
8 650 G. P I RAGI NO

Making the same consideration as done by other
authors"" and considering the nitrogen nucleons as
equally probable photopion sources for high-energy
photons, we have deduced the total cross section per
equivalent quantum for the x+ photoproduction from
free nucleons. In the case of the reaction y+rs -+»r +P,
we have considered also the ratio»r /sr+ for free riucieons
obtained by Pine and Bazin" from the photoproduction
from deuterium. The total cross section cakulated gives
agreement within 15% with the experimental value
(388+65)X10 ~ cm'.

The calculated values for the cross section per

i~ We have used for this purpose the value of the cross section
versus E» given for these reactions by Komar es a1 (Ref. 1).' A. N. Gorbunov and V. M. Spiridonov, Zh. Eksperim. i Teor.
Fiz. 33, 21 (1957) t English transl. : Soviet Physics —JETP 6, 16
(1958)g.

n C. E. Roos and V. Z. Peterson, Phys. Rev. 124, 1610 (1961)."J.Pine and M. Bazin, Phys. Rev. 132, 2735 (1963).

equivalent quantum and per nucleon for pion produc-
tion gives the same agreement with the measured values
of (328+60)X 10 's cm' for photostars with one charged
pion and (52+13)X10" cm' for photostars with a
pion pair.

These results con6rm the considerable contribution
of the light nuclei to the process of photodisintegration
in nuclear emulsion, and conhrm the hypothesis that at
high energies, the photoproduction of real pions occurs
on the individual nucleons also in the case of complex
nuclei. The reabsorption of the real x+ mesons photo-
produced was found to be negligible with our experi-
mental resolution.
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Solutions are obtained for a three-dimensional model three-body problem involving a spinless D particle
and a spinless n particle with coupling D ~+—n+n. D-n scattering and D-n bound states are studied. The
model is soluble in the sense that one obtains a linear, one-dimensional Fredholm equation for each partial
wave in n-D scattering. We have solved the equations numerically on a high-speed computer for different
values of the interaction strength and for different values of a size parameter used in the interaction form
factor. In particular, we have studied the interaction-strength limit which corresponds to making the D a
bound state of the n's. In this limit there are two three-body bound s states. The n;D scattering phase shifts
obey a Levinson's theorem and also show the expected kink at the threshold for e+D —+ 3n. The angular dis-
tribution for n-D scattering has considerable variation and shows the backward peak characteristic of an ex-
change mechanism. When parameters are chosen in the model to make the D Qt the deuteron, the major
features of nucleon-deuteron scattering are reproduced except at very low energies when the three-particle
bound states dominate and our neglect of spin is important.

I. INTRODUCTION

'HE theory of scattering beyond the two-body
problem has recently been the subject of vigor-

ous attack from many quarters. This is not surprising
" in view of the wide importance of the problem and the

rudimentary state of the theory. Some of the recent
eGorts have been devoted to putting the forrnal situa-
tion in order for the full problem, ' but these develop-

*Supported in part by the National Science Foundation.
'L. D. Faddev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)

LEnglish transi. : Soviet Phys. —JETP 12, 1014 (1961)P. C. A.
Lovelace, Lecture Notes for the Edinburg Summer School, July
1963 (unpublished); S. Weinberg, Phys. Rev. 133, B232 (1964).
L. Rosenberg, ibid. 134, B937 (1964). A model similar to our
potential limit has been studied in a diferent context by A. N.

ments do not remove the essential difhculties associ-
ated with going beyond the two-body problem even
in classical physics, namely the extra degrees of freedom.
It may be that computers will soon enter a stage where
the full three-body problem can be computed "exactly, "
but that stage has not yet arrived.

A more modest approach in which the three-body
problem is simplified to the point where "exact" com-
putation is possible has recently been introduced by
one of us. ' In this paper, we present calculations based

Mitra. See A. N. Mitra, Nucl. Phys. 32, 529 (1962) and A. N.
Mitra and V. S. Ithasin, Phys. Rev. 131, 1265 (1963).

s R. D. Amado, Phys. Rev. 132, 485 (1963), hereafter referred
to as A.
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on that theory. These are presented not primarily as
an approximation to some actual physical situation,
but rather as a theoretical model in which the three-
body aspects are exactly treated. Our main concern is
to explore the exact consequences of allowing three
bodies to interact and to study these as a function of
the parameters of the model. To that end we take the
simplest possible version of the theory. It is note-
worthy that even in this version, in which two-body
scattering is simple, the three-body amplitude is quite
rich in structure.

The model deals with the world of a spinless particle,
n, and another, D. The particles are named for the
nucleon and deuteron, but resemble them in little else.
Section IV is devoted to a comparison of our results
with the three-nucleon system for orientation, but we
stress again that we are not primarily concerned here
with making a model of it. The interaction allows
only the process D~+—r+e. Both e and D are free to
move and are assigned nonrelativistic energy-momen-
tum relations. Thus e-n scattering occurs only in s
states, since the interaction always forces the n-e sys-
tems into the D intermediate state. The scattering is
characterized by the strength and form factor of the
e-n-D coupling and by e, the rest energy or binding
energy of the D. This energy provides an energy scale
to the problem. ' The coupling strength may take on
all values from zero up to a critical value. These corre-
spond to variations in the wave-function renormaliza-
tion Z of the D between 1 and 0. In the limiting case
of maximal coupling, Z is zero and the model is identi-
cal to a potential model in which the e-n interaction
is a separable potential and the D is a bound state in
that potential. For Z&0 the potential analog does not
obtain, since one can then weaken the n-e coupling by
varying Z, but keeping the position of the D Axed.
It is clear that this cannot be done in a separable-
potential theory. The form factor represents the spatial
structure of the interaction; in the bound-state limit
for the D, it is simply related to the bound-state wave
function. In our computation, we take this to be of the
Hulthen farm4and hence introduce another parameter-
the range of the Hulthen function. Thus our model
contains two parameters, the range of the Hulthen
form factor, and the strength of coupling, or, equiva-
lently, the wave-function normalization of the D. Of
course, in this model e-m scattering is trivially soluble.
The point of the model is to turn it to e-D scattering,
for which case one can derive an integral equation for
the scattering amplitude. ' This equation is not trivially
soluble, but because of the restrictive nature of the
m-n interaction turns out to be more complicated than
the Lippmann-Schwinger equation' for potential scat-

'We restrict ourselves to the use of a stable D. The case of
3n —+3m scattering for unstable D is very interesting, and we
hope to deal with it later.

41. Hulthen and M. Sugawara, in EncyclopeCha oj Physics,
edited by S. Fliigge {Springer-Verlag, Berlin, 1957), Vol. 39.' B.A. Lipprnann and J. Schwinger, Phys. Rev. 79, 469 (1950}.

tering with a nonlocal energy-dependent potential.
That is, the intermediate states, in the center of mass,
are completely characterized by a single momentum
vector, as are the intermediate states in the potential
scattering equations. The equation can be solved on
a high-speed computer by Fredholm methods after
partial-wave analysis.

The effective three-body "potential" as represented
by the Born approxiiTiation, involves the exchange of
an n from incoming D to incoming e to form the
outgoing D; it is an "exchange poteritial" and is attrac-
tive in even partial waves and repulsive in odd. We
look for three-particle s-wave bound states in this
"potential" by 6nding the zeros of the Fredholm de-
terminant. In the case of maximal coupling (Z=O
for D), there are two s-wave three-particle bound states
for all values of the Hulthen range searched. One is
weakly bound and the other strongly bound; it is, in
fact, much too strongly bound to represent the triton
if the parameters of the D are fitted to the deuteron.
If the coupling is weakened slightly, the weaker bound
state disappears; but the other stays for a wide range
of coupling. There are no p-wave bound states since
the p-wave "potential" is repulsive, and there are none
in higher partial waves. The effect of keeping only the
two-particle intermediate states on the positions of
the bound states in s wave is investigated. It is found
that even though the inelastic threshold may be far
from the three-particle binding energy, leaving out
the three-particle states makes a qualitative difference
and is therefore a poor approximation.

Since the second bound state is so near the scattering
threshold for strong coupling, the s-wave scattering
amplitude is very large at low energies. This is even
true vrhen the state is virtual but with opposite sign
for the scattering length. For the s-wave m-D scatter-
ing, there is a kink at the threshold for n+D~3m,
and then a sharp minimum. This can be understood
in terms of a generalized Levinson's theorem. ' Since
for strong coupling there are two bound states, we can
take the s-wave phase shift to begin at 2x, and we
would then expect it to fall through 3~/2 (antiresonance)
m and s./2 (antiresonance), arriving at zero for infinite
energies. The point at which it passes x vrill be a zero
of the real and imaginary parts of the amplitude in
potential scattering. Since for strong coupling this
point comes above the breakup threshold, the cross
section is not exactly zero, but the closeness to thresh-
old makes the energy variation rapid. If the coupling
is weakened so that there is only one bound state, the
phase shift starts at m, but rises and then falls back
through m below the breakup threshold, giving a real
zero. In both cases, the other partial waves mask any
effect of this on the total cross section.

The angular distribution shovrs the backvrard peak-

6N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 9, 25 (1949}.
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ing associated with an exchange type of reaction, but
has considerably more structure than just the Born
approximation (as well as being generally much smaller).
Typically, the angular distribution is of the sort ex-
pected for a direct reaction, with variation over two
orders of magnitude. We have made no attempt to
fit these with some of the modern approximation pro-
cedures, but such attempts would surely be interesting.

At very high energies the amplitude tends to the
first Born approximation. This will be demonstrated
in a subsequent paper. This is true even if Z=O, for
which case the Born series does not converge for any
energy. ~ In view of this, we have calculated only to
energies sufIiciently high that we are approaching the
Born answer.

In Sec. II we present a summary of the model and
the major points of our calculational method. In Sec.
III the results for the bound state and scattering data
are presented for various strengths of coupling and
various Hulthen ranges. In Sec. IV the results are
compared with the three-nucleon system, and in Sec.
V there is a discussion of the results and future
programs.

the initial and final e momenta. 8 is the total energy
variable, and e is the D binding energy or rest energy.

To solve the integral equation, we first make a
partial-wave analysis:

(1 'I T(E) fk) =2 (2f+1)F~(cos~)(k'I Ti(E) Ik),
0

(k'I 8(E) Ik) =-P (28+1)Pi(cos9)(k'
f Bq(E)

f k), (5)
0

cos8=k' k/k'k.

There is no partial-wave projection for

5(E—2k"'+ a+ i21),

which is a function of k"' only. We obtain an uncoupled
set of one-dimensional linear integral equations. For
each partial wave we have

(k'I T, (E) fk) =(k'
I a, (E) fk)

+ dk"(k'
f E~(E)

f
k")(k"

I Ti(Ei) Ik), (6)

where the Born function is

ff:(&+2&')']fl:(&'+2&)27
Q' 8 E) k)=F2 — . (2)

F fk2+k"+ (k+—k')2]+i21

It represents the basic n-D interaction involving the
exchange of an e. The function

f2 (222)p2

LS(x)]—'= 1—— x d'22 — — (3)
2 (22r) 2 (2222+ e)2 (x—e —2222)

represents the sum of "bubbles" for D in intermediate
states. The renormalization coupling constant F is
related to the D wave-function renormalization Z by

1 2 f2(&2)
Z=- 1— — EPS

2 (22r)' (2222+ e)'
(4)

f(q') is the form factor for the 22 22 Dvertex; k, k' are--

7 R. Aaron, R. D. Amado, and B. W. Lee, Phys. Rev. 121, 319
(1961).

II. CALCULATIONAL METHOD

The integral equation for the e-D scattering am-
plitude in the center-of-mass system given in A is
(5=22m=1):

(k'
I r(E) Ik)

=(&'I&(E) f1 )+ ~'k"(&'I~(E) I&")
(22r)'

$(E ,'k"'+—e+—iq)
X . (1 "I&(E)ll), (1)

E—2k"'+ a+i21

~k"Lh(k' —k")—(k'la(E) Ik")]x(k"
I T~(E) Ik)

=(k'i~~(E) Ik) (g)

This is the starting point of our calculations. However,
there are, in general, complications due to the complex
nature of singular points in the kernel. So, we turn
first to a discussion of the parameters and functions
associated with the equation.

The interaction is characterized by e, I', Z, and
f(q'). Among these, e is chosen as the energy scale
and is set at &=1.5 for all calculations. Moreover, since
F and Z are related through (4), only Z and f(q') are
adjustable. The choice of f(q') =1 has been discussed
in 3, where it is shown that a singular integral equa-
tion results when Z=O. In this paper, we choose a
Hulthen form4 for it:

f(q') =- 1/(q'+P),
where p is an adjustable parameter and is qualitatively
the inverse range of the e-n potential in configuration
space. Since f(q') is related to the internal momentum
distribution function P(q2) of D when Z=O by

1'f(q') = (2q'+ ~)e(q'), (10)

where the kernel is

(O'IE (E) Ik")

S(E——,'k"'+ e+iq)=—-(k'I a, (E) I
k") '

. (y)
27r2 (E ,'k"'—+—a+i21)

The equation can be cast formally into an inversion
problem:
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we restrict p to values where p') 2c. Note that we are
keeping the D binding energy c constant when we
vary p.

For each value of l, the solution of the integral
equation is a T-matrix element, (k'I Ti(E) lk), which
is a function of 3 variables, k', k, and E. The physical
n-D scattering amplitude is a particular one of these
solutions corresponding to k'=- k and E=3k'/2 —e. There
is no need to find such general off-the-energy-shell am-
plitudes. For n-D scattering, we fix the energy variable
on the incident momentum via the relation E= 3k'/2 —e.

Now, the integral equation involves only two variables,
k' and k. However, for the bound-state problem as-
sociated with the e-D system, we do not fix E on k but
treat it as a free variable with a range E& —e. The
bound states, if any, of the I-D system are, of course,
not explicitly exhibited in the integral equation be-
cause a complete set of eigenstates of the free Hamil-
tonian is used in the intermediate states. Rather, they
emerge as dynamical consequences of the interaction
parametrized by Z and p.

With the vertex function given explicitly, we can
evaluate all integrals involved in I', (O'I pi(E) I k), and
S(E ~3k"'+—c+iq) and, with the specification of the
energy variable in mind, discuss any complications
which the functions may introduce into the problem.
First, let us define for convenience some symbols:

n =—(-', e)'",
eo=E ,'k'"+.—ip, ——

a—=a(k', k; E)=—k'+k" —-,'E—ig,
b—=b(k', k; P) =—4k"+k'+P'
c=—c(k',k; P)=,'k2+ k"+P'—. —

FIG. 1. Section of intersecting ellipses locating
singularities of the Born function.

then, (a) for o &0, f is real and is

1

2P( +P)L + (—:-)'"jLP+(—l-)'"3

y +— —;(15a)
n+ p p+ (—!o.)'"

(b) for o.)0, i is complex and

2nP —o e+o.
Rei =

( +P)(+ )(2P'+ )-2P'+ 4P( +P)
(15b)

VZ~I I2

Imf =
0 0

Then we obtain the following results:

I'= 64nnP(n+P)'(1 —Z) . (12)

(II.a) for k'&0 and k/0,

pF'~( —1)~+'- 1 1 p a ~
(k'l~i(E)lk)=l —I, ---

Qil
4 2 & k'k b ac—a kk'k)—

1 1 (b) 1 1 (c
Qil, I+- —-Qil, I (»a)

c ba beak'ki a——c b—cEk'k)—
(II.b) for k'=0 or k=0,

(k'I ~i(E) I k) = —(P'/2) (1/abc) ~«, (»b)

LS(E—k'"+ ~+ig) ]-'—=Z+ (P'/32~) 1', (14)

where Qi(s) is the Legendre function of the second
kind.

(III) We define

The analytic properties of the functions (O'
I Bi(E) I k)

and S(E 32k'"+—c+—iq) are now obtained from these
relations. S(E——,'k'"+&+i') has a cut in the complex
E plane from 0 to . That it, in general, becomes
complex for 8&0 is due to the "breakup" of the
"bubbles" for D, that is, to the production of three
real particles in the intermediate states (n+D —+ 3rs),
the threshold for this being A=0. From the properties
of Qi(s) and the fact that for k'&0 and k) 0, the two
terms b/k'k and c/k'k are both greater than 1, we see
that the Born function will be complex and will possess
logarithmic and even pole (at k'=0 or k=0) singu-
larities when la/k'kl&1. This occurs when E&0.
However, the inhomogene ous Born function will be
real for all values of E if we 6x E on k via the relation
E=3k'/2 —e. Physically, that Ia/k'kl &1 for some
values of E is a reQection of the fact that at this energy,
a real e is being exchanged in the intermediate state.
This again produces an absorptive effect on the
elastic e-D scattering. Thus we see that the product
(O'I Bi(J~')

I
k")S(E' ', k"'+e+ir) pl—ay—s the role of an

energy-dependent "optical potential" in the kernel
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F/G. 2. s-wave Fredholm determinant as a function of energy
below scattering threshold for P=7 and various Z. (Units:
@=2m=), &=1.5,)

with the inelastic threshold at E=O. (The ela, stic
Dthreshold i-s at E= —«.)
In the actual computation, our treatment of the

singular nature of the Born function may be summar-
ized by a diagram in k'-k" space. (See Fig. 1.) Two
quarter ellipses are de6ned by the equations

k"+k"'+k'k" =-',L~, E)0. (16)

Within the area bounded by the two elliptic arcs,
(k'~Bi(E) ~k") is complex and is evaluated through
a complex Qi(a/k'k"). On the edges, it has, in general,
a logarithmic singularity, which we "smooth out" by
averaging gi(a/k'k") over a thin strip about the edge.
At the two intercepts on the k' and k" axes, the loga-
rithmic singularity develops into poles. There, for /&0,
the Born function is zero from (13b). For /=0, the
Born function is set equal to zero at the pole on the
k' axis but is evaluated as a genuine pole on the k"
axis. The asyrrnnetry in treatment arises from phase-
space factor k"' for the intermediate state in the kernel.

Having discussed the singular points encountered in

the evaluation of the kernel, we return to the inversion

problem. With the choice of the vertex function, f(q'),
it is easy to see by power counting that the kernel is
suKciently convergent for the Fredholrn method of
solution to apply. For any Axed value of / and k, we

approximate the integral of (8) by a finite sum using
Simpson's rule. The kernel is evaluated in k'-k" space
on a square mesh of XX&V points. Equation (8) now

becomes a matrix equation.
For the bound-state problem, k need not be sp|;ci6ed.

We treat E as a free variable, and search for zeros of
the Fredholm determinant Di(E) below the elastic
threshold E= —e. The kernel is real for E& —e, and
the Fredholm determinant is

where E„(L&') is proportional to the kernel evaluated
at the mesh point (k'„k";). The position of the zeroes
gives the bound-state energies, which depend on the
parameters P and Z. We assume the Fredholm nu-
merator does not vanish at the zero of D~ and hence
that these zeros are actual bound states.

In rs Dscat-tering, we set E=3k'/2 —e. The inhomo-
geneous Born function is real but the kernel is now
complex. For E(0, there is only one pole —the m-D

propagator pole —to integrate over, while for E&0,
there is an additional pole when L=O from the Born
function at k'=0. The numerical integration over the
pole is treated in the usual way. Now the kernel can
be evaluated everywhere on the mesh points. The in-
version' of the matrix equation yields for given value
of k and l a complex vector which is a sequence of
off-the-energy-shell amplitudes (k',

~

2'&(E)
~
k).Thephys-

ical amplitude is, of course, the one with k.', =k.

GI. RESULTS

A. Bound States

We here examine the position and number of three-
body bound states for our model as functions of P, the
Hulthen range parameter, and Z, the wave-function
renormalization constant of the D. We do this by
methods discussed in the previous section; namely,
by searching for zeros of the Fredholm determinant
Di(E) of Eq. (17).

Inherent inaccuracies in our programs and technical
difhculties associated with the computer prevent us
from examining certain values of our parameters and
variables. For example, P much greater than 15.0—20.0
requires too large a range of integration to be practical.
For values of P less than 2.0—1.5 and/or the energy E
too close to —1.5 (the elastic I Dthreshold), the-
kernel of the integral equation becomes very peaked
near the origin, and the matrix inversion routine fails
to give satisfactory results. Nevertheless, we quote
results in these unattainable limits on the basis of
trends established by the machine. We feel this is
justihed because of the empirically established smooth
behavior of the quantities in question as a function of
the parameters, and also because an examination of
the analytic structure of our equations indicates the
unlikelihood of any spectacular effects in the limits
mentioned.

The results of our computations are shown in Figs.
2—11. In Fig. 2, Di(E) for the s wave is shown as a
function of E for various choices of Z and with P= 7.0.
D~ is one for very large negative E, and for attractive
potentials curves toward zero as Ji increases. Each
zero of D~ indicates the position of a bound state. In-
creasing Z away from zero represents weakening the
effective e-D interaction, and the effect of this on D~

Di(Li') =det
i 5;;—E;,(E) i, (17)

8 In our computation, we use an IBM matrix subroutine which
employs the elimination method.
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is clear in the figure. In particular, the bound states
become less bound as Z increases. The cusp in D at
the elastic-scattering threshold is due to a square-root
singularity.

In the Z=O limit, the s-wave n-D interaction pro-
duces two three-particle bound states for all values of
the Hulthen range. That at least one should occur
with a binding energy greater than that of D is not
surprising, since Z=O corresponds to the potential
limit, and if the potential between pairs is strong
enough to produce a two-body bound state, it should
surely produce a three-body bound state, provided the
Pauli principle does not operate, as it does not in our
case. In higher partial waves, there are no three-
particle bound states, since the "exchange potential"
is repulsive in p waves and not strong enough in d
waves.

The effect of varying Z on the s-wave bound states
is shown in Fig. 3 for P=5. One bound state quickly
disappears as the coupling is weakened (Z becomes
greater than zero), and the second moves toward the
elastic scattering threshold and finally disappears for
Z=0.7. For Z=1, the rue-D coupling is very weak, per-
turbation theory presumably holds, and there is no
three-particle bound state. Ke have not studied this
featureless limit.

Since these are s-wave bound states, the zero of
Ds(E) corresponding to them moves through the square-
root branch cut at the elastic-scattering threshold and
back along the negative E, axis on the second sheet,
now corresponding to a virtual state, as the coupling
is turned down. That is, they do cot become resonances.
We have not searched carefully to preclude the possi-
bility that they return for even weaker coupling to
resonant positions, but this seems unlikely. In fact,
anticipating, we can say we have found no choice of
parameters which gives a three-particle resonance in
any partial wave. As the bound states disappear, the
e-D scattering length goes through infinity and changes
sign.

.6-

I

I 2 3 4 5 6 7 8 9 10 I I l2 13 14 I5 l6 IY

BINDING ENERGY

FIG. 3. Three-particle binding energy as a function
of 2 for P=5. (Units: A=2m=1, a=1.5.)

PiG. 4. Three-par-
ticle binding energy as
a function of p for Z 20
=0. Right-hand scale ~

refers to less tightly ~
bound state and left-
hand scale to more ~

tightly bound. (Units: ~

it=2m=1, .=1.5.)
R5
Im

I.O

I

0 I

I I I

2 3 4
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5 6 7 8 9 IG I I 12 I3 I4
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The effect of varying P and keeping Z zero on the
s-wave bound states is shown in Fig. 4. It is clear that
increasing p corresponds to increasing the effective ID-
interaction strength. Since the position of the D bind-
ing energy is kept fixed at the same time, the strength-
ening is being achieved by shortening the range ( ~ 1/P)
of the two-body force but increasing its strength. Since
the three-particle states are much more compact than
the two-particle states, they are much more sensitive
to this. In particular, one would expect the more
tightly bound three-particle state to respond quite
strongly to this short-range potential, and it does. All
indications are that its binding energy goes to minus
infinity as p goes to infinity. This limit on p corresponds
to making the form factor in (9) identically one, since
as we increase P but keep the D binding fixed and Z= 0,
the coupling constant will also grow at just the proper
rate. We should expect just this, since for f= 1 the
equation cannot be solved by Fredholm methods, and
the existence of an inhnite-energy "bound state" means
that the homogeneous integral equation has solutions
for large energy which are not determined by the Born
approximation. These are probably diffraction solu-
tions, but we have not yet established this.

It would be of great interest to check these exact
results against various currently popular approxima-
tion schemes. We have not done this in general, but
one simple check we have carried out is to do the
calculation with 5—= 1 in (3).This corresponds to neglect-
ing three-particle intermediate states, while two-particle
states are still treated correctly, including two-particle
unitarity. According to the principle of dominance of
closest singularities, this neglect should not be very
serious for bound states, so long as the elastic-branch
cut is correctly put in, as it is. The effect of doing the
calculation with S=—1 is compared with the correct
result for Ds with P=5 and Z=O in Fig. 5. We see
that the actual system has two bound states, one
quite tightly bound, whereas the approximate one has
only one relatively weak bound state. Hence, neglecting .
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- 0.8

—0.6

—-02

—-04

-'-0.6

FIG. 5. Effect of neglect of three-particle states on s-wave
Fredholm determinant for P=5, and various Z. Full curves are
exact and dotted curves with no three-particle states, S=1.
(Units: A=2m=1, e=1.5.)

the three-particle intermediate states weakens con-
siderably the effective m-D potential.

B. Scattering

The scattering amplitudes for each partial wave
have been computed according to the procedure out-
lined in Sec. II, and the resuIts are partially sum-
marized in Fig. 6 where the real part of the phase
shifts are presented for the first three partial waves
and for various choices of Z and P. Below the production
threshold, E=O, the phase shift is real; above pro-
duction the real part is defined by'

RCTg 3'
tanl Reb)(k) j=

ImT) k ReT)

energies. All that can change is its rate of fall. We
have not investigated this in detail, but„ from the
points we have in the figure and from the discussion
of the previous section, it is clear that larger p, corre-
sponding to a stronger but shorter range two-particle
potential, makes the phase shift fall more slowly, and
smaller P makes it fall more rapidly.

For Z=0.145, p=5, there is only one three-particle
bound state and the s-wave phase shift begins at z.
Now, however, the scattering is dominated by a nearby
virtual state at low energy and the phase shift starts
with positive slope. At higher energy it turns over and
falls to zero slowly. For even larger Z, the virtual
state would move out and the other bound state come
closer to threshold, and the phase shift would begin at
m with negative slope. For Z near 1, the phase shift
would start and end at zero. Presumably the effect of
varying P on all these cases would be as in the case of
Z=O; i.e., increasing P slows the energy variation of
the phase shift.

For p waves, the phase shift is negative, since we
have an effective e-D "exchange potential. "Since there
are no p-wave bound states, nothing very dramatic
happens when we vary Z. Although the results are not
shown, there are also no startling results of varying P.
In d waves the force is attractive, but not very strong,
and this is reQected in the relatively small phase shifts
and small sensitivity to Z.

Above the breakup threshold, the cross sections
cannot be computed from the real part of the phase
shift. However, both the elastic-scattering cross section
and the totaI cross section can be determined from the

where the appropriate branch of the arctan is taken
to give a continuous curve. The effect of breakup is
noticeable in the kink in the s-wave phase shift at
threshold. We have normalized the phase shifts to
zero at infinite energies, and for Z=O this leads to an
s-wave phase shift of 2x at zero energy. This is what
we would expect naively from Levinson's theorem, '
since there are two s-wave bound states for Z=O.
Even though Levinson's theorem has not been shown
to be valid for three-particle scattering, some form of
it almost certainly is. The s-wave phase shift of Fig.
6 for Z=O is.about as simple a one as one can imagine
consistent with these conditions: 2x at zero energy, a
kink at the inelastic threshold, and zero at infinite

' The elastic unitary relation is Im7~ = —(k/6s) ( &~ ('.

/~5, z~0

-x~o, p~5, z~. l

A'~O, /~5, Z ~.l45

~Inelastic Threshold

0 l.5

1-2,P*5,Z*O
J~ 2,P~5, Z~.I45

5 4.5 6
E

~5,Z =.l45

l-l, P=5,Z=

FIG. 6. Real part of the n-D phase shift as a function of energy
for various f, P, and Z. (Units: A=2ra=1, e=1.5.)
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the exact curve in Fig. 8, the Born approximation has
been used for the partial waves above l=3. The addi-
tion of these waves has little effect. For Z= 0.145, the
major change in Fig. 8 is to put the s-wave phase shift
near x. Since the d wave is small at this energy, the
angular distribution now dips to essentially zero at 90'.

At higher energy, the imaginary part of the ampli-
tude is relatively more important, and hence the for-
ward peak grows since the imaginary parts are all of
the same sign. This is seen in Fig. 9, which gives the
angular distribution for E=4.835 and P=5. For Z=O
the near symmetry about 90' is due to the fact that
the s-wave phase shift is near s. and the p wave is left
to dominate. For Z=0.145, only the s wave changes
much, and the effect of this is to push the minimum
to backward angles. It should be noted that at this
energy the angular distribution varies over a factor of
10. The Born term is again shown for comparison.

10

~ INELASTIC
THRESHOLD ) g

0 1.5

Fxo. 7. Partial-wave cross sections versus energy. The solid
curves are the total cross section, the dotted the elastic only.
For L =0, Z =0.145 the cross section falls under the I,=2, Z= 0
above the inelastic threshold, and therefore we do not show it.
All curves are for P=5. (Units: A=2m=1, e=1.5.)

scattering amplitude and unitarity, and since there is
only one inelastic channel, the breakup cross section
can be obtained from these. The elastic-scattering and
total cross sections for each partial wave are shown in
Fig. 7 up to l=2 for P=5. The kink in the s wave at
threshold is clearly visible. The effect of varying Z is
shown only for the s wave, where it is dramatic. The
very small cross section for 1=0, Z=0.145 at low
energies is due to the way in which the phase shift, for
this set of parameters, stays near x. For Z=O, the
s-wave phase shift crosses x above breakup threshold,
and therefore there is a Ininimum, but no true zero in
the elastic scattering at this point. In the other partial
waves, increasing Z just reduces the cross section.

In general the breakup cross section —the difference
between the total and elastic-scattering cross sections-
is relatively small in the region examined. At higher
energy they will both go to zero, the inelastic more
rapidly than the elastic, since at very high energy the
Born approximation dominates, and it is pure elastic.

The scattering data can also be reassembled into
angular distributions. One such for an energy E
= —0.914 (below breakup) and P=S is shown in

Fig. 8. From Fig. 6, it is clear that for Z=O at this
energy we have mostly s and p waves, and with op-
posite sign. This accounts for the backward peaking
(exchange potential). For orientation, the Born ap-
proximation is also shown. It is relatively Qat, and a
factor. of 15 larger than the correct answer. In plotting

IV. NUCLEONS, DEUTERONS, AND TRITONS

Our model is, if not based on, at least inspired by the
actual three-nucleon system, and it is therefore illumi-
nating to try our results against those of that system.
Since nucleons are not spinless bosons, we should not
expect close agreement with experiment; but to the
extent that nucleon exchange is the main source of the
force between nucleon and deuteron —and it presuma-
bly is, because of the diffuse nature of the deuteron-
the major trends of the nucleon-deuteron system should
be reproduced.
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200—
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0 20 40 60 80 100 120 140 160 180
C.M. ANGLE IN OEGRKES

FIG. 8. Angular distribution at L+ = —0.914 and
P=5. (Units: A=2m&=1, e=1.5.)
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FIG. 9. Angular distribution X=4.835 and P=5. The mixed
choice of Z for the one curve is motivated in Sec. IV. (Units:
A=2m=i, c=1.5.)

The correct characterization of the two-particle
coupling is now given, of course, by Z=0—the deuteron
is a pure bound state. Furthermore, we take P= 5. This
choice of parameters, plus putting 5, m, etc. , back in,
gives a good 6t to the low-energy tzo-body data in the
trip/et state. However, it gives two three-particle s-
wave bound states, of which one is much more tightly
bound than the triton. This is partly a result of the
neglect of spin. It is probably not a bad approximation
to say that the spatial wave function of the triton is
symmetric, but all pairs do not interact in triplet
states, and the singlet force is weaker than the triplet.
Furthermore, our characterization of the force does not
include any saturating parts such as hard cores. These
are presumably more important in the three-body sys-
tem than in the two-body system since the triton is
more tightly bound and the pairs spend more of the
time close together in it. That is, while nucleon ex-
change might be the principal mechanism for e-D scat-
tering at moderate energies, in the relatively compact
triton, more complex interactions are also important.
We are presently setting the problem up with spin and
with the singlet-triplet difference, and are able to
report on the importance of at least this sophistication.
Hard cores can also be included, but it is more dificult.

To some extent, both the effect of the short-range
repulsion and the singlet-triplet difference can be simu-
lated by weakening the interaction in our model. It
should be recalled that we can do this by increasing Z
without changing the value of the deuteron energy.

For Z=0.145, the weakly bound three-particle bound
state disappears, and the other has the correct binding
energy for the triton. Of course, changing Z from zero
reduces the coupling constant at the D+~ ts+p vertex,
and therefore the nucleon exchange graph will not
have the correct residue at its momentum-transfer
pole. On the other hand, placing the triton correctly
gives the correct position and residue to the pole in the
energy corresponding to the triton. At low energies for
n-D scattering this would be important, whereas at
higher energies getting the exchange graph right should
be more important. Since we have no spin, however,
we cannot give separately the scattering in quartet
and doublet states; nor are these separated experi-
mentally. The triton comes only in the doublet state,
and fitting its pole correctly is therefore not a big help
in fitting experiments. This argument is to excuse the
fact that we do not get even a qualitative 6t to e-D
scattering at low energies with Z=O or Z=0.145. To
some extent we can have both poles fit nearly correctly
by putting Z=0.145 for the s wave and Z=O for the
other partial waves. From Fig. 6 it is clear that the
difference between zero and 0.145 for Z is not very
important beyond s waves. We use this hybrid theory
to compare with experiment for the three-nucleon
system. Strictly, our theory should have no free pa-
rameters, since P and Z can be fixed by the two-body
data, but putting Z=O. 145 for s waves corresponds to
making one adjustment —fitting the triton.

The experimental results for the total n-D scatter-
ing cross section and our results are shown in Fig. 10."
The agreement is not startling, particularly at low
energies, where the scattering lengths are incorrectly
given, for the reasons already elaborated. However, at
higher energies the trends and the order of magnitude
are certainly reproduced. The angular distribution at
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curves are drawn in for convenience.
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