this case
with the transformation

P'= UpUgPUs '

which leave Zy invariant,

ZI = T—npty«y„B„4 m—p Tnpty«p.

(18)

The 'gauge principle' leads in this case to the covariant
derivative,

&„P=B„f+sgi'Z,„P sgs'QZ—s„+pg"Z„'P
4 (19)

which transforms as

P= UpUQU '.
We generalize this to consider two ir«depende«pt unitary
transformations V~ and U~,

X„„=x)„X„—$„X„
=B„X„—B„X„+t'g[X„,X„), (20)(1o)

provided
it is easy to verify that

I„„'=UX„,U '.
All in all then, the Lagrangian

Pty«y„$„—$ ,'TrX„„X—„„-
«X„„PX„P—mfty«P —(12)

is invariant for the transformations

(Z,„)'= U, (Zi„)U,—'+ (1/ig, ') U,B„U, (21)

(22)(Zs„)'= Us(Zs„) U, '+ (1/tgs ) UQBp UQ

Z„"=Z„' (1/g") Be'—/Bx„.

The crucial remark is that each of the fields Z~ and Z2
transforms

AzdePer«densely

as representation of SUs.
The invariant Lagrangian is given by

Tvgt7«y„S—„Q «TrZZ„„Z„—„Trm pity«P—. (23)

The fermion interaction term in (23) equals

@tnt Tr[ g't74744(gl Z1444' gs O'Z244)

'g'%tv ~AZ:-j (24)
=Tr[ s/~Std«V. [—F.A j+4tV«V. (D.,4))

'dV tv v.~Z.'-3, (»)

(14)ie J„= P (BZ/B, tp)ti@

From (14) and using equations of motion for &p and F
$6 Bpjp (15)

For an invariant Z, 62=0, so that all nine currents
are conserved.

where
F„=T'F„'= 1/v2(gt'Z, „+gp'Zp„),

D„=T'D„*=1/v2 (gi'Zi„gs''Zp„) . —

f'= Uli,
X„'=UX„U '+1/igUB U ' (13)
X„"=X '—(1/g)Be'/Bx

As usual one may define currents J„ from the relation

B. The Double-Gauge Formalism

For (mixed) tensor representations of the unitary
group, the single-gauge formalism can be generalized
in the following manner. %rite the 3)&3 representation
in the form~

There is thus a total of 18 conserved currents, corre-
sponding to the group generators, eight grouped in
the commutator combination,

Twto[F 4]=»F( PoVt 4to4) — (26)—

p=v2(T~) . (]6) and the remaining in the anticommutator,

K0
—2' o~

g6 v3.

"To identify the transformation character of the 6elds &, con-
sider the corresponding (Hermitian) boson matrix M=VX& T .
With the notation

tr+= (1/V2) (Mt+iM') E+= (1/v'2') (M4aiM«)'
IP E =(1/V2)(M«&iM ), 4r =M, ti =M, p =M

~0 ~0 ~0

v2 Q6 vS
—+—+— x-+ I;+

Tnjta(~) =TrD( 40Vt+&t04) =&ad"—(4t'~ )D"'
+~~et'~+~ to~')D' (»)

The currents remain conserved even for the addition
of gauge-meson mass terms to (23)

ZJN4 'j Tl (I«pZi44Zr44+f«s Zs44Zs44) . (28)

' Terms like (28) are not invariant for the general trs, nsforma-
tion (21) and (22). They are invariant however for non @„-
dependent U1's and U2's. This is all that is necessary for current
conservation.
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C. R Parity

D and Ii interactions can be distinguished if following
Gell-Mann one de6nes E. parity g for a field from the
relation

RPR '=rip/~ 21' &——1.

for the underlying group structure. VVe show in Ap-
pendix I that the vector currents remain conserved
even for the inclusion of Fermi mass terms.

3. Spin-Zero Fields

Since
TrA[B,Cj= TrA—~PBrvCr j
TrA (B,C}=+TrA r(Br,Cr),

For Hermitian spin-zero fields M, the only trans-
formation which preserves hermiticity is the single-

gauge transformation

D and Ii transform oppositely. If the theory is E.
invariant, one must choose

(1) gl g2( Isl (((2

(in order that D„and F„are orthogonal) .'

(2) qD ——+1, g p ———1.

3. INCLUSION OF AXIAL VECTOR INTERACTIONS

A.

Neglecting the fermion mass term —mp Tnjfy4$, one
may split f into its right and left components„

O'L, R =
2 (1+Vs)4'.

As before consider the independent transformations

4R'=VoVapRV2 '

pL'= Vp'VypLV4 '.
To gauge the free Lagrangian

Tr g'R)7 47 (vrI(v R(I/R+ QLt"/4'Y(v rI(v LQL) v

replace

rI(vR hy +(vs'R= 4I(vf'R+sglFlp4'R

igs(I/RF2(, +s—gpF 0$R,
31

8(vL hy $(vLQL= 8(v4'L+sg3F3(v I/L

sg4$ LF4(v+ sg 0 F0 (I'L .

The 6elds F~, F2, Iis, Ii4 transform independently of
each other. Incorporating the g's in the definition of the
F's, the linear part of 2;„g equals

z;„4—— i Tr(4 RtF 14'R URN RF—2+4LtF—syL

0L'f4 LF4+0 R)4—RFo+fL"fgLFo')

4i Tr(I/4(y4y„(F1+—Fs F2 F4, P}——
+k)V4V, P'1+F3+F2+F4, 4j
+4tV4V, V3( —F1+F3+F2—F4, tt )
+((/t747(vVsL F1+F3 F2+F4v 4')

+,Vt. ..~(F.+F:)-
+'ig)pe„y (3Fp —Fp') . (32)

There are four types of conserved currents D—V,
D—A, Ii —V, I' —A corresponding to the 36 generators

~ Note that in terms of the 'pure' fields F and D,
Z((vvZ(vv+ZsvvZsvv = (F(vvFvvv+D(vvD(vv) v

where
F„„=B„F„B„F„+sgEI'„,F;g+sg ED,—D.3,
D"=S.D.—S D.+sgLD.vF j+sgP'~vD j.

M'=UMU '.
For a non-Hermitian M, M = (Mr+ iM2) one can
however allow double gauges

M'= UpUgMGg '.
Infinitesimally, Ul = 1+iXl, Us= 1+3X2,

Mi =Ml 2(X1 X2( M2)+23/Xl+X2v Ml) 0 M2v

Ms =Ms+2(X1 X2v Ml}+23LX1+X2v M2)+0 Ml ~

The invariant Lagrangian equals

——,
' Tr(n„M)+(n„M) ——,

' Tr(42M+M

= —
21Tr ( (&„M1+i/v2)V„,M1 j 1/'(/2(A(v, M2}—)2

(+(8„(r,+(/%2[(v„,(r,]+(/%2(v(„(r,()')
—-,'((2 Tr(M '+M ') (33)

where

V„=1/1/'2 (Xl+Xs)„, A„=1/V2 (Xl —Xs)„. (34)

The conserved currents are

~meson
(L~„M„M,3+9„M„M2)),

8V„V2
~&meson =—((B„M1,M2) —((((„Ms,M1)) .

6A „K2
4. TOWARDS A THEORY OF STRONG

INTERACTIONS

At this stage with one fermion nine-fold=((tR+fL
corresponding to the group structure (SU3X SU3) L

X(SUsXSU3)R and one meson ninefold M=M, +iM2,
each gauged independently as

fR'= VpV14'RV2 ',
4L'= Vp'V34LV4 ',
~r'= VpU,~V;&,

(36)

there is a total of six types of gauge fields; four of
these, i.e., Fl, Fs, Fs, F4 interact only with fermions p
and two 6eMs X~ and X2 only with mesons M. In
order that fermions and mesons interact with each
other at all some of the U transformations must be
identified with the V transformations subject of
course to I' and C conservation.

In Appendix II we list I', C, and E parities of the
currents in (32) and (33). This listing shows also
the resistrictive power of the gauge formalism which
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stems from the fact that "pure" I'- and E-conjugate
fields are 'mixtures' of the gauge F's and X's. (R-
invariance has been listed in so far as it may prove an
approximate symmetry for strong interactions).

To construct a realistic theory, consider the case
where we start with one scalar and one pseudoscalar
boson multiplet:

Mi ——0—, M'2 ——0+ .

A. P Invariance

From (A1) and (AS) we must require for parity
conservation:

C& =g'3 )
and either

g=g )

RP V(RP) '= V'r

RP A(RP) '=A'r,

while from 2„„„„is invariant only if

RP V(RP) '=V~,
RP A(RP) '= —Ar.

(39)

(40)

These clearly are contradictory requirements, and
therefore (37) is R invariant if and only if

C. R Invariance

The Lagrangian (37) is not R invariant. This is
because from (A.3) 2&„;is RP invariant only if

i.e.)

or

Xg= I' g, Xg ——Ii 3,

Ug
—=V(, U2

—=V3,

X~——I'2, X2——I'4,

V= V' (Xi=Fi=F4),
A = —A' (X2——F2 ——F3) .

D. The Structure (SU,)i,&&(SU,)i,

(41)

1.e.)
Ug—=V2, Ug—= V4.

The choice (41) is highly restrictive. Explicitly, the
relevant gauge transformations are

Using the notation of (34), i.e.,

&2V=Fi+Fs=Xi+X2) &2V'=1'2+F4,

v2A =Fi+Fg=Xi Xg, V2A'=—F2 F4, —

fz'= &OViiJzV2 ',
fL UOyV2$LV1

M'= VgMV2 '.
(42)

the linear part of the Z;„t, equals:

Lv.]5'(F)+{7.}5'(D)+t v.v5]5"(F)+{v.v'-}5'(D)
+ )cV„BM,]/Sr(F)+Sr(D)]
+)M„BMg]$5~(F)+5"(D)]

+AD Trg ty4y„ygP)+ (MiB„M2 M2B„M)) . —(37)

B. y5 Invariance

The P-invariant gauge Lagrangian (37) is invariant
also for the "y5" transformation

There are just two gauge fields Sr(F) and 5"(D) and
the (linear part of) 2;„,equals

5&(F) (&~„]y&aM, ,M,]+&aM2, M2])
+S"(D) ({yp5}+{BM2,M&}—{BMi,M2}) (43)

This remarkable mixture of equal parts of (V F)—
+(A —D) currents seems to present the most attrac-
tive choice for a first approximation to a strong inter-
action theory. YVe discuss this further in Sec. 5.

Note that the transformations (42) leave Yukawa-
like terms

4z~gz,
Eg~ Ii3
P2~ Ii4

M2 —& +M2.

V, V' —+ + (V, V')

A, A'~ —(A,A')

i Tr Q ii)y4y~Mfi, +H.c.) =i Tnfty4y~Mig —Trg)y4M~Q

invariant. These in fact are the only 'double' trans-
formations to do so.

E. Other Special Cases
LTo see this most simply refer to (31) and (33).]

Since Pz —+ P& is a tenable transformation, only if
mass terms vanish, we have the important result that
if fermion masses are ignored in fermion loops, the

foLlowing quantum number is resPected for all Processes
ievolvieg external bosoms:

+1 for V (1—) and Ms(0+),
—1 for A (1+) and Mi(0 —) . (38)

In Sec. 5 we shall discuss the relation of this to the
quantum number recently introduced by Bronsan
and Low,

It is not of course, essential to assume that (as we
did so far) that Mi and 3II2 are particles of opposite
parities. If there exist two basic pseudoscalar ninefolds

(Mi, M'2 ——0—), a PR-invariant Lagrangian can be
constructed as follows:

(1) For even (Mi, M2) R Parity, if-
Xg=ri j =F3,
X2—P2 —P4 ~

No A couplings, though both V—F and V—D inter-
',actions exist,
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(2) For odd (M&,Ms) R Pa-rity, if

X1 X2 ~1 ~2 ~3 I 4

only V—F couplings are allowed.

= —(ms) Trg)pe.

Using Appendix I,

B„J„(V)=0,
B„J„((A)= 2mp —f)pe;(Q, Ta,) .

(b) One may rewrite (44) in the form

=i T+gty4ys(M)gr, +H.c. ,

(44)

where we assume that the expectation value M is
nonzero only for the component M2, i.e.,

(~') = (M so) =%3mp. (45)

One may now rede6ne the field M2, in the following
manner

Ms ——Ms'+V3ms.

In terms of Ms', (43) equals

Zlsr&=Z&sr l
—(3mo'g') Tr(S ) +ms/2 Tr(BMrS~)

—mp/v2 Tr({S",Ms') }S"). (46)

The extra (SUs invariant) terms on the right por-
vide a resolution' of the standard dilemma of gauge
theories —the inability to provide for single emission
of Yukawa mesons. This is because the interaction
term S BMt combined with PtPS", gives an effective

"A. Salam and J. C. Ward, Nuovo Cimento 19, 167 (1961).

5. FROM (SU8)sX(SUs)a TO SUs

As shown in (37) a parity-conserving strong inter-
action theory admits of four sets of gauge particles
Sv (F), Sv (D), S"(F), and S"(D), with spin-zero
mesons interacting equally with S(F)+S(D) or
S(F) S(D)—combinations. If R invariance is further
imposed, we get an economical special choice which
exhibits a symmetry' between V—Ii and A —D
couplings. For either theory to represent the physical
situation we need (1) the existence of a ninefold Mr (0—)
= (r),s.,lr, o) and a ninefold Ms(0+) = (rl', s.',~',o'), be-
sides the fermion ninefold lt (possibly A, Z, , 7', Vs*);
and (2) the existence of both (1—) and (1+) gauge
particles.

Consider for simplicity the special theory given by
the Lagrangian in (43) Lthough all considerations apply
equally to the general case (37)j. Without the Fermi
mass term, (43) is invariant for (UsXUs)gX (UsXUs)r.
transformations (42). For strong interactions we wish
however to particularize to SU3, i.e., to invariance for
A ' =XA X ', X=expi (T'e') i = 1, 8.

There are two equivalent ways of achieving this.

(a) Introduce the SUs )but not (SUs)r, X (SUs)~ in-

variant' fermion mass term

Yukawa psegdooector D interaction proportional to

mplft ( xt)/4'„p s( (BM t/BX„) (xs),f(xr) )6p„,(xt—xs) .

Note that the ansatz (45) gives an additional mass
term in (46) for the Sg particles, in contrast to the Sv
particles.

(c) SNmtlarisieg, the (ill-understood) vacuum-de-
generacy assumption (Ms')&0 gives a natural way to
reduce the general symmetry to SU3. This mechanism
seems to be connected with the appearance of fermion
mass (see (b) above), with the Yukawa coupling
constant and with a mass difference between the (1+)
and (1—) gauge particles.

(d) The special (V F)+(—A D) th—eory admits of
PR invariance for the full Lagrangian with PR parities:

+1 for p, P, Ea and o', vr', rf', k',
—1 for &u(=Ssv) and o, s, rf, k.

For the general non-PR-invariant Lagrangian (37)
naturally no such assignment is possible. However, as
remarked earlier, this general case too admits of the
quantum number:

+1 for (1—) particles like co, p, g, E*
and for (0+)o.', w', rf', E',

—1 for (1+) particles like &u', p', p', IC*'

and for (0—)o, s-, rf, E,
when the fermion mass term is ignored. This quantum
number agrees with the Bronzan-Low number
(conserved only when fermion interactions are alto-
gether omitted) for y, p, p and s., rf, E.For ~ there is no
agreement and therefore in our scheme co —+3m is
forbidden in the limit of fermion masses zero.

(e) Assuming further that (r)')=(Mss)&0 Sakurai,
Glashow, and Coleman" have succeeded in giving a
coherent picture of SUB breaking. Clearly even if this
assumption is superposed on the theory, the R in-
variance of the special symmetrical Lagrangian (43)
will not allow any p —"mass difference to develop.
This special (V F)+(A D) t—heory can the—refore
only be an approximation to the physical situation a
representation for which is provided by the non-PR-
invariant expression (37) with,

o.= o.'+&3mp,

n =a'+(no')

Concluding, the double-gauge principle leads in a
natural manner to D as well as Ii interactions. YVe may
go further and in fact assert that double gauges are
accessary for the gauge appearance of D currents in
the interaction Lagrangian. Further in order that both

' The tadpole mechanism was introduced in elementary-
particle physics by J. Schwinger, Ann. Phys. (N.Y.) 2, 407 (1957).
It was used by A. Salam and J. C. Ward (Ref. 10) for strong and
weak interactions. For applications to derive mass formulas see
J. J. Sakurai )Phys. Rev. 132, 434 (1963)g; and S. Coleman and
S. Glashow, Harvard {to be published).
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t/' and A gauge couplings can exist, the theory must be
parity-doublet symmetric, i.e., both (1+) and (1—) as
well as (0+) and (0—) particles have to appear. The
underlying group structure is not simply the structure
of SUp but corresponds in general to (SUpXSUp)r,
X (SUpX SUp) n.
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T~ F/D

A P/D

P 1 /~D

S F/D

TABLE I. Table of parities.

—1
+1
—1
+1

+1
—1
+1

+1
—1
+1
—1
+1
—1
+1

+1
—1
+1
+1—1
—1
+1

RPC
—1
+1
—1
+1
+1—1
—1
+1

APPENDIX I
Write 2,„„,= mp Tr Q iity4gq+Pcty4gii). For the

general transformation (25)

Z...,
„'=m, p Tr(pnj'y4Ripr, 5+H.c.),

where R= Vi 'Vp, 5= V4 'V&. Infinitesimally Lfor
notation see (3)j
82=imp/'Rf Y4R (pp pl) lpL+g'Rj Y4$LT (p2 p4)

QLj Y4T (p8 pl) QR QLj Y44'RT (82 p4)

Using (15)

8„J„(F,+Fp) =0=8„J„(Fp+Fi) .

This shows that the vector currents are always con-
served. Also

I /
gy = gg ) Szp~= m@3 )

g2 =g4 ) mp'2 —m@4.

(2) For R invariance:

R PgR '= —Ii2~,

R rig' '= —Ii4~,

gl. =go, g3 =g4

(3) For RP invariance:

PR Fi(PR)—'=+F4r,
PR Fp(PR) '=+Fpv. —

(4) For RC invariance:

(A2)

(A3)

Thus

~.~. (Fp Fi)=md''—T (v4vp)0,

~.~:(Fp F4)=m4t—(v4v p)WT
CR Fi(CR) '=F4,
CR Fp(CR) '=Fp. (A4)

B„l„(A D)nm pP'(pe p'( T—,if )
B„J„(A F)nmpfj'pe—pt T,fj.

APPENDIX II

A. Bilinear Currents

F=$0'P j'+i/tOi/

D=QO+t —t'j'|0

B. Meson Fields

Depending on relative R and I' parities of 3f», M~,
the following cases arise for (33):

(1) For P invariance we need:

PXiP '= —Xp if Mi=0 —,Mp ——0+,
PXiI '= —Xi for evenrelative Mi, Mp P parity. (AS)

where
O=y4y„= 0' (V),
0=y4y„yp ———0' (A),
O=y4yp = —0' (P),
0=&, = —0 (S),

(2) R invariance:

RXiR '= —X& for even (Mi, M&) R parity
= —X~~ for odd R parity.

(3) RP invariance:

(A6)

and 0' are the transposed y's (in the Majorana repre-
sentation). Note, for a Hermitian field F, (RC)F
(RC) '=&F.

Consider the Fermi Lagrangian (32).

(1) For P invariance we need

RPXi(RP) '= Xir for odd P and even R parity
=Xpr for odd P and odd R Parity. (A7)

(4) RC invari ance:

(RC)Xi(RC) '=Xi for even R parity

(RC)M(RC) '=M
(AS)

(RC)Xi(RC)—'=+Xp for odd R parity
(RC)M(RC) '=M+


