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Crossing Relations and Legendre Expansions in Pion-Pion Scattering*
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The direct use of crossing relations for pion-pion scattering amplitudes, outside the triangle bordered by
the lines s=0, t=0, and u=0 in the Mandelstam diagram, is not generally possible. This is because the
regions of convergence of the usual Legendre expansions for the amplitudes are restricted by cross-channel
cuts in appropriate cos8 variables. These convergence difhculties may be relieved by suitably decomposing
each amplitude into two terms. One term difITers in analytic properties from the actual amplitude in that
portions of the cross-channel cuts in cos0 nearest cos0 = &1 are absent. The Legendre expansion of this term
has a larger region of convergence than that for the actual amplitude. The other term in the decomposition is
expressed in terms of the Legendre series for physical scattering in the cross channels. The amplitudes so
represented may now be continued from one physical region to another, and crossing relations may, in
general, be directly applied outside the triangle. As a simple application of the formalism, the existence and
approximate mass and width of the p meson are found to be simple consequences of analyticity, unitarity, and
crossing symmetry.

I. INTRODUCTION

s INCE the formulation by Chew and Mandelstam'
of the double dispersion relation approach to pion-

pion scattering, various approximation schemes have
been used in order to construct the pion-pion scattering
amplitude. ' "

Although different in many details, these schemes
are all more or less similar in their employment of
crossing relations. These relations are used (1) to
establish connections between the invariant isotopic
spin amplitudes inside the triangle bordered by the
lines s=0, t =0, and I=0 in the Mandelstam plot and
(2) to express the nearby left-hand discontinuities of
the partial-wave amplitudes in terms of physical scat-
tering in the crossed channels.

Now as long as we use Legendre expansions for the
invariant amplitudes in the three physical regions of
the Mandelstam plot, it is not generally possible to
use crossing relations directly at points outside the
triangle. They cannot be used at all at such points
corresponding to physical scattering angles. The reason
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for this is well known. The Legendre expansion in the
physical region of the s channel, for example, fails to
converge for s&0. The t and I channels give rise to
branch cuts along the real axis in the cos9, plane (s
fixed) starting at coso, =&(s+4)/(s —4). For s(0,
(s+4)/(s —4) becomes less than unity in magnitude
and, consequently, the Legendre series in cos8, will
not converge. " Similar results hold for the t and I
channels. Thus the triangle enclosed by s=0, t=0, and
u=0 is the only common region of convergence of the
Legendre series for the invariant amplitudes in the
three physical regions.

In this paper, we present a method for using the
crossing relations outside the triangle. The convergence
difhculties just discussed are eliminated as follows. We
expand in a Legendre series, not the actual invariant
amplitudes, but modified amplitudes" in which por-
tions of the cuts in cose nearest coso=&1 have been
removed. The regions of convergence of the Legendre
series for the modi6ed amplitudes are thus larger than
those for the actual ones. The differences between the
original and modified amplitudes are expressible in
terms of the physical scattering in the crossed channels.
We show in the following section that the actual ampli-
tudes, when decomposed into these modified amplitudes
and remainder terms, are easily continued analytically
from one physical region to another. The crossing
relations may then be used directly even outside the
triangle.

The extra supply of "practical" crossing relations
thus obtained should prove useful in any program
which involves trial amplitudes, partially satisfying
unitarity and analyticity requirements and containing
parameters to be determined by means of crossing
conditions, dispersion relations, etc."

In Sec. II, we describe the construction of the modi-
fied amplitudes and remainders and present the crossing

"See, e.g., Secs. 15.4 and 15.41 of E. T. Whittaker and G. N.
Watson, Moderl Analyses (Cambridge University Press, New
York, 1952).

"See, e.g. , Refs. 10 for a program of this type.
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The pion mass is taken to be unity so that pq'=P~'
=pg =p4 = 1 and s+/+u= 4.

In the s channel, s is the total c.m. energy squared
and t is the c.m. momentum transfer squared. In terms
of the square of the center-of-mass momentum v, and
scattering angle e„we have

FIG. 1. The pion-pion inter-
aCtiOn 7t-+m ~ 7t-+x. s= 4(v,+1),

t= —2v, (1—cosg,),
u= —2v, (1+cosg,).

(2.3)

relations in terms of these. Approximate crossing re-
lations for the low-energy region are discussed in Sec.
III.

The practical usefulness of the formalism of Secs. II
and III can only be determined by detailed calculation.
In order to gain some insight into the matter, we de-
scribe, in Sec. IV, a crude calculation of low-energy
I=7=1 pion-pion scattering. The (X/D)-effective
range method of Balazs' is used to construct a unitary
partial-wave amplitude. Two pole terms are used to
account for the left-hand singularities and inelastic
effects. The pole positions are determined using Balazs'
criterion, and the residues are determined by using an
approximate form of the crossing relations of Sec. III.
This procedure yields values for the residues corre-
sponding to a resonance at a c.m. energy of 575 MeV
with a half-width of 120 MeV. These results are about
the same as those obtained by Balazs using a fixed s
dispersion relation. ' Unlike the Balazs procedure and
other "bootstrap" techniques, ~ the present method
does not involve the a priori assumption of the existence
of a resonance. The resonance, in the present calcu-
lation, seems to arise as a natural consequence of
analyticity, unitarity, and the crossing relations. "

Section V is devoted to a summary and some remarks
on work in progress.

II. MODIFIED AMPLITUDES AND CROSSING
RELATIONS OUTSIDE THE TRIANGLE

In the t channel, s becomes the c.m. momentum transfer
squared and t the square of the total c.m. energy. Thus,

s= —2v&(1 —cos8~),

t=4(v,+1),
u= —2v, (1+cos8g),

(2 4)

where v& and 0& are the c.rn. momentum squared and
scattering angle, respectively.

We denote by Az(s; tu) or Az(v„cosg, ) the amplitude
for isotopic spin-I scattering in the s channel. Note
that we put the energy variable to the left of the semi-
colon in the former expression. Similarly, Az(t; su) or
A (v~, cos8,) denotes the isotopic spin I amplitude in
the t channel, etc. The Al for the s channel are related
toA, B, andCby

A'= 3A+B+C,
A'= J3—C,
A'= B+C.

(2 5)

A (stu) =A (su/),

B(stu) =C(sut),

A (sou) =C(ups),

B(sou) =B(uts), etc.

(2.6)

(2.7)

Hy inserting these relations into (2.5), we obtain the
crossing relations for 3~:

The crossing relations implied by generalized Pauli
statistics are

In order to make our argument clear, we first review
those aspects of the work of Chew and Mandelstam'
which are relevant for our purpose.

The pion-pion scattering amplitude is expressed in
terms of the three invariant functions A, 8, C, as

A(sou)b s8«z+B(stu)h «5pz+C(stu)5 qop«, (2.1)

where n, p, 8, y are the isotopic spin indices (see Fig. 1)
and s, t and I are defined by

s= (pi+ p2)',
t= (pi+ p3)',
u= (Pi+P4)'.

(2.2)

"This is consistent with the point of view expounded, e.g., in
Refs. 9 and 10.

where

and

Az(s; &u) =g uzz A'(t; su),
7I

Az(s; tu) =Q Pzz A'(u; ts),

I, I'=0, 1, and 2

1/3 1 5/3
'

~zz. = 1/3 1/2 —5/6.1/3 —1/2 1/6 .
1/3 —1 5/3'

Pzz. = —1/3 1/2 5/6. 1/3 1/2 1/6.

(2.8)

(2 9)

(2.10)

(2.11)
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The Ar(s; tu) satisfy the dispersion relations

1 " A, '(st') 1 " A „'(su')
Ar(s; tu) =— dt' +— du', (2.12)

4

where subtractions are ignored. A,r(st) and A„r(su)
are the absorptive parts of Ar(s;tu) in the t and u
channels, respectively.

The crossing relations in terms of partial-wave
amplitudes are easily obtained by expanding both sides
of (2.8) )or (2.9)$ in Legendre series. '4

Ar(s; tu) =Ar(v„cos8, )

u=a

u=Q u~O

s=4-a
s=O

t=a

l even (I =0, 2)
l odd (I =1)

Ar(t; su) =As(v~, cos8~)

l even (I =0, 2)
l odd (I =1)

(2l+1)Air(v, )Pi(cos8,), (2.13)

(2t+1)A) (,)P$(cos8,). (2.14)

ph

physical region
or s- channel

Qcos8g ""Js

The variables on the left- and right-hand sides of (2.13)
and (2.14) are related. through (2.3) and (2.4), re-
spectively. Thus v&, cos8&, v„and cos0, satisfy the
relations

v, =-,' v, (1+cos8,)—(v,+1),
p, (1+cos8,)+2 (v,+1)

cosa'=
v, (1+cos8,)—2 (v,+1)

(2.15)

(2.16)

The partial-wave amplitudes Air(u, ) and A P(v~) are,
of course, the same functions of their respective vari-
ables v, and vg. Ke have

I

Air(v) =— d cos8P~(cos8)Ar(v, cos8). (2.17)
2

even even'~The restriction of t for I follows from (2.5)odd odd
and (2.6), which imply AI(stl) = (—1)rAI(sit).

Although this procedure leads to simple crossing
relations, we encounter the inconvenience mentioned
in the Introduction. Namely, the common domain of
convergence of the Legendre series for both sides of
(2.8) and (2.9) is limited to the inside of the small
triangle bordered by the lines s=0, t=0, and u=0 in
the Mandelstam plot (see Fig. 2). The Legendre series
(2.13), for example, converges in the inside of a certain
ellipse with foci (&1,0) in the complex cos8, plane
(v, fixed), if, and only if, the original function
Ar(v„cos8, ) is analytic in the same ellipse. " It is,
however, well known' that A(i„cos8,) has branch
points at cos8, =&(1+2/v.). Thus, when v, & —1 Lor
s(0$, these branch points are in the interval —1 ~& cos8,
~&+1 on the real axis, and we have no region where the
convergence of the series is guaranteed. These circum-
stances are very clearly seen on the Mandelstam plot.
We see that when s&0, the two crossed cuts starting

from t=4 and u=4 extend into the region —1~&cosy,
~&+1. The thresholds for these branch cuts correspond
to the above-mentioned. branch points in the cos8,
plane. Similar results hold for the expansion (2.14). In
particular, the expansion fails to converge for t(0.
Finally, the Legendre expansion for physical scattering
in the u channel fails to converge for u&0, and we thus
verify our previous statement concerning the common
domain of convergence.

In order to overcome this difhculty, we remove from
Ar(s; tu) the contributions due to nearby singularities
of the crossed cuts. This results in a modified amplitude
A given explicitly by

E'(s; tu) =A'(s; tu) —P'(s; tu), (2.18)
where

1 ' A, '(st') 1 ' A '(su')
Pr(s tu)= — dt' +— du'

4 t' —t x 4 u' —u
(2.19)

a is an arbitrary constant (a)4), which is to be chosen
conveniently in the course of numerical calculations.

The crossed cuts of Ar(s; tu) now start from t=a
and u=a )see Eq. (2.12)]. Thus the Legendre series
expansion of A. r (s; tu), i.e.,

A. '(s; tu) =A'(v„cos8, )
(2t+1)Pi(cos8,)A ir(v, ) (2.20)

l even (I =0, 2)
l odd (I =1)

os'-I )
ossa=-l Jl

FIG. 2. The Mandelstam diagram for 7r-m scattering. The region
of convergence of the expansion (2.20) (with cosg, physical) and
s(4 is given by the triangle cPB. The common region of con-
vergence of the expansions (2.20) (with cosa, physical) and (2.14)
is given hy the trapezoid oPyh The ma. tching points (4.17) are
indicated by the symbol . For u = j.6, the regions of nonvanishing
double spectral functions are beyond the region indicated in the
figure.
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Ai'(v, )=-
2

(2.24) and (2.25) into (2.19) gives

8cos8Pi(cos8, )As( ., cos8,) (221) ps( )
1

8 (4 Le+2 v, (1—cosH, )j
converges for v,)—~4@. By inserting (2.18) into (2.21)
we obtain, for each /, the relations

1

A 2 (vs) =A 2 (vs) d cos88Fi(cos88)
2 ]

XFr(v, cosH, )
=—Ai'( )—Fi'( ) (2.22)

Thus, Ar(s; tu) has the following modified expansion
for v, ~ —4a:

1
(—)'

Px+2v. (1+cosH,)j
XP 8)'zrs

l even (I'=0, 2)
l odd (I'=1)

(2t+1)

In obtaining (2.26), we have used

2$
XIsoA, s( ', s—1)Pi(-1+ . (2.26)

x—4

Ar(s; tu) =AI(v„cosH, )

(2t+ 1)Fi(cosH, )
and

&i(—s) = (—)'Fi(s),

zz~ Ized

(2.27)

(2.28)
l even (I =0, 2)
l odd (I =1)

X PA i'(v.) F2'(v—,)$+F'(s; tn) . (2.23)

Note that the summations on the right-hand side of
(2.23) cannot be taken separately, since each diverges
individually. In Fig. 2, the domain of convergence of
the expansion (2.23), corresponding to —1 ~&cosH, ~& 1,
is shown. This domain does not contain any of the
physical region for the t channel. However, since
Ar(t; sl) is analytic in the strip 0&~I~&4, this function
can be easily continued into this strip in terms of the
Legendre series (2.14).Thus we have a common domain
where both expansions (2.23) and (2.14) converge (see
Fig. 2).

Our final task in this section is to show that Fr(s; tu)
and F,r(v,) in (2.23) can also be expressed in terms of
the Legendre expansions of the physical amplitudes.
The function A8I(st) in (2.19) and (2.12) is the dis-
continuity of the t cut of Ar(s; tu). By using the
crossing relation (2.8), we can express this discontinuity
in terms of the imaginary part of Ar(t; sm), as long as
we remain outside the region of nonvanishing double
spectral functions (s) —32).' After expressing this
imaginary part in terms of its Legendre series, we obtain

Finally, Fir(v.) is given by

1

Fi'(v, ) =— d cosH, F((cosH, )Fi(v„cosH,)
—1

«()~(1+ )
PPlr (2t'+ 1)

I' l'even (I'=0, 2)
l' odd (I'=1)

2$
yPl. 1 ImA, .»'

—,'x—1, 2.29
x—4

where Qi(s) is the I.egendre funct:ion of the second type
defined by""

(2.30)

Substitution of A(s; tl), given by (2.23), (2.26),
and (2.29), into the left-hand side of (2.8) and (2.9),
thus yields crossing relations, expressed entirely in
terms of partial-wave Legendre expansions, which are
valid for a region outside the smaH triangle.

A, '(st) =Q ~rr
»' l even (I =0, 2)

l odd (I =1}

2$
(22+1)P((1+ III. APPROXIMATE CROSSING RELATIONS AT

LOW ENERGY AND THE CONSTRUCTION OF
UNITARY PARTIAL-WAVE AMPLITUDES

»/ l even (I =0, 2)
l odd (I 1}

2s ))

&Pl —1— ImAlI' ~N —1 . 2.25
u —4i

These expansions converge for s& —32.' Substitution of

XImA ir'(-,'t 1) . (2.24)—
We have used the relations cos88= [2s!(t—4)j+1 and
v8 ——(Xit) —1. Similarly, We haVe

In Sec. II, we set up exact crossing relations in terms
of Legendre expansions. In this section, we propose a
low-energy approximation scheme based, in part, on
these relations.

A basic assumption in our approach is that for
suKciently small v8, only s-wave (I=O, 2) and p-wave
(I= 1) terms need be retained in the expansion (2.14)
for the right-hand side of the crossing relation (2.8).
This assumption, which is based on the v' threshold

"Reference 11, p. 316.
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behavior of A&~ imposed by the Mandelstam repre-
sentation' (or in less precise terms, the 6nite range of
interaction), is more or less common to all previous
approaches. ' '0

For reasons discussed below, it is convenient to
consider cos0, on the left-hand side of (2.8) to be
physical (~ cos0,

~
(1).Therefore, when using (2.8), we

must continue the Legendre series (2.14) into the region
cos8,(—1 (see Fig. 2). The region where the above
approximation for (2.14) remains valid must then be
carefully studied. We discuss this point in the next
section.

Now consider the left-hand side of the crossing re-
lation (2.8). We expand this as (2.18) and (2.20) and
retain only the s and d waves for I=O, 2 and the p and

f waves for I= 1. In this case, the expansion coeKcient
is not A ~'(v, ) but A~'(v, ). For points outside the tri-
angle in the unphysical region with ~cos8,

~
(1, we

have v,(—1.Now, for v, less than —1 but considerably
greater than —~~a, we may justify our retention of only
the ffrst few partial-wave terms of (2.20) as follows.

First, we see from (2.12), (2.18), and (2.20) that
A ~'(v, ) is analytic in the interval (—r4a( v, (0) on the
real axis. Note that A~I(v, ) is only analytic in the
interval (—1(v,&0) on the real axis. Furthermore,
Aqr(v, ) and A~r(v, ) have the same v, ' threshold be-
havior. Since Ag'(v, ) has its left-hand cut starting
furth, er out than that of Ar(v, ) Lthis corresponds to a
shorter range "effective" interaction for Aqr(v, )j, the
A~~ should be more suppressed at large l and small v,
than the corresponding A ~~.

The situation may perhaps be clarihed by considering
A~r as a function of k=gv, . Then A~r(k) has the
analytic structure shown in Fig. 3. A&r(k) has a Taylor
expansion about k=0 and we thus expect that 2~1(k)
for large / is still small on the imaginary axis as long as

~
k

~
is considerably less than the smaller of —,'ga or V3,

the radius of convergence of the Taylor expansion. The
situation is quite different for Aqr(k), where —',ga in
Fig. 3 is effectively 1. In this case, the radius of con-
vergence is one and we would expect A P(k) to be small
only for ~k~ considerably less than unity.

In (2.20), the d-wave contribution for I=O, 2 and

FxG. 3. The ana-
lytic structure of
A gr(k) where k =V'v;
the values &kr
=&%3 correspond to
the inelastic thresh-
old.

the f-wave contribution for I= 1can ea-sily be elimi-

riated by choosing the matching point for the crossing
relation (2.8) on the line cos8,= —g'p and cos8,= —QP„
respectively. On these lines Fp(cos0, ) and Fp(cos0,),
respectively, vanish. We now see the reason for re-
stricting cose, to physical values.

Finally, in Fr(v„cos8,) and FP(v.) given by (2.26)
and (2.29), respectively, we retain only the s- and p-
wave contributions. This approximation should be
fairly good as long as (xra —1) is (3.

In summary, the approximate expressions for (2.8),
appropriate for the low-energy region, are

A p'(v )—Fp'(v )+F'(v —g-')
= pAp'(v, )+3Ar'(v, ) cos8,+ (—,)Ap'(v, ), (3.1)

—3V'pLAr'(v. )—Fr'(v.)l+F'(v. —V'p)
=-,'Ap'(vg)+-, 'Ar'(vg) cos0,——pAp'(v)), (3.2)

A p'(v, ) —Fp'(v, )+F'(v„—Q-', )
=-', A p'(v, ) —-', Ag'(v() cos8,+-,'Ap'(v, ), (3.3)

where v& and cos0, are given by (2.15) and (2.16),
respectively, with cos8, = —Q-', in (2.26) and cos8,
= —g-', in (2.27). Also,

1 ( 8(v,+1))
FP(v„cos0.)=- ~x + —'. ImA p'(-.'x—1)+3~ 1+

4 x+2v, (1—cos8,) x+2v, (1+cosv,) x—4 i

XIrnAr'(~x —1)+(p) ImAp'(gx —1), (3 4)

9

F'(v„cos8,) =— dx
4

1 1 3 ( 8(v,+1))
—', ImAo'(xx —1)+-~ 1+

x+2v, (1—cos0,) x+2v, (1+cos8,) 2 E x—4

XImA, (-,'x—1)——; ImAP(-,'x—1), (3.5)
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c
F'(v„cos8,) =— dx

7l 4

1 3 ( 8(v.+1))
8

IrnA s'(-', *—1)—-] 1+
x+2v, (1—cos8,) x+2v, (1+cose,) 2 (. x—4 )

XImA, 'Px —1)+-,' ImAp'(-'x —1), (3.6)

Fo'(v.)=
a x y 8(v,+1)

(ExQp 1+ s ImAp'(4x —1)+3i' 1+
2v8 *—4

&&ImA i'(-,'x—1)+(-,') ImA()'(-,'x —1), (3.7)

F '(v.) =-

Fo'(v.) =

m&8

x 3 ( 8(v+1))
Aug, (1+ - ImA g'('-x —1)+—

(
1+ ImA, '('—g—1)—- ImA g'(-'z —1), (3,8)

2v, 2E x—4

x 3 (' 8(v,+1))
AhQ, (I+ ' —', ImA, '(—'x —1)—I 1+

1
ImA, '(m —1)+-' ImA, '(-'x —I) (3 tI)

x—4 )

These relations should be approximately valid for
points along the line cosg, = —grs(or —gs) and v', in,
but not too close to, the end points of the interval

(—xra& v, &0).
Of course, (3.1)-(3.9) represent only one possible

way of using the crossing relations at low energy.
These approximate relations are in accord with the
original "low-energy philosophy" of Chew and
Mandelstam. '

We have not as yet discussed the actual construction
of partial-wave amplitudes with the required unitarity
and analyticity properties. With regard to these, there
are a number of possible approaches. One could, for
example, use a simple pole approximation for left-hand
cuts in the X/D method. "' A more accurate method
would be to use crossing relations to express the nearby
left hand cuts in terms of, say, s- and p-wave scattering
in the crossed channels and to use pole terms to simu-
late the more distant portions of the cuts. ' One could
also use the boundary condition method' or the inverse
amplitude method. '9 Alternatively, one could parame-
trize the partial-wave amplitudes in such a way as to
be able to sum them explicitly to obtain the total
amplitude and, in addition, to account for cross cuts
and some inelastic effects."Inelastic effects can also be
simulated in the boundary condition model. "

In any case, the crossing relations (2.8), in the form
with (2.23) on the left and (2.14) on the right, which are
generally directly usable outside the triangle, should
prove helpful in determining the parameters appearing
in any of these approaches.

In future notes, we will discuss in detail the practical
aspects of using our formulation of crossing relations in
connection with these schemes.

IV. APPLICATION TO LOW-ENERGY PION-PION
SCATTERING IN THE I=J=1 STATE

In order to indicate the potential usefulness of the
crossing relations, (3.1)-(3.3), we describe in this

"H. Goldberg and E. L. Lomon, Phys. Rev. 1M, 1290 (1963);
134, 3659 (1964).

where the variables are related according to (2.15) and
(2.16). It is also shown in Appendix 1 that Ai'(v)—Fi'(v) for —sa&v& —1, and Ar'(v) for v small and
greater than zero, are both represented approximately
by

v ' ImAi'(v')dv'
Ai'(v) =Ai'(v) ——

v'(v'- v)
(4.2)

provided there are no resonances in pion-pion scattering
for v&sra —1. In other words, (4.1) becomes

cosg3Ai (v3) sAi (v3) cos031 (4.3)

where Ai'(v) has the following properties: (1) it has a
left-hand cut starting, not at v= —1, but at v= —

4'.u;
(2) its left-hand discontinuity for v& —4a is the same
as that of Ai'(v); it varies as v at threshold; (4) it is
approximately unitary and coincides approximately
with Ai'(v) —Fi'(v) for (—rsa&v& —1) and Ai'(v) in
the physical region. For simplicity, we assume exact
unitarity in the following analysis.

A word should be said at this point concerning the
validity of retaining only p waves on the right-hand
side of (4.1).F waves have, of course, been eliminated
from the left-hand side of (4.1) by suitably choosing

section a crude calculation of low-energy pion-pion
scattering in the I=J= 1 state. The calculation will be
based on a simplified version of (3.2). This crossing
relation will be used for the points (——„'a&v,& —1;
vI) 0) outside the triangle. In Appendix 1, it is shown
that the main features of the low-energy p-wave ampli-
tude (e.g. , resonance behavior) probably do not depend
strongly on the s-wave scattering in the crossed channel.
In particular, it is shown that F'(v„—gss) in (3.2)
tends to cancel the s-wave terms on the right-hand side
of (3.2). If we assume that the cancellation is exact, we
are left with the approximate p-wave crossing relation

cos8,LA i'(v, )—Fi'(v, )j= rsA i'(v3) cos03, (4.1)

COS83 =
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cose, . In Appendix 2, we make a rough estimate of the
higher partial-wave contributions to A'(vI, cosgI) on
the basis of a simple I=J= 1 resonance exchange model.
We find there that, for the region of interest in this
calculation, the contribution is practically negligible.

Our task now is simply (1) to write Ar'(v, ) in a
suitably parametrized form which is unitary and has a
left-hand cut starting at v= —sra, and (2) to determine
the parameters by using (4.3).

The N/D method' furnishes the simplest means for
constructing a unitary amplitude with the prescribed
left-hand cut. We write

tion (4.8) and (4.9), is of the same order as the error
in that approximation. After inserting (4.8) into (4.7),
we have

N(v) =—Q
P Vs

v ) (4.10)

where the f;, given by

4/a 1 F,(x)
D —

~

ImA, ' — d*, (4.11)
0 xi x xi

A r'(v) =N(v)/D(v)

'/' D(v') ImAr'(v')dv'

(44)

(4 5)

are constants. In the following analysis, we take @=16.
Balazs has shown' that for this case, a reasonably
accurate approximation of the form (4.8) is obtained
by choosing X=2 with

D(v) =1—

P P P

v—vp
" ( v' "'N(v')Er'(v')dv'

(4 6)
p 5v'+1 (v' —vp) (p' —v)

1/xr= vI = 6.25,
—1/xs= ps= —50.0.

Substitution of (4.10) into (4.6) gives

(4.12)

D( 1/x) ImAr'( —1/—x)
N(v) =- dx (4.7)

Ã 0

In the range —rsa& v&5, 0&x&4/a, we may aPProxi-
mate 1/(1+xv) as"

1 /v F, (x)
=Z

1+xv '=' 1+x v

(4.8)

where the threshold behavior of Ar'(v) has been ex-
plicitly exhibited. Rr'(v) is the ratio of the total to
elastic scattering cross section in the I=X=1 state.

Now we are only interested in the amplitude for
—~a(v&4.5. In this case, we may use a parametri-
zation procedure suggested by Balazs, "which is briefly
outlined below. The reader is referred to Balazs'
papers' "for details.

After the change of variable v'= —1/x, (4.5) becomes

f'7( ')
D(p) =1—v(v)N(p)+- Z

x '=' v —v.
(4.13)

1/2

y(v) = —— InLv"y (v+1)'/']
7p v+1

( v 1/2

+/'~
& 0& v&~~ (4.14)

&v+1

2( ) p] '/s (p+1
tan '

prkv+1 & I v/

—1&v&0 (4.15)

2 V
1//2

ln([ p+1 )
r/s+

/
p[&/s) ~

7I' p+ 1
—~ & v&~ —1, (4.16)

with where we have chosen the subtraction point vo as zero

F,(x) =g;„,(x—x;)/g;~, (x,—x ). (4.9)
As was previously stated, we determine the parame-

Balazs'r has made plausible the fact that the relative ters ft and f& by requiring (4.3) to be satisfied's at
error in N(v), for (—-4r u & v & 5), due to the approxima- several matching points. We use the points:

(a) cose, = -+s,
(b) cos8, = —ass,
(c) cose.= —Vs

vs= —2.25 )

vg= 2.82 )

v, = —1.69,

Ps= 1.0 )

vt, = 1.5 )

v)= 0.5 )

cose, = —1.50;
coso&———1.42;

coso~ = —1.76.
(4.17)

'r L. A. P. BalItzs, Phys. Rev. 125, 2179 (1962).
"Baldzs has shown (see the first paper of Refs. 3) that the deviation from unity of the inelastic factor XII(p) for p&3 and

the inadequacy of the parametrization of X(v) for large p do not change the form of (4.10) and (4.13) for v 4.5, which is the region
of interest in our analysis.

"Because of the various assumptions made in obtaining the approximate Relation (4.3), we may only require it to hold for the
real Darts involved.
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O, l-

or-

—O. l

-0.2

Stable Solution

v, =l.5
--- vt=l.O
——v, =0.5

Ai'(v, ) = 2Lv+1$
dvgi{ 1+

v,

L'+1j
Xxzx& aa rr(23+i)P&I 1+2

X Immi'(v) . (4.18)

Balazs' using a Axed s dispersion relation for the
determination of parameters. It is instructive to com-

pare Balazs' method with the one employed here.
In Balazs' approach, we let a —+ oo in (3.8) for more

generally (2.29) with I=I=if to obtain

FIG. 4. Stable and unstable solutions for the self-consistent
p-wave amplitude equation (4.3). The stable solution, f~= —7.7,
x=f~/fr= —9.5, implies a scattering resonance at a c.m. energy
of 51'5 MeV with a half-width of about 120 MeV.

Our procedure is to determine first fi and fs using two
of the matching points in (4.17). The sensitivity of the
solution to changes in the matching points is then
examined by seeing how well (4.3), with the previously
determined fi and f2, is satisfied at the remaining
matching point.

The results of the calculation are illustrated in Fig.
4. There we plot values of x= (fs/fi) and 1/fi which
satisfy (4.3) at the three matching points of (4.17).
We see that there are two solutions, one of which is
unstable with respect to the matching points. We
discard the unstable solution and assume that the
stable one has some connection with reality. It corre-
sponds to fi —7.7 an—-d— fs 73. In F——ig. 5, we plot
$(v) and ReD(v) for the stable solution. The total
P-wave cross section is given in Fig. 6. We see that our
solution corresponds to an I=I= 1 resonance at
v=v~ ——3.2 (575-MeV total c.m. energy) with a half-
width of about 120 MeV.

These results are very similar to those obtained by

Note that as a~ ~, E''t'(v) ~At'(v). (4.18) is valid
for —9(v, &0.' Balazs shows, on the basis of a con-
jectured high-energy Regge behavior, that the integral
in (4.18) is convergent. By retaining only the Ai' term
in the integral, and requiring At to satisfy (4.18) and
the corresponding derivative relation at one point, he

lo—

I 2 g 4 5 6 7 8 9 lO v

FIG. 6. The total I=J= 1 partial wave cross section {= (12~/v)
X{v/(v+1)g ImA&'(v) } calculated from (4.4), (4.10), (4.13), and
(4.14) with the parameter values fq= —/. 7; f2=73. The unit for
the cross section is the square of the pion Compton wavelength.

LO

I.O

Fio. 5. E (v) and
ReD(v) for the stable
solution of (4.3).

determined the equivalent of our fi and fs His deter. -

mination of the parameters, however, was not as
straightforward as ours. In order to make his calcu-
lation tractable, he inserted a delta function resonance
form for ImAir(v) into the integral of (4.18), deter-
mined the parameters equivalent to fi and fs in terms
of the initially assumed resonance parameters, and
then checked to see whether the amplitude with these
parameters exhibited a resonance with the initially
assumed characteristics. This process was repeated until
a self-consistent solution was obtained. This procedure
is similar in spirit to the usual bootstrap calcu1.ations, '
although the Balazs method presumably treats the
distant left-hand singularities in A~' more realistically.

The two main difhculties of Balazs' formalism are
(1) the explicit appearance, in his fixed s dispersion

~ There have, however, been several recent attempts to deter-
mine the Regge trajectory parameters in a self-consistent way.
See, e.g. , M. Bander and G. L. Shaw, Stanford University, 1964
(to be published).
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relation, of high-energy scattering contributions which
must either be ignored or described, for example, in
terms of empirically determined Regge trajectories, ' "
and (2) the fact that resonances must be assumed
a priori

The above features are absent in our approach. We
subtract from the amplitudes only the low-energy
contribution to the fixed s dispersion relations. The
resulting crossing relations, formulated so as to be valid
outside the small triangle, involve explicitly only low-

energy scattering. The implicit high-energy e6ects
reflected by the singularities of the partial wave ampli-
tudes far from the low-energy region, are determined
self-consistently by appropriately parametrizing them
and applying the crossing relations. The existence of a
resonance arises naturally as a result of direct parameter
determination and need not be assumed from the start.

SUMMARY AND CONCLUSIONS

In this paper we have introduced a representation
for the pion-pion scattering amplitude which is ex-
pressed in terms of the ordinary partial-wave ampli-
tudes, but whose region of validity is considerably
greater than that of the usual Legendre expansion.
This representation makes possible the direct appli-
cation of crossing relations in a much larger region than
was previously available for such use. A plausible low-

energy approximation to the exact crossing relations,
which involves only the s- and p-wave amplitudes, was
presented.

The availability of useful crossing relations for
physical scattering angles, outside the small triangle
bordered by lines s=0, t =0, and u =0 i~ the Mandel-
stam diagram, should be of value in any program which
involves trial amplitudes containing parameters to be
determined (at least in part) by crossing relations. The
extent to which our representation of the amplitudes
will help provide a self-contained scheme for low-energy
scattering (i.e., for generation of the low-energy s- and
p-wave amplitudes with no, or perhaps one, adjustable
parameter) must now be investigated. The crude
calculation of low-energy p-wave scattering, in which
the energy and width of the I=1=1 (p) resonance'
were estimated, gives some indication of the possible
usefulness of our representation in more elaborate
calculations. It should be stressed again that the
existence of the resonance was a direct result of the
application of crossing symmetry and unitarity. The
a priori assumption of its existence was not necessary.
Also, high-energy effects entered the crossing relations
only through the "distant" singularities of the low
partial-wave amplitudes and were determined "self-
consistently" (see the last paragraph of Sec. IV).

Ke are concurrently investigating by means of a
high-speed computer the possibility of using our for-
mulation of the crossing relations with trial amplitudes
of the type dis cussed in Refs. 5„8„a,nd j0 in a self-

consistent low-energy program sot involving the
simplifying assumptions of Sec. IV.

APPENDIX 1

Here we attempt to partially justify the simplifying

assumptions made in Sec. IV.
Let us examine carefully the crossing relation (3.2).

First consider the modified p-wave amplitude Ai'(v, )—Fi'(v, ). From (2.29) and (2.30), it follows that Fi'(v)
is analytic in P, except for a branch cut in the interval

(—~(v~( —1) on the real axis. The imaginary part
Of F11(v,) alOng the Cut iS

1 &"8' 2Lv+1$
ImF1'(v, )= — dvP1 1+

2Vs 0 Ps

( 2C v+17
XZ o.rr Z &11 1+

1 odd (1 =1) V
l even (I =0)

&& ImA 1'(v), (A1.1)

U(v, ) = —(v,+1); —-', a~& v, & —1

= —(——,'a+1); —~ (v, ~& ——,'a, (A1.2)

where we have made the substitutions s=4(v, +1),
x=4(v+1) in (2.29). The imaginary part of Pi'(v, )
coincides with that of A 1'(v,) in the interval (—~a (v,

& —1). For large v„F1'(v,) 0- (lnv, )/v, . Also, Fi'(v, )
~ v, at threshold. Thus, we may represent Fii(v, ) as

Fii(v,) =F1'"'(v,)+AF1'(v, ) (A1.3)

Vs

P '"'(v )=-—
7r

AF1'(v.)=—

dv ImFi'(v)

P V Ps

' dv Immi'(v)

—~4a P P Ps

(A1.4)

Note that A 1'(v,) satisfies'

v,
—' dv Immi'(v)

Ai'(v. )=-
P P—Ps

v, "dv ImA1'(v)
(A1.5)

P P Ps

Now if there is no resonance behavior in x-m scat-
tering for P ~ ~&a—1, it is reasonable to assume that
[ ImP1'(v) I« l

ImA 1'(v) I for v« —i~a Lsee (A1.1) and,
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A i'(v) =A i'(v) A—Fi'(v) (A1.6)

should be approximately the same as At'(v) —Fi'(v)
for v considerably greater than —4a and less than —1;
and should coincide approximately with Ai'(v) in the
physical region. We have thus made plausible the
statements made in connection with relations (4.2) and.

(4.3).
We will now consider the term F'(P„cos8,= —g-ss)

in (3.2) and show that there might be a considerable
cancellation between the s-wave terms in Ii' and those
on the right-hand side of (3.2). After the change of
variables

(A1.2)] and also that the effect of the discontinuity of
Air(v) in the interval (——,'a& v& —1) should not be
very important in the physical region. In other words,
Ai'(v) given by

v&rta —1). Therefore, we shall only assume important
cancellations for s waves. Exact cancellation for s waves
was assumed in Sec. IV.

ImA i (p) = irI vga(v vir)5rt8ti (A2.2)

APPENDIX 2

We discuss here the contributions of higher partial
waves (l&1) to A'(vi, cos8i) which were dropped in
obtaining the approximate relation (4.3). The I=I= 1

(p) resonance-exchange model will be used to estimate
the neglected terms. This model corresponds to the
lowest order scattering given by the effective Hamil-
tonian

H= fv 8„(~X8„er); (A2.1)

or, alternatively, to the insertion of the zero-width
approximation

z= 4(v+1),
—2p, (1—cos8,)= t= 4(v,+1),
—2v, (1+cos8,)=I=4—s—1=4(v„+1),

P~= 2 V8 PP p

(3.5) becomes

into the integrands, (2.24), (2.25) of the dispersion
(A1.'/) relation (2.12). vz is the c.m. momentum squared at

resonance and the parameter I' is related to the half-
width, 8'j~2, of the p resonance by'

pit+1 p 1/2 )
~a

~a I

F'(v„cos8,)=-
P—Pg-

3- 2(v +1)
+— 1+ ImA i'(v) ——,

' ImAp'(p)
2 p

dv
+—

0 P P~—

—', ImA p'(v)

3 2(v +1)
+— 1+ ImA i'(v) —s ImAs'(v) . (A1.8)

2 p

The first term in (A1.8) is simply the Cauchy integral
contribution, to the right-hand side of (3.2), from the
interval 0& vg ~a—1. The second term is the Cauchy
integral contribution, from the interval 0~(v&~~a —1,
to the right-hand side of (3.2) with vi replaced by v,
(v, fixed). Now for points in the interval (—4ta&v.
& —1) and cos8, = —ass, vi is greater than zero and
p„ is less than —1 (see Fig. 2). Therefore, in this region,
the second term of (A1.8) should be of less importance
than the first. The s-wave parts of the first term
should partially cancel the s-wave contributions to the
left-hand side of (3.2). Similar cancellations should
occur for p-wave contributions. However, the Cauchy
integral contribution, from the low-energy scattering
region, should be much more important for s waves
than for p waves (we assume no p-wave resonances for

g (2l+1)Ei(cos8i)A ii(vi)
l (odd)

2 (vii+2) ) 2 (v@+1))
AF(,)=3I'(4+ Ig, 1+

v, ) vi )

(A2.3)

(A2.4)

( 2(vir+2) ) 2'(l l)s ( vg ) '+'
--»I 4+

p, ) (21+1)!(2(v~+1))

Now at the second matching point (b) of (4.1l), we
find that the stable solution of (4.3) corresponds to
(see Fig. 5)

ReL3 cos8iA t'(v~)] = —0.80. (A2.6)

The higher partial-wave contributions L(A2.3) minus
the p-wave contribution] to A'(vi, cos8i) are found to
be =0.022, which is small compared to (A2.6).

"A. Erwin, R. March, W. D. Walker, and E. West, Phys. Rev.
Letters 6, 628 (1961).

where S'~~2 is in units of the pion rest energy. Experi-
mentally'-' v&=5.7 and W'&~2=1.0 so that I'=0.25.

The p exchange contribution to A'(vi, cos8i) is

31' 2(vi+1)+vi(1+cos8~)
A (vi, cos8g)=—

2 2 (pit+1)+ v, (1—cos8i)

2 (vi+1)+pi (1—cos8i)

2 (v@+1)+v i(1+cos8i)


