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We extrapolate the proton form factors to time-like momentum transfers to determine the spectral func-
tions. We compare our extrapolations with preliminary measurements of the cross section for proton-anti-
proton annihilation into an electron-positron pair, for a time-like momentum transfer of 172 F .This com-
parison determines an otherwise arbitrary parameter used in our conformal-transformation procedure of
extrapolation. We also apply the constraint that electric and magnetic form factors are equal at time-like
momentum transfer of 4M'. We 6nd spectral functions with a peak around 625 MeV, a zero around 1050
MeV, and a minimum around 1500 MeV.

I. INTRODUCTION

N a previous paper' one of us (JSL) and R. F.
~ ~ Peierls used a conformal transformation' to facili-
tate extrapolation of electromagnetic form factors in
the t plane from negative momentum transfers t,
reached by electron-proton scattering, to positive, or
time-like values of t. The purpose of this extrapolation
is to determine the spectral function, which is the
imaginary part of the extrapolated form factor just
above the cut. Ke give below the notation' of I; the
reader is referred to I for lengthy discussions of this
extrapolation procedure and tests of its validity using
artificial data.

A form factor G(t) is related to the spectral function
g(t) using a subtracted dispersion relation:

in v;, and determine the coefficients a„

E(t))= P a r)". (3)

g(f)= P u„sine)(t).

The order S of the polynomial is determined by statis-
tical criteria, namely, we examine the goodness of 6t
y'- for different values of Ã. In general, y' decreases
rapidly as we increase S up to a certain value, at which
point it levels off somewhere near the number of degrees
of freedom.

The spectral function g(f) is determined by finding
the imaginary part of E(rf) at the cut in the rl plane,
namely,

1 "g(t')dt'
G(&)=- —, +G(—").

g, t' —t
(1)

Here the angle $(f) in the r) plane is given by

For the proton form factor, the spectral function starts
at the threshold to ——4 squared pion masses, or 2.0 F '.
We solve integral Eq. (1) for the spectral function by
making a conformal transformation to a new variable g.

r) = Pb (1—f/f s)'I']/L—b+ (1—f/ps)'~' J. (2)

Here b&1, but is otherwise arbitrary. In I we give
reasons for choosing 6= 2, and we shall make the same
choice in this paper. In Sec. IV we return to the ques-
tion of how to choose the value of b, and how sensitive
the determination of the spectral function is to the
choice of b.

Equation (2) transforms the cut f plane into the
interior of the unit circle in the q plane. We 6t the
measured form factors with a truncated power series

cos &(f) = (b'+1—t/ts)/(b' —1+t/fs).

N

P ea =0. (6)

Equation (4) shows that we are fitting the spectral
function with a truncated Fourier series.

In this paper we shall always use two constraints
discussed in I: (i) that the values of the form factors
given by Eq. (3) for f =0 agree with the very accurately
known static values; (ii) that the spectral function
have zero slope at threshold, corresponding to the
centrifugal barrier eGect for 1 states that can join
to the virtual photon in electron-proton scattering.
This p-wave constraint is

In I we sometimes imposed the restriction that the
subtraction constant G( —~) in Eq. (1) be zero, within
some chosen statistical error. This restriction is imposed
in our present work, and is discussed further in Sec. IV.

We have extended our previous work in several
respects. First, we are now imposing the additional con-
straint' that the complex electric and magnetic form
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factors be equal at t= 4', where 3f is the proton mass,

Ga (4M') =Gsr (4M'), (7)

Second, we are using data4 for G~ and G~ as of April
1964, while in I we used data as of February 1963. In
particular, the range has been extended from —45
F '&t&0 to —175 F '&t&0. Also we now pay special
attention to region t&4M' reached by proton-anti-
proton annihilation leading to creation of an electron-
positron pair. Third, we have studied the dependence
of our extrapolation on the value chosen for the param-
eter b in Eq. (2). We give several arguments justifying
the choice b=2.

The general conclusions of this paper are in agree-
ment with I. In particular we Qnd magnetic and electric
spectral functions each with a strong positive peak in
the region of 625 MeV, going through zero around
1050 MeV, and with a minimum around 1500 MeV.
The position of the peak is consistent with large con-
tributions by the vector p and co resonances located at
750 and 785 MeV, respectively. The width of the peak
is about 350 MeV, but the width is not well determined
by our extrapolation procedure, and is not inconsistent
with the 100-MeV width of the p resonance.

So far we have confirmed the conclusions reached by
assuming poles in the spectral function'; however, as
remarked in I, we have reached these conclusions with-
out having to assume from the beginning the impor-
tance of the p and co resonances. One advantage of our
extrapolation procedure is that we can obtain agree-
ment with preliminary measurements of the form
factors in the annihilation region, while such agreement
has not been obtained by pole fits.

II. CONSTRAINT AT t' 4M'

Two different arguments' led to Eq. (7), stating that
the electric and magnetic form factors are equal at
/=4M~. The first argument is based on the isotropy,
and absence of polarization eBects, for the electron-
positron pair produced by annihilation of very slow
antiprotons by protons. LSee Eq. (13) and related dis-
cussion below. f The second argument is based on the
algebraic relations

GE Fi+ (t/4M') Fs, ——
Gsr =Fi+Fs

If Gs(4Ms) A Gsr (4M') then Fi and Fs would be singular
at 4Ms. $1n Kq. (8) we are using the normalizations
GE(0) =Fr(0) = 1; Fs(0) = 1.793, the anomalous proton

4R. R. Wilson and J. S. Levinger, Ann. Rev. Fuel. Sci. 14
(1964).' J. S. Levinger, Nuovo Cimento 26, 813 (1962); S. Goto,
ibid 27, 1249 (1963);L. N. Hand, D. G. Miller, and R. Wilson,
Rev. Mod. Phys. 3S, 333 (1963); C. Akerlof, K. Berkeiman, G.
Rouse, and M. Tigner, Phys. Rev. 135, 3810 (1964); A. P.
Balachandran, P. G. O. Freund, and C. R. Scbumacber, Phys,
Rev. Letters 12, 209 (1964)„

P (—1)"c.=0;
n=P

P(—1)"rtc =0.
n=p

III. EXTRAPOLATION OF CURRENT
FORM FACTOR DATA

We apply the methods of the previous two sections
to current data' (April 1964) given in Table I. Here and
throughout this section we use b=2. Note that for the
magnetic form factor we have added the assumed datum
at t= —~; see the discussion in Secs. I and IV. LFor
Ii2 the behavior at —~ is covered by the constraints
(11)j

Since we need data on both electric and magnetic
form factors at the same momentum transfer to 6nd
the Pauli form factor Ii2, we have omitted measure-
ments of the electric form factor for —1&t&0, where
there are no measurements of the magnetic form factor.
At momentum transfers t of —6, —10, —14, and
—18 F ' we have combined two or three measurements
of the electric form factor. (The data were not inde-
pendent, so we have only estimated, rather than ca.lcu, -

moment in nuclear magnetons; and Gsf (0) = 2.793, the
total proton moment. )

One might hope that extrapolations of the data
woltld automatically satisfy the constraint Eq. (7),
and in fact the extrapolations in I did give electric and
magnetic spectral functions (constrained quart. ic fits)
that agreed within their statistical errors. This agree-
ment may have been accidental, since the fits for the
present data do not automatically satisfy the constraint
(7). The magnetic and electric spectral functions found
in Sec. IV are —1.9+0.1 and —0.5~0.1, respectively,
so the imaginary parts disagree by 10 standard errors
of the difterence'. The real parts of —0.8 and —0.3,
respectively, are also in disagreement.

We have adopted the following trick to enforce the
constraint. Ke treat the magnetic form factor as in I,
but we use Eq. (g) to find values of the Pauli form
factor P2 from the measurements of magnetic and elec-
tric form factors for negative t

Fs (Gsr —G——~)/ (1—t/4M') . (9)

We then fit these values of Ii2 with a power series in

g and extrapolate to the cut in the g plane. We then
extrapolate G~ using the extrapolations for G~ and Ii ~ ..

Gs ——Gsr —(1 t/4Ms) Fs. — (10)

Thus we have forced the extrapolated complex G»,:
to equal G~ at t=4M'.

We see from Kq. (10) that unless Fs vanishes suffi-

ciently rapidly for ~t~ ~ ~, we will obtain infinite
values for G~. In this paper we insist that tF2 remain
6nite, but we allow this finite value to give us a finite
subtraction constant for G~. We keep tF2 finite by
imposing two more constraints on the power series fit
in q with coeKcients c„:
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TmLE I. Data on proton electromagnetic form factors. The
variable n is given by Eq. (2), with bi=2; the datum for Gsr at
infinity is assumed, while the I'& value at infinity is given by con-
straint (11). The error given on Fs assumes a correlation coef-
ficient of —1 between the statistical errors quoted for G~ and G~.

t (Fw)
Magnetic

G~ Error
Electric

Ggg Error
.Pauli

Fg Error Ref.
q2 a 0

—1.0—1.6—2.0—2.98—4.6

—6.0—7.0—7.5—8.0—9.0

0.240
0.197
0.172
0.118
0.048

0.000—0.029—0.043—0.056-0.079

2.511
2.394
2.234
2.034
1.731

1.471
1.383
1.335
1.308
1.240

0.038
0.025
0.034
0.016
0.025

0.031
0.028
0.025
0.020
0.022

0.881
0.850
0.784
0.725
0.628

0.570
0.539
0.520
0,462
0.427

0.009
0.010
0.012
0.021
0.013

0.019
0.021
0.020
0.016
9.021

1.609
1.517
1.419
1.267
1.049

0.840
0.783
0.752
0,777
0.739

0.046
0.034
0.045
0.036
0.036

0.047
0.045
0.042
0.033
0.039

d, e
d
d
d
d Osa~ ~=4

—.8 -4
I

,4
I

.8
—10.0-11.0—12.0—13.0—14.0

—15—16—17—18—19

-0.101—0.121—0.138—0.156—O. 172

—0.186-0.206-0.213—0.225—0.236

1.130
1.075
0.979
0.913
0.887

0.831
0.795
0.773
0.704
0.691

0.022
0.020
0.022
0.039
0.025

0.048
0.014
0.020
0.014
0.017

0.417
0.409
0.389
0.374
0.350

0.326
0.285
0.260
0.301
0.274

0.020
0.020
0.021
0.037
0.029

0.055
0.021
0.032
0.020
0.032

0.642
0.593
0.521
0.471
0.462

0.433
0.433
0.431
0.336
0.344

0.038
0.036
0.038
0.066
0.047

0.088
0.030
0.044
0.028
0.040

d
d
d
d

d) e

d
d

d, e
d

FIG. 1.The proton magnetic form factor G~ versus the variable
v deiined by the conformal transformation (2) for b 2 T=he.

points show the data of Table I; the curve shows the polynomial
fit of Table IV.

—20—22—25—30

—0.248—0.268-0.295—0.333

0.673 0.031
0.633 0.020
0.447 0.016
0.382 0.014

0.203
0.155

~ ~

~ ~

0.072
0.075

~ ~ ~

0.385 0.084
0.384 0.076

—30—35—40—45—45

—0.333—0.366—0.393—0.416—0.416

0.422
0.314
0.232
0.238
0,240

Q.o4
0.012
0.018
0.022
0.024

0.164 0.05

~ ~ ~

0.124
~ ~ ~

0.04

0.194

~ ~ ~

0.077

0.068 g
~ ~ f
~ ~ ~ f
~ ~ ~ f

0,043 g

—75—ioo—125—175

—0.512—0.562—0.599—0.650—1.00

0.131
0.089
0.04
0.03
0.00

0.014
0.012
0.02
0.015
0.03

0.035 0.035
0.032 0.032
0.04 0.04
004 005

0.052 0.02 7
0.027 0.021
0.000 0.025—0.003 0.022
0.00 0.00
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published) .
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10, 500 (1963):and K. W. Chen (private communication).
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Wilson, Phys. Rev. 130, 2061 (1963).
& K. W. Chen, A. A. Cone, J. R. Dunning, Jr., et al. , Phys, Rev. Letters

11, 561 (1963), and (private communication).

lated the error of the averaged value. ) At I& —75 F ',
the data needed interpretation to give the values
quoted in Table I, particularly as regards the electric
form factor. For instance, at f, = —75 F ', the experi-
mentalists quote Grr ——0.00 (+0.069—0.00). The asym-
metry of the quoted errors is due to their measurement
of G~', and the condition that G~' must be nonnegative.
We have arbitrarily reinterpreted their result as
Gg ——0.035&0.035; this interpretation shows our preju-
dice for nonnegative values of GE. We have treated
G~ at t= —100 F ' in a similar manner. At t = —125
F ', only one measurement was made, so we know on1y
that

0.4 Gz'+ O.SG&sr =0.0025+0.0005,

TmLE II. x' values versus degree of polynomial. We use the
data of Table I; the magnetic fit uses constraint (6) and the Pauli
fit uses the additional constraints (11).

Degree of
polynomial

S
x' for magnetic

form factor
g' for Pauli
form factor

P2

interpreted. with our prejudice for positive proton form
factors.

The data of Table I were 6tted by the procedures of
Secs. I and II; also see the Appendix of I for least-
squares fits with constraints. We have used two con-

straints in fitting the magnetic form factor LEq. (6),
and discussion abovej, and two additional constraints

(11) in fitting the Pauli form factor Fs The y'. values

given in Table II for the magnetic form factor fits

clearly level off at X=5; we therefore use a constrained

quintic 6t. The value 66.1 is clearly large by statistical
criteria for our system with only 30 degrees of freedom;
but a study of the data of Table I strongly suggests
that this large x' value is due to disagreements among
different laboratories, e.g. , the sudden drop in G~l

from 0.633+0.020 at t= —22 F ' to 0.447~0.016 at
t = —25 F '. As Fig. 1 shows, the quintic fit interpolates
between these data in a smooth manner. Table II gives
y' values for the Ii 2 fits that level off at x'= 15.4 for a
sextic, through the z'- value of 35.1 for a quintic is

statistically acceptable. We adopt the sextic 6t.
The coef6cients u„ for the quintic 6t to the magnetic

form factor and c„ for the sextic fits to the Pauli form
factor are given in Table III. We give the diagonal
errors in these coefficients, as a rough indication of the
errors in the extrapolations, but the complete error

which we have interpreted as Gg=0.04&0.04, and
G~——0.04&0.02. For the highest momentum transfer,
t= —175 F ', only an upper limit on the differential
cross section was found, giving upper limits on G~ and
G~l of 0.09 and 0.05, respectively, which we have

443.6
276.7
66.1
65.0
64.7

2318
56.0
35.1
15.4
13.3
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TABLE III. CoeScients, and diagonal errors, for polynomial Gts
to the data of Table I; the x' values for these its are given in
Table II. l.5-

Magnetic form factor
~n Error

Pauli form factor
&rs Error

1.54
4.07
0.53—4.59—0.48
2.12

0.01
0.03
0.07
0.22
0.04
0.15

0.91
2.85
0.98—4.20—2.91
1.95
1.61

0.01
0.08
0.10
0.63
0.54
0.36
0.36

LO-.

q2~0

TABLE IV. Polynomial Gts for real g.' The coefBcients for the
tits to the magnetic and Pauli form factors (Gsi and F&) are given
in Table III; the complete error matrix is used in computing the
statistical errors. The electric form factor Gg is computed from
Eq. (10); its errors are approximate.

0.92
0.80
0.68
0.56
0.44

1.99
1.90
1.71
1.26
0.79

3.21
3.28
3.32
3.25
3.06

Error P2 Error

0.09
0.07
0.05
0.03
0.01

1.28
1.54
1.81
1.95
1.94

0.36
0,28
0.18
0.09
0.03

1.96
1.77
1.55
1.33
1.14

Error

0.44
0,35
0.23
0.12
0.04

0.333
0.32
0.20
0.08—0.04—0.16-0.28—0.40—0.52-0.64—0.76—0.88-1.00

0.00—0.12-1.56—3.78-7.38—13.2
2343—41.5—78.1—180—427—1958

2.793
2.753
2.34
1.87
1.38
0.92
0.54
0.26
0.10
0.05
0.07
0.09-0.003

0.000
0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.030

1.793
1.768
1.49
1.15
0.80
0.50
0.27
0.11
0.03
0.01
0.006
0.005
0.000

0.000
0.003
0.02
0.02
0,01
0.01
0.01
0.01
0.01
0.01
0.010
0.005
0,000

1.000
0.985
0.83
0.68
0.51
0.35
0.20
0.09
0.04
0.03
0.04-0.02—0.26

0.000
0.004
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.04
0.07
0.13

a sI is given by Eq. (2) for b =2.

matrix is used as discussed in I for the calculations
below of statistical errors of the extrapolations.

Table IV gives the values of the magnetic and Pauli
form factors, and statistical errors, for real q found
using the coefficients of Table III. We use Eq. (10) and
these fits to G~ and F2 to give the electric form factor
GE, the errors given for GE are approximate, since we
do not know the correlated errors between the a
and c values.

Figure 1 shows a curve for the fit to magnetic form
factors given in Table IV, as well as points showing the
input data and errors of Table I. This figure illustrates
the good 6t to the data in the region where we have
accurate measurements. The statistical error of the
extrapolation grows rapidly as we leave the region
where there are measurements, reaching 0.09 at g =0.92.
The statistical error remains small in the region
—1(g(0.64, since we have used a datum at g= —1, as
shown in Table I. Figure 2 compares the fit to the elec-
tric form factors with the input data of Table I. Again
the agreement is good, as shown by the good value of
y' for our fit to Ii2. The subtraction constant for the
electric form factor turns out to be —0.26, but not
statistically different from zero.

Table U gives the spectral functions for the magnetic
and Pauli form factors using the coefficients of Table

0 I-8 I I

0
1

.,4
I.8

Fxo. 2. The proton electric form factor G~ versus the variable
p defined by Eq. (2) for b =2. The points show the data of Table I;
the curve shows the fit of Table IV.

III, as well as the statistical errors in the spectral
functions. The electric spectral function is then deter-
mined from Eq. (10). Figure 3 plots the magnetic and
electric spectral functions versus the mass of the
intermediate state in MeV. The magnetic spectral
function is determined with the small statistical error
of about 0.2. There is a strong positive peak with a
maximum near 625 MeV, and. a full width at half-
maximum I' of 380 MeV. This width corresponds to
a 32' width in $, which as discussed in I is near the
minimum width expected in a Fourier series truncated
at five terms. (That is, the 380-MeV width is inherent
in our extrapolation procedure, and represents only an
upper limit for the width of the resonance. ) The values
of the position of the peak and its width are virtually
unchanged from the values for the restricted quintic
Q.t to the magnetic form factors in I.

The magnetic spectral function goes through zero
at 1050 MeV, and has a broad dip with a minimum
around 1500 MeV. This dip is broad in terms of energy,
but like the peak it is narrow when expressed in terms
of angle $, namely only 26'. We also see a dip at 340
MeV, or angle $ about 40'. Prom a statistical point of
view this dip should be taken seriously, since it is over
6 standard errors, but since our extrapolation procedure
has a tendency to produce spurious oscillations, we do
not believe the 340-MeV dip is well established.

The electric spectral function, shown with statistical
errors as the shaded band in Fig. 3, has the same general
features as the magnetic spectral function, but has
larger statistical errors. The main peak is at 750 MeV,
the zero at 1170 MeV, and the minimum at 1600 MeV.
(The wiggles near threshold are not of significance since
the statistical errors are large. ) By our method of first
fitting the Pauli form factor and then determining the
electric form factor, we have forced the electric spectral
function to equal the magnetic spectral function at a
mass of 2', or 1876 MeV. They remain close to each
other up to 2500 MeV.

We now use our extrapolation procedure to estimate
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both real and imaginary parts of the electric and mag-
netic form factors in the annihilation region, t &4M2 =90
F '. The real and imaginary parts are then combined
to give three different quantities, ' which could be de-
termined experimentally by measurements on electron-
positron pairs or muon pairs produced by proton-
antiproton annihilation. First, the total cross section
for lepton pair production by this process is propor-
tiona1. to

G'= [G/ ['y (i/2M') [GJg [' (12)

Second, the angular distribution do/dQ in the center-
of-mass system is proportional to

l(8) =2+A+A cos'0
where

A. =i[Go[2/4~2[G~[z 1- (13)

Finally, azimuthal eGects due to annihilation of polar-
ized antiprotons are proportional to the sine of the
phase difference P between the complex form factors
G~ and G~.

A preliminary measurement~ of the total cross sec-
tion at 172 F ' gives 6=2.2, based on six electron-posi-
tron pair events. The angular distribution, and polariza-
tion effects are much more dificult to measure. In
Table VI we give values for G, A, and sing for i in the
annihilation region. Note that by our constraint at
t=4M', we have enforced an isotropic angular distri-
bution and no polarization effects, i.e., A = sin&=0. At
higher values of t the anisotropy and polarization effects
increase, but they are still not large at t= 165 F 2.

This agreement with the experimental value of 6
represents a major advantage of our extrapolation
procedure over those to date using a sum of poles. '

TABLE V. Spectral functions. The magnetic and Pauli spectral
functions, and statistical errors, are found from the coefficients of
Table III. The electric spectral function is found from Eq. (10);
its errors are approximate. The mass is 197 t'"; the angle ( is given
by Eq. (5), with b=2.

t
(F ')

2.00
2.12
2.42
2.90
3.56
4.46
5.37
6.61
8.33
9.87

11.9
14.6
16.3
20.8
27.4
32.0
37.8
45.3
55.4
69.2
88.9

118
165
247
408
800

Mass
(deg) (Mev) G~

0.0 280 0.00
14.9 289 —0.27
25.8 308 —1.11
37.3 337 —1.77
47.5 373 —0.95
58.1 418 1.83
66.1 459 4.96
74.6 509 8.21
83.3 571 10.46
89.9 622 10.80
96.1 683 9.93

104 757 7.85
106 800 6.45
114 903 3.30
122 1037 0.32
126 1120 —0.87
129 1217 —1.75
134 1333 —2.29
138 1474 —2.47
142 1647 —2.35
147 1867 —1.98
151 2154 —1.46
155 2545 —0.91
160 3111 —0.41
164 4000 —0.05
168 5600 0.14
180 ~ 0.00

Error I'2 Error G~

0.00
0.03
0.13
0.26
0.30
0.20
0.07
0.18
0.34
0.39
0.37
0.29
0.23
0.10
0.11
0.14
0.17
0.18
0.18
0.15
0.12
0.08
0.05
0.03
0.04
0.04
0.00

0.00—0.67—2.69—4.05—2.14
2.97
7.50

10.72
10.97
9.18
6.14
2.61
0.95—1.59—2.67—2.66—2.37—1.90—1.34—0.82—0.39—0.10
0.05
0.10
0.08
0.04
0.00

0.00
0.16
0.67
1.12
0.92
0.21
0.82
1.39
1.43
1.10
0.60
0.26
0.39
0.66
0.67
0.58
0.45
0.31
0.17
0.08
0.07
0.10
0.10
0.07
0.04
0.02
0.00

0.00
0.38
1.51
2.15
1.11—0.99—2.09—1.73
0.50
2.61
4.60
5.66
5.58
4.52
2.12
0.84—0.38—1.35—1.93—2.16—1.98—1.49—0.87—0.24
0.29
0.43
0.00

Error

0.00
0.19
0.78
1.34
1.18
0.40
0.84
1.47
1.63
1.37
0.89
0.51
0.55
0.60
0.56
0.51
0.43
0.33
0.25
0.17
0.12
0.11
0.13
0.15
0.18
0.20
0.00

(If the poles are confined to relatively low masses, say
t&40 F ', then the value of G predicted is quite small
being of order 0.2. By construction, the imaginary
parts of G~ and G~ are zero at 172 F ', and the real
parts are quite small since the annihilation region is
so far away from the assumed pole positions. )

O
CP

4

Q

O
47
CL

Vl

IO- IV. DISCUSSION

In this section we discuss the sensitivity of our
extrapolation procedure to three different assumptions.
First, we compare the spectral function for the electric
form factor calculated directly from the data of Table I
with that calculated in the roundabout way of Sec. II.
This comparison tests the importance of the assumption

-5O 500 IOQO

Mass (Mev)

I J.
l500 2000

FIG. 3. The proton spectral functions for magnetic and electric
form factors versus mass of the intermediate state in MeV, taken
from Table V. The shaded region shows the statistical error for
the electric spectral function; the statistical error for the magnetic
spectral function is given in Table V.

'K. J. Barnes, Nuovo Cimento 28, 284 (1963); A. Zichichi,
S. M. Bermau, N. Cabibbo, aud R. Gatto, ibid 24, 170 (1962.).

~ M. Conversi, T. Massam, Th. Muller, and A. Zichichi, Phys.
Letters 5, 195 (1963); M. Couversi, T. Massam, Th. Muller, and
A. Zichichi, Proceedings of the Sienna international Conference on
E/errIentary Particles, 1963, edited by G. Bernadini and G. P. Puppi
(Societ6. Italiana di Fisica, Bologne, 1963).

t (F~) ReG~

89 —0.12
118 0.41
165 0.68
247 0.71
408 0.57
800 0.35

Error ReGz Error G Error A [sing[

0.08
0.09
0.09
0.07
0.05
0.03

—0.13
0.55
0.91
0.94
0.71
0.32

0.08
0.13
0.15
0.10
0.09
0.13

3.4 0.2 0.00 0.00
2.9 0.2 0.36 0.08
2.4 0.2 0.51 0.17
2.1 0.2 0.96 0.27
1.8 0.2 1.54 0.46
1,6 0.2 3.30 0.52

TABLE VI. Proton-antiproton annihilation into lepton pairs.
t is the momentum transfer. The real parts ReG~ and ReGg use
the coeKcients of Table III; ImG~ and ImGg are the spectral
functions given in Table V. The total cross section is proportional
to G'—see Eq. (12) and Refs. 4 arid 6. The angular distribution is
2+A+A cong: see Eq. (13).Polarization egectz are proportional
to sing, where @ is the phase difference between the complex elec-
tric and magnetic form factors.
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Restricted
magnetic
a„Error

Nonrestricted
magnetic
c„Error

Direct Qt to
electric
a„Error

Tmr.z VII. Coefricients for different polynomial 6ts. The
restricted magnetic 6t is for G~ of Table I, including the datum
at in6nite momentum transfer. The nonrestricted magnetic fit
is for Table I, but omitting this one datum. The direct fit to the
electric form factors uses G~ from Table I, with no point at
infinity.
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4.074 0.028
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x'= 66.1

1.545 0.007
4.11.8 0.044
0.558 0.076—5.066 0.425—0.834 0.276
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that G~(4M') =Ger(43P). Second, we compare the
magnetic spectral function calculated both with and
without the datum at infinite momentum transfer
which we used in Table I. Here we test the importance
of our restriction to approximately nonsubtracted dis-
persion relations. Finally, we examine the sensitivity
of our results to the value of b used in the conformal
transformation (2). We find that the calculation of G,
defined in Eq. (12), is much more sensitive to the value
of b than is the behavior of the spectral function near
its peak.

Figure 4 shows two different calculations of the
electric spectral function, both using the data of
Table I, with 6=2. The spectral function "using F2"
is from Table V and Fig. 3; the spectral function "found
by direct 6t" uses the coeKcients given in Table VII,
for a quartic 6t with the low g2 value of 17.3 for 25
degrees of freedom. We make a nonrestricted fit and
find Gs(—~) =0.6+0.2. Both spectral functions have
their main peak near 700 MeV, but the direct quartic
fit gives a much broader peak. , with a width of 600 MeV.
Also the direct 6t gives only weak evidence for a high
energy dip in the spectral function. Note the disagree-

I' IG. 5. Comparison of two magnetic spectral functions. The
restricted quintic, taken from Table V, uses the restriction that
the form factor be zero at infinite momentum transfer. The
nonrestricted quintic uses the same data from Table I without the
datum at infinite momentum transfer; the coefficients are given
in Table VIII.

ment between the two curves at a mass of 2&=1876
MeV, where the fit using Ii 2 is forced to have the value
of the magnetic spectral function.

In Table VII we also compare coeKcients for two
diferent fits to the magnetic form factors of Table I.
The restricted fit is that of the previous section (Table
III), using the datum at infinite momentum transfer.
The second, nonrestricted fit makes no assumption
concerning the behavior of the magnetic form factor
at infinite t. We find G3r( —oo) = —0.4&0.3. Note that
the restricted and nonrestricted fits agree closely both
as to the values of E, a„, and the y' values, the main
difference between them being the larger errors in
u3, a4, and as for the nonrestricted 6t. Figure 5 shows
that the two spectral functions found from these
coeKcients (solid for restricted and dashed curve for
nonrestricted) agree very well. We conclude that our
restriction on Gsr( —~) does not have a large effect on
our extrapolation of the proton's magnetic form factor.

TAm, E VIII. g' values for different choices of b and E. The x'
values for 6ts to the data of Table I are given for different choices
of the degree 37 of the polynomial, and the parameter b used in
Zq. (2). In Sec. II we used b=2, a quintic Gt for the magnetic
form factor, and a sextic fit for the Pauli form factor.
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Fro. 4. Comparison of two electric spectral functions. The curve
"using F2" from Table V uses a fit to the Pauli form factor Ii2.
The "direct Gt" is a quartic in p Btted directly to the data of
Table I. The shaded regions shows the statistical errors.

E b=1 b=15
3 698 324
4 209 290
5 79.0 66.3
6 6/. 5 65.0
7 59.1 62.9
8 545

E b=i b=15
3 297 1089
4 166 iii
5 14.1 25.6
6 13.2 13.8
7 12.8 13.0

Magnetic form factor
b=2 b=2.5 b=3
444 1259 2807
277 210 139
66.1 72.5 79.3
65.0 65.1 65.0
64.7 65.1 64.9

440 45 7

Pauli form factor
b=2 b=2.5 b=3

2318 3762 5292
56.0 38.1 78.3
35.1 37.4 34.6
15.1 17.6 19.8
13.3 ~ ~ ~ 14.6

b=3.5
5014

98
83.3
64.8
64.7
48.3

b=3.5
6853

183
30.0
21.7
15.4

7748
87
83.8
64.6
64.6
51.1

b=4
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TABLE IX. CoefBcients for polynomial fits for different choices of b. The coe%cients u and c and their diagonal
errors for Qts to the data of Table I using difierent values for the parameter b in Eq. (2).

b =1.5g„Error b=2
Error

b=2.5a„Error b=3g„Error b =3.5g„Error

2.14
3.47—2.35—6.01
1.07
2.90

0.01
0.01
0.02
0.03
0.07
0.19

1.54
4.07
5.29—4.59—0.42
2.12

Magnetic form factor,

0.01 1.11
0.03 3.71
0.07 2.08
0.22 —3.35
0.04 —1.33
0.15 1.50

quintic its:
0.01
0.03
0.04
0.19
0.04
0.13

0.79
3.22
2.99—2.20—1.83
0.94

0.01
0.03
0.04
0.17
0.05
0.12

Magnetic form factor,

1.10
3.76
2.50—3.72—3.56
1.51
1.51

sextic fits:
0.01
0.04
0.16
0.23
0.82
0.13
0.55

0.78
3.22
3.57—1.99—4.63
0.46
1.97

0.01
0.03
0.16
0.18
0.74
0.18
0.52

0.56
2.64
4.08—0.23—5.08—0.63
2.22

0.01
0.03
0.14
0.26
0.70
0.26
0.52

1.34
2.88—1.56—6.62—1.92
3.39
1.80

0.02
0.05
0.36
1.12
0.64
0.66
0.53

0.92
2.85
0.98—4.20—2.90
1.95
1.61

Pauli

0.01
0.08
0.10
0.63
0.54
0.36
0.28

form factor,

0.62
2.47
2.11—2.44—3.08
0.97
1.35

sextic its:
0.01
0.07
0.11
0.42
0,50
0.24
0.30

0.42
2.04
2.61
1~ 12—2.91
0.27
1.07

0.01
0.06
0.15
0.31
0.49
0.17
0.28

0.28
1.64
2.77—0.09—2.54
0.28
0.77

0.01
0.05
0.19
0.23
0.50
0.13
0.27

Ke now examine the sensitivity of our results to the
value of the parameter b used in Eq. (2), and we at-
tempt to justify the choice b=2 used above. In I we
introduced two criteria for the choice of b, and found
they were both met for b=2. (i) The data for real rt

should be approximately centered around the origin.
(For data used in I the centering suggests b=2; this
criterion now suggests b=3 for the magnetic fit, since
the range has been extended from —45 F ' to —175
F—'.) (ii) The peak in the spectral function should be
near angle $ = 90', since otherwise a fit with a truncated
Fourier series tends to displace the peak towards 90'.
This displacement effect was shown in I for arti6cial
data based on a Clementel-Villi form factor. Equation
(5) and Table V show that the peak near 700 MeV
does indeed occur at /=90' with the choice b=2

In this paper we introduce two additional criteria
for the choice of b. (iii) We examine in Table VIII the
y' values of the restricted its versus both the value of
b and the degree lV of the polynomial. (iv) We examine
in Table X the extrapolated value of G(172) versus
the value chosen for b.

The magnetic form factor value of y'=66. 1 for a
quintic fit with b=2 is seen from Table VIII to be the
lowest for any quintic fit. A sextic fit lowers the z'
so little that the slight improvement does not seem
worthwhile, since the errors in the extrapolation in-
crease rapidly with the degree of the polynomial. The
improvement in x' values for the octic Gts is at the
expense of such large errors that the extrapolated spec-
tral function is worthless. The Pauli form factor has
y' values that are statistically acceptable for the

TABLE X. Extrapolated value of G for annihilation. The total
cross section for proton-antiproton annihilation into lepton pairs
is proportional to G'. We use the coefricients of Table IX to extrap-
olate the formfactors tot=172 F 'anduse Eq. (12) to determine
G; the statistical error given is only approximate.

Approximate
error

Quintic fit to magnetic form factor:
1.5 1.2
2.0 2.5
25 3.9
3.0 5.0

0.1
0.1
0.2
0.3

2.5
3.0
3.5

Sextic fit to magnetic form factor:
1.4
2.6
5.2

0.4
0.7
1.3

whole range of b considered for either a quintic or a
sextic fit. We choose the sextic fit. Thus the y' argument
suggests b=2 for the conformal transformation for the
magnetic form factor and does not argue against this
value for the Pauli form factor fit. The coefFicients a
and c for different values of b are given in Table IX.
We use these coeKcients to find the value of G for
annihilation into lepton pairs at t=172 F, for dif-
ferent choices of b. For each b, we use the sextic fit to
F2. For 1.5&b&3 we use quintic fits to G~, while for
2.5&b&3.5 we also use sextic its to G~. Table X shows
that the values found for G are sensitive to the value
chosen for b.

In the previous section we used this dependence of
G on b to choose the value b = 2 to obtain agreement with
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PIG. 7. Comparison of two magnetic spectral functions. The
uintic usin b=2 is taken from Table V; the sextic using b=3

has coefIIicients given in Ta e . e s abl IX. The shaded regions show the
statistical errors.

Wilson and Levinger in their review paper ') The e»»a)
in the sextic fit is suAiciently large that there is not a
clear disagreement between the two spectral functions
of Fig. 7. Our picture of a peak around 625 MeV, a zero
around 1050 MeV, and a dip around 1500 MeV re-
mains unchanged.

In conclusion, we 6nd that our extrapolated values
of the proton's spectral functions are quite similar to
those found in I, but that our confidence in the extrapo-

0 I I

lation procedure has increased. In particular, the
main peak in the electric spectral function is not
affected greatly by imposing the constraint that
G (4M') =Ger(43P) as illustrated in Fig. 4, though
the dip around 1500 MeV is greatly changed. Furt er,

8 M

r her
as illustrated in Fig. 5, the magnetic spectral function is
changed only a little by the use of an assumed datum
at infinite momentum transfer. Finally, the value o
the arameter b used in the conformal transformation

2.0 2.5 3.0
(2) could be determined with sufhcient accuracy by an
inaccurate measurement of the annihilation cross sec-

FIG 6 DePendence of extrsPolatlon on e VR u P
h t into lepton pairs() o()

d d f G b using Table X for quintic fits to the msgne icepen ence o on

namel t at id n herror in our extrapolation proce ure y"'"""'"""""'"'"""'""""""""'""'
her - ll " "k-d dip f"l"los g herof b.

they are spread apart by our procedure of fitting with
rement of G. That is, the agree- a truncated Fourier series. T..is effe yeffect is clearl shown

b h t'fi i ld ill di I, Fi 11(b), hment found at the en o e pnd of the revious section is not y t e ar i cia a a
t t al function data consisted of 2 reso-a fortuitous accident. However, it may b 'g '

ma be of si nificance t e input spec ra unc
650 and 900 MeV. The artificial dataof b near 2 b three other nances located at an

h h btt th th t ftharguments.
as onl a modest effect real data used here; but the artificial data had a smaller

6h h

a '
n near the main peak. range, and cou e e wi a

sensitivit of the value of G to with the quintic ts ere o eFigure 6 compares the sensitivi y o

y f
' . Th tput spectral function successfullyour choice of b to the relative insensitiv' y gyitivit of the ener y unction. e ou pu

o eaks but s read them apart to 550a netic s ectral function. (In both resolved the two pea s, u sprea
e ves d 1150 MeV respectively. The position of the zerocases we confine ourse ves qelves to uintic fits to the magnetic an . e, respec

'

f the s ectral function was not changed. If this system-form factor. ) When we vary fi from 1.5 to 3, the va ue o t e spec ra
of G in Table X and Fig. 6(a) increases by a factor of 4;
but the energy of the peak LFig. 6(b)] varies only from

I530 to 720 MeV. An accuracy of 25% in the measure-
ment of G is sufficient to determine the value of b Sextic
with suflicient accuracy for a 5% determmation of the
peak energy; note that this quoted 5% error in t e

pea energy is oe yk
'

ority that due to inaccuracies in knowl-

edge of the value of b.
Of course, one can vary the degree iV of the poh-

nomial simultaneously with vary'ng
shows that in this case it is possible to keep the same
value of G for a different value of b: cf. the quintic fit
with b = 2 and the sextic fit with b =3. One might wonder
how much the magnetic spectral function would e

afiected by this simultaneous change in Ã and b. We
compare the two spectral functions in Fig. 7. We find
that the increase in the value of b does shift the pea
energy to a higher value. The sextic fit with b=3 has

MeV for the quintic using b=3, and 620 MeV or t e
quintic using b=2 (The sextic fit is reproduced by
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atic error is occurring to a similar extent in our present
work, the magnetic spectral function peaks at 620 and
1400 MeV shown in Fig. 3 might actually represent the
effects of a truncated Fourier series in fitting, say, a
p-te peak near 750 MeV, a g at 1050 MeV, and a p'
peak' at 1250 MeV. (Note that it is uncertain whether
the p' is 1 .) In any case, the region below 1000 MeV is
not inconsistent with this interpretation. The position
of the zero at 1050 MeV may well be more accurate
than the positions of the peak or the dip. Finally, the
value of 6 for the annihilation process argues for a
long high energy tail on the spectral function, as in

Fig. 3, rather than approximating the spectral function
beyond 1000 MeV by a single pole.
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Possible Exyerimental Consequences of Triangle Singularities in
Strange-Particle Production Processes*
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Observable consequences of anomalous threshold singularity for triangle diagrams are examined with
special reference to cases where baryon resonances of narrow width participate as an internal line in the E~

channel. It is found that the reaction E +P ~ It+v+, with (1530) included as an internal line of the
graph, offers the best experimental situation for detecting an anomalous singularity effect by studying the
(E7(.) mass spectrum in anal state.

I. INTRODUCTION

'HE actuality of anomalous singularities has long
been regarded by Goldberger as a critical test of

present-day notions concerning the analyticity of tran-
sition amplitudes involving production reactions. In-
deed, in many of the dynamical approaches to strong-
interaction physics, one abandons several important
concepts in conventional Geld theory, yet, nevertheless,
assumes that the singularities of the perturbation am-
plitude are maintained in the correct amplitude. ~ To
the extent that one knows, on the strength of perturba-
tion theory, that amplitudes for production reactions
are in general characterized by the presence of various
anomalous threshold singularities, both real and com-
plex, ~~ it is evidently of great importance to the current
theoretical premise that experimental manifestations
due to these singularities be found.

Landshoff and Treiman' first tackled this question in
connection with simple triangle diagrams such as

*Work supported in part by the U. S. Air Force Once of
Scientific Research and the National Science Foundation.' P. V. Landshoff and S.B.Treiman, Phys. Rev. 121,649 (1962).

'H. P. Stapp, Phys. Rev. 125, 2139 (1962); G. Kallen and
A. S. Wightman, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 1, 6 (1958).

'L. D. Landau, Nucl. Phys. 13, 181 (1959).' R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
5 P. V. Landshoff and S. B. Treiman, Nuovo Cimento 19, 1249

(r96r).

illustrated in Fig. 1, where E is the incoming energy,
tn and gs are effective masses of particles emitting
from the second and third vertices. The singularities we
wish to observe are not poles, but provided they are
infinites rather than simple branch points, there is hope
that they can give rise to observable effects when they
are close to the physical region. Landau' and Polking-
horne and Screaton' have prescribed rules that only the
simplest graphs produce singularities of the infinity.
type. Since the simple triangle diagrams are indeed the
only graphs with three external vertices that give rise
to infinities, they are the logical graphs to survey in the
first instance.

The process considered by Landshoff and Treiman

FXG. 1. BaSiC tri-
angle graph under
consideration.

6 J. C. Polkinghorne and G. R. Screaton, Nuovo Cimento 15,
925 (1960).


