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This paper investigates the information contained in a neutron-neutron scattering experiment at ]ow
energies which could be performed by colliding beams coming from an underground nuclear explosion. The
signi6cance of such an experiment is discussed from the point of view of a check on charge symmetry and
charge independence, and it is found that because of the electromagnetic complications in proton-proton
scattering, and because of the proton-neutron mass diBerence, the knowledge of neutron-neutron scattering
would be of considerable value. The functional form of the experimental data which is most convenient for
analysis and the approximate relative magnitude of the terms is investigated, and it is concluded that for the
kind of experiment which is envisaged (measuring cross sections to 10% from 20 keV to 2 MeV) only two
parameters should be kept in the eBective-range expansion. The connection between the number and distri-
bution of energies at which the cross section is measured and the error on the individual measurements, on the
one hand, and the accuracy of the eBective-range parameters deduced from the experiments, on the other, js
given explicitly and is found also to depend on the absolute magnitude of the scattering length. The results
show that ten 10%measurements, suitably distributed between 20 keV and 2 MeV, can determine the sign of
the scattering length to four standard deviations, the magnitude of the eBective range to 50-70%, and the
magnitude of the scattering length to about 3%. Finally, the relationship between the variation of the ef-
fective-range parameters and the corresponding variation in the parameters of the scattering potential is
studied, and it is found that, while this relationship is strongly shape-dependent, a small change in the poten-
tial parameters, in any case, results in a large change in the scattering length, but a small one in the eBective
range. Numerical relationships show that, even in the worst case, the variation in the scattering length is
about eight times the variation in the potential parameter. It is concluded that a 10% experiment s,t 20
energies between 20 keV and 2 MeV would be able to get information on the potential parameters suBI-
ciently accurately so that charge-dependent or charge-symmetry violating eBects could be detected.

I. INTRODUCTION

'HIS paper was prompted by considerations of the
possibility of measuring neutron-neutron scatter-

ing at low energies in a colliding beam experiment
utilizing a single underground nuclear explosion. ' Ex-
perimental aspects of this problem will not be dis-

cussed here, but it appears that it may be possible to
measure this scattering cross section to an accuracy as
high as 10% from about 20 lt.eV to about 2 MeV. The
questions under investigation are: (a) why the knowl-

edge of low-energy neutron-neutron scattering would

be of interest (Sec. I); (b) the relationship of experi-
mental data to the effective-range parameters to be
determined (Sec. II); (c) the dependence of the un-

' Charles D. Bowman and William C. Dickinson, University of
California, Lawrence Radiation Laboratory Report No. UCRL-
/859, 1964 (unpublished).

certainty in the effective-range parameters on the
number, distribution, and error of the experimental
data points (Sec. III); and (d) the relationship between
the errors on the effective-range parameters and the
uncertainty in the parameters describing the scattering
potential (Sec. IV). The conclusions are stated in Sec. V.

A precision knowledge of the neutron-neutron scat-
tering parameters at low energy would be of interest
for several reasons. Firstly, it would furnish a test of
charge symmetry. Although charge symmetry is rather
firmly believed, the substantial evidence for it comes
exclusively from nuclear structure. Since our knowledge
of the relationship of nuclear structure to the nuclear
two-body problem is far from complete, there is much
to be said for a direct check of charge symmetry using
the two-nucleon interaction itself. Furthermore, there
are several phenomena which will cause an apparent



N EUTRON —NEUTRON SCATTERI N G AT LO% ENERGIES

deviation from charge symmetry, even after the
Coulomb interaction is separated out in the proton-
proton scattering, such as nucleon electromagnetic
structure, magnetic moment interaction, and the neu-
tron-proton mass difference. ' 4 One presumes that all
these effects are electromagnetic in origin, and that
the "pure" strong interaction between nucleons is
charge symmetric. Yet, it is not even clear how such
separation of these electromagnetic effects could be
carried out. For instance, in comparing the width and
depth of the "pure nuclear" scattering potentials of
neutrons and protons, should one measure these pa-
rameters in the same absolute units, or in units of their
respective masses' The investigation of these and
similar questions would receive a large boost if charge
symmetry couM be checked directly to su6iciently
high accuracy (i.e., to about 0.&/o). It will be demon-
strated in this note that such a high-precision check
vrouM be quite feasible with the experiments referred
to above.

A second reason why low-energy neutron-neutron
scattering would be of great interest is that it would
facilitate tests of charge independence. At the present,
direct tests of charge independence for nucleons in-
volve a comparison of proton-proton scattering with
the T= 1 part of neutron-proton scattering. The
former, however, is greatly hampered by the large
electrostatic scattering which has to be separated out
of the data and vrhich completely overwhelms the
scattering below, say, 100 keV. Furthermore, vacuum
polarization corrections also have to be taken into
account in the analysis of high-precision proton-proton
scattering experiments. Furthermore, since the scatter-
ing experiments are restricted to above 100 keV, to
get any energy range at all, experiments at relatively
high energies (e.g. , 5 MeV) must also be included in
the analysis, which, in turn, necessitates the inclusion
of higher partial waves as well as more terms in the
effective-range expansion, and this complicates the
analysis. ' Thus, although proton-proton scattering ex-
periments are, in general, much easier to carry out
than neutron-neutron experiments, their interpretation
is considerably more complicated.

A joint knowledge of neutron-neutron and proton-
proton scattering would also make the test of charge
independence easier for another reason. In previous
comparison of proton-proton and neutron-proton scat-
tering at low energies, a rather large difference was
found in the scattering lengths. To this very day it is
not clear, however, vrhether this discrepancy can be
explained by electromagnetic effects or not. In addi-
tion to the magnetic moment interaction, nuclear form
factors, and the neutron-proton mass difference already
discussed above in connection vrith charge symmetry,

' J. Schwinger, Phys. Rev. 78, 135 (1950).' E. E. Salpeter, Phys. Rev. 91, 994 (1953).
4 Riazuddin, Nucl. Phys. 7, 217 and 223 (2958).' H. P. Noyes, Phys. Rev. Letters 12, 171 (1964).

there are here also effects due to the mass difference
between neutral and charged pions. In previous calcu-
lations of these corrections, ' 4 there vras enough of an
uncertainty so that one could not tell whether the
discrepancy disappears if these corrections are applied.
Kith the neutron-neutron scattering also available for
comparison, it vrould be easier to check these correc-
tions against experiment, since some of them affect
only charge independence, while others affect both
charge symmetry and charge independence.

Finally, if there is a slightly unbound dineutron
resonance state, it would have a marked effect on the
lovr-energy neutron-neutron scattering cross section. In
particular, there vrould be a dip superimposed on the
straight-line behavior of Q(T), to be defined by Eq.
(2.4). The position and size of this dip would be valua-
ble and unprecedented information concerning such
a resonance.

In the low-energy region below, say, 2 MeV, only
S vraves will contribute substantially to the scattering.
The veracity of this statement depends, of course, on
the precision by which experiments are carried out. In
this report we will consider experiments in vrhich the
error on the individual cross sections at various energies
is of the order of 10%%. With such experiments, up to 2

MeV, any waves other than 'So can be neglected. A
"proof" for this can be obtained by comparing it with
p-p scattering, where at 2 MeV the 5-wave phase
shift is around 45', while the largest of the three I'
phase shifts is only 0.5', so that even the S-I' inter-
ference terms in the differential cross section vrill be
negligible compared to the experimental error. Further-
more, if one measures total cross sections, even this
interference term is absent and the I'-wave effects
are truly infinitesimal.

With only the S waves present, the differential cross
section will be isotropic in the center-of-mass system
and the interaction can be characterized by only one
parameter, the 'So-wave phase shift. The subject of
investigation is, therefore, the energy dependence of
this phase shift. This is usually expressed in terms of
the effective-range theory which gives this energy de-
pendence in terms of a povrer series in k, the center-of-
mass momentum of one of the two colliding neutrons. '
The number of terms one has to keep in this power
series depends on the energy range under consideration
and the precision of the experiments. In our case,
since vre expect that the eHective-range parameters for
neutron-neutron scattering will be of the same order of
magnitude as those for proton-proton scattering, we

can make a fairly reliable u priori estimate on the
number of parameters to be kept. These and other
quantitative considerations vrill be discussed in the
next section.

I See e.g. M. J. Moravcsik, The Two-Sncleon Interaction
(Clarendon Press, Oxford, England, 1963).The scattering length
for p-p scattering in Table 8 on p. 45 should be negative.
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In the absence of a direct measurement of neutron-
neutron scattering, there have been proposals in the
past to determine the low-energy scattering parameters
from the 6nal-state interaction in a reaction resulting
in two neutrons and a photon. ~ The disadvantages of
this method are as follows: (a) It depends on certain
assumptions about the mechanics of the reaction and
hence is not as Arm as the direct measurement; (b) in
its proposed form it measures only the absolute value
of the scattering length, and not its sign or the corre-
sponding effective range; (c) even the magnitude of
the scattering length can be obtained only to about
25%, while the experiment discussed in this note can
hope to do an order of magnitude better.

do sin 5 4x
0=4m—=4x--

dQ k' k'+ (k cot8)'
(2.2)

where o is the total cross section, and do./dQ the differ-

ential cross section. Furthermore, we have the kine-

matic relationship
k'= mT/2, (2.3)

where m is the neutron mass and T is the kinetic

energy of the incoming neutron in the laboratory
system.

Combining these equations we can write

II. EXPERIMENTAL QUANTITIES AND
EFFECTIVE-RANGE PARAMETERS

The effective-range formula for S waves is usually
written in the following form:

k cot5= —(1/u)+-'rpk' —Erp'k' (2.1)

where k is the center-of-mass momentum of one of the
neutrons, a is the scattering length, rp is the effective

range, P the shape parameter, and 8 the phase shift.
On the other hand, the S-wave cross section can be
written as

Q(T) = e+ (u-' ——',r,e)' (2.6)

which contains only two parameters.
It is evident from the above considerations that

with a 10% experiment, it would not be possible to
measure the shape parameter at all, and that a linear
approximation for Q(T) is very likely to be sufhcient.

The value of this straight line at &=0 would give
us directly u '. Since the square of u is involved, the
sign of the scattering length is not determined by this
term. On the other hand, for the same reason, an x%
determination of this term gives us a —,x% determina-
tion of the scattering length itself. The slope of the
straight line gives the coeScient of the linear term and
determines rp/a. It also determines the sign of a.

the approximate values of the effective-range param-
eters are'' a= —7.8, rp ——2.8, P=0.02, while for the
T=1 neutron-proton amplitude u= —24, rp=2. 7, P
=0.02. Hence, one can roughly estimate that for
neutron-neutron scattering, we would have an rp/a with
a magnitude of the order of 0.3-0.1. With P of the
order of 0.02, this means that in the term quadratic
in o, the terms 2Prp/u is only about 4% of the xp term.
Furthermore, the whole quadratic term is very small
compared to the linear term, since the coeBRcient of the
linear term is of the order of 1, and the coeKcient of
the quadratic term is of the order of 2. Since, however,

is only 0.02 even at 2 MeV, the upper limit of the
range we are considering, the quadratic term as a
whole is at most only 4% of the linear term. With 10%
errors on the individual experimental points, therefore,
we can ignore the quadratic term. If needed, however,
one could include it as rpV/4 (which, as we have just
seen, is a very good approximation to it) and such a
quadratic term would not add an extra parameter to
be determined from the experiments since rp already
appeared in the linear term. In other words, one could
then 6t the data against

rp 5P 1 rp
+ —+28—T'. (2.4)

4 4 u

%e can rewrite this equation in practical units as
foBows:

1 ( rp (1 rp

Q(T) =—+~ 1——e+ro'I -+2&—e', (2.5)
a' 5 a &4 a

where Q(T) is given in (F'/sr) ', a and rp in F, and e

is de6ned as (T in units of MeV)/82. 88. The shape
parameter P is dimensionless.

%e will now try to estimate the relative magnitude
of the terms in Eq. (2.5). For proton-proton scattering

~ K. W. McVoy, Phys. Rev. 121, 1401 (1961).

III. EXPERIMENTAL ACCURACY AND UNCERTAINTY
IN THE EFFECTIVE-RANGE PARAMETERS

As we saw in the previous section, u and rp are
determined from the experimental data by a two-
parameter 6t. In planning a signi6cant experiment one
has to determine, therefore, the relationship between
the particulars of the experiment and the uncertainty
in the effective-range parameters obtained therefrom.
The latter will depend on the number and distribution
of energies at which the cross section is measured, on
the size of the error attached to the individual meas-
urements, and, as it turns out, on the values of the
effective-range parameters themselves. In this section
we will be given some quantitative information on
these dependences, whose qualitative behavior is quite
plausible.

As it is evident from Eq. (2.5), the quantities ac-
tually determined from the 6t to the experiment are
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the intercept I of Q(t) with the ordinate and the
coeKcient C of the e term. t The analysis is analogous
but slightly different if Eq. (2.6) is used instead. Since
the quantitative difference between Eqs. (2.6) and
(2.5) will be very small in our case, all quantitative
conclusions in this section hold also for Eq. (2.6).]As
mentioned before, a given percentage error in I will
result in half that percentage error in e. A given per-
centage error in C, however, will result in a percentage
error in ro which will depend on the magnitude and
sign of rs/u. In particular, using rs 2.——7 (which is the
effective range for proton-proton scattering, and which,
not being sensitive to small differences in the potential
depth and width, will likely be about the same for
neutron-neutron scattering), we can say that a p%%u,

'

error in C will become a (1+0.38[a()p%%uo error in rs/a
The uncertainty in rs/u can be directly related to the
uncertainty in ro since in practice a is always much
better known than ro. Having made these remarks we

can now restrict ourselves to the uncertainty in I and
C as determined from the experiments.

Perhaps the simplest relationship of the effects listed
above is between the error on the individual data points
and the errors on I and C: If, other things being equal,
all experimental errors are doubled, the uncertainty in
I and C will also double. '

Almost as simple a relationship exists between the
number of data points and the uncertainties in I and
C: Again, other things being equal, if the number of
data points are increased by a factor of 2, the un-

certainty in I and C decreases by 2'". (In this case,
strictly speaking, other things cannot be held the same,
since the increased number of d.ata points will, by
necessity, mean a slightly different distribution of
energies. ) One can see the above relationship by realiz-

ing that, given a certain number of counts" S taken
in the over-all energy range, it should. make essentially
no difference whether they are classihed into m energy
subintervals, in which case, each point will have a
percentage error of (IiT/m)

—'I', or into 2$ energy sub-

intervals, in which case, the individual percentage
errors will be (X/2n) 'I'

The rest of the relationships cannot be predicted on

general grounds but has to be investigated for the
circumstances of each particular situation. Such a
study for the problem under consideration yielded the
following results.

1. Distribution of Energies and Errors

Since I is determined mostly by measurements at
the lowest energies, its accuracy hinges on many pieces
of data at low energies. C, on the other hand, is de-
termined mainly by data at the ends of the over-all

energy range. Hence, for an optimal determination of

P. CziGra and M. J. Moravcsik. , University of California,
Lawrence Radiation Laboratory Report No. UCRL-8523 Rev. ,
19S9 (unpubhshed).

both quantities, it is most advantageous to perform
most measurements near the low and high ends of the
over-all energy range. Furthermore, the uncertainty in
I depends fairly strongly on the value of the lowest
energy at which measurements exist, while C is es-
sentially independent of this as long as the size of the
over-all energy range remains approximately the same.

2. Deyendence on the Magnitude of the
Effective-Range Parameters

The uncertainty in I and C depends also on I and C
itself or, to be precise, on their ratio. For a given per-
centage error in the data points, I is determined more
accurately if R—= t Q(E, ) —Q(E; )$/Q(Z;„) is small
than if it is large. For C, however, the situation is just
the reverse.

The above qualitative statements can best be sum-
marized quantitatively by giving a number of ex-
amples. This is done in Table I. The three variables
explored are the above defined R, the distribution of
energies D (including dependence on the lowest energy
measured), and the distribution of relative errors E.
Although only a few combinations in the three-dimen-
sional space are given, the table suKces for a quantita-
tive estimate to And out which features of a proposed
experiment are the most critical. For a fixed ro, the
value of R can be directly related. to the value of a.
Since we do not expect much deviation from the value
of ro ——2.7, the three blocks in Table I, showing the
R dependence, can thus be labeled by the a value which
corresponds to this value of ro.

Table I shows that while C can be measured best for
large negative a' s, the corresponding precision in the
determination of ro is best for intermediate u's. Ke
also see that a D(4), Z(1) type measurement would
give a precision of 7—10% on I and at the same time
would yield ro/a to 50—

70%%uo, regardless of the magni-
tude of a. This would be sufhcient to give a very
reliable result for the sign of a. At the same time, the
magnitude of u would be known to 3.5—5%.

IV. RELATIONSHIP BETWEEN THE EFFECTIVE-
RANGE PARAMETERS AND THE DEPTH

AND WIDTH OF THE POTENTIAL

Although the scattering length and effective range
are the parameters immediately connected with the
experimental data, the theoretically more significant
quantities are those describing the scattering potential.
At these low energies, and with the available experi-
mental precision which can measure only two effective-
range parameters, one can determine only the depth
and the width of an "equivalent" central potential.
The shape of this central potential cannot be deter-
mined, although the actual values of depth and width
belonging to a given value of scattering length and
effective range will depend on the assumed shape.
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TsuLE I. Percentage errors in the intercept I and slope C of
Q(T) of Kq. (2.4), as functions of the distribution D of energies
of the data points and of their errors L&, as well as of the scattering
length a, assuming that, r0=2.7. The percentage error in a is
simply half the percentage error in I. The percentage error in r0,
given by (1+0.38 ~u~) times the percentage error in C, is given
in parentheses following the percentage error in C. The notation
for the distributions is as follows:

D(1): 20, 40, 70, 100, 200, 300, 500, 700, 1000, 2000 keV;
D(2): 20, 30, 40, 70, 100, 150, 200, 500, 1000, 2000 keV;
D(3): 20, 100, 300, 600, 800, 1000, 1200, 1400, 1700, 2000 keV;
D(4): 20, 30, 40, 100, 500, 1200, 1400, 1600, 1800, 2000 keV;
D(5): 100, 120, 140, 170, 200, 300, 500, 700, 1000, 2000 keV;
D(6): 100, 120, 130, 140, 170, 200, 250, 500, 1000, 2000 keV.

The notation for the errors is as follows:

E(1): 10% for all points;
L'(2): 10% for the 6ve lowest energy points, 20% for the rest;
E(3): 20% for the 6ve lowest energy points, 10% for the rest;
E(4): 10% for the two lowest and three highest energy points,

20% for the rest.

where the E has such dimensions as to make s dimen-
sionless, and its numerical value Lbut not the func-
tional form of Eq. (4.1)) is shape-dependent.

Further relationships of use to us are given in Ref.
1.0, Tables I and V. We will denote these by

and
rs/s= 1/t(s)

s= u(w), w= rs/a, —
(4.2)

(4.3)

neutron-proton mass-difference eBects, whose mag-
nitude is likely to be 0.1 jo in the potential parameters).

Let us denote the potential depth as Vo, and the
potential width as b. One can then defines a parameter
s as

(4.1)

a= —8.2 F

D(2)

D(3)

D(4)

D(5)

D(6)

a= —15.8 F

D(1)

a(3)

D(4)

D(6)

E(1)
6.5 7.1

24 (102) 44 (189)
5.8 6.5

24 (102) 44 (189)
8.9 9.4

20.4 (86) 31.8 (135)
7.1 7.3

17.2 (73) 29.8 (127)
7.1 8.3

26.2 (111) 48.4 (206)
6.6 7.9

26.8 (114) 30.8 (132)

L(2}

10.5
29.2 (124)

8.7
27.8 (118)
16.6
28.2 (120}
14.0
22.8 (97)
11.1
30.4 (130)
9.5

29.2 (124)

E(4)

8.5
26.2 (111)
8.0

26.4 (112)
10.0
21.8 (93)
9.1

19.8 (84)
9.3

27.8 (118)
8.8

28.0 (119)

E(1}
8.3

10.0 (70)
7.0

12.0 (84)
10.5
8.2 (58)
8.0
7.8 (55)

11.0
12.2 (85)
10.3
13.0 (91)

E(2) E (3) L (4)

8.6 14.3 10.0
18.0 (126) 12.0 (84) 11.1 (77)
8.1 11.7 9.3

21.5 (150) 12.6 (88) 11.8 (83)
11.7 21.5 11.8
11.8 (83) 9.8 (69) 9.4 (66}
8.4 16.2 10.1

13.6 (95) 8.7 (61) 10.4 (73)
13.3 18.0 13.2
22.5 (156) 13.4 (94) 12.5 (87)
13.3 15.1 12.7
25.0 (175) 13.7 (96) 13.0 (91)

respectively. Again, the precise form of these functions
is shape-dependent. Combining these two relations, we
get

and therefore
tL~(w) 3-=f(w)

b= ref(w)

(4.4)

(4.5)

s C s C
Vs= C—=—— —=—g(w),

b' rs' f'(w) res
(4.6)

db -
r}f(w)- drs

1+wf '(w)
b

elf(w) da—wf '(w) — (4.7)
BK 6

where f(w) and g(w) are shape-dependent, but the
rs dependence of Eqs. (4.5) and (4.6) is not. In Eq.
(4.6) we used C=E ' which is a shape-dependent
constant.

From the above equations, one can obtain the per-
centage variations in b and Vo as functions of the per-
centage variations in ro and u. The relations are

a= —28.3 E'

D(1)

D(3)

D(4)

D{5)

D(6)

E(l) E(2)
I

11.0 12.0
8.0 (93) 13.0 (151)

10.0 11.6
9.0 (105) 16.2 (187)

15.0 15.2
6.0 (70) 8.7 (102)

10.4 10.8
6.4 (74) 10.9 (127)

22.6 30.6
9.1 (106) 17.0 (198)

22.2 31.5
9.9 (115) 19.3 (224)

E(3)

21.5
8.5 (99)

17.8
9.5 (110)

30.0
7.2 (83)

20.2
7.0 (81}

27.0
9.9 (115)

30,5
10.9 (127)

L~(4)

12.7
8.9 (104)

11.8
9.3 (108)

15.1
7.7 (90)

12.0
9.0 (105)

25.2
9.9 (115)

25.0
10.5 (122)

In this section we wiG investigate the sensitivity of
the effective-range parameters to small variations in
the potential depth and width. This is crucial in de-
termining whether a given experiment can serve to
detect certain noncharge-symmetric effects (such as

dVs -
Bg(w)

- drs cIg(w) da
wg

—'(w) —2 —wg
—'(w) —. (4.8)

Vo Bm ro Rv 8

It should be noted that Eqs. (4.7) and (4.8) do not
depend separately on ro and a, but only on their
ratio m.

One can also see from the above equations that at m =0
(which, for instance, can be obtained with a= & ~), if
we assume that g(0) NO, and Bg(w)/cIw ) sW eo, then an
in6nitely small change in Vg or b results in an in-
Gnitely large change in a. This fact is well known and
can be seen easily from the study of the wave function
for this case. A similar in6nite sensitivity can also
occur for the ro, but at diGerent values of m, namely,

' I. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley gr Sons, Inc. , New York 1952), pp. 55-56.
"J.M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
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TABLE II. Functions F(w) and G(m), defined by Eq. (4.11), as
a function of w, defined by Eq. (4.3) for square well, exponential
well, and Yukawa potential shapes.

Square well
F(w) G(w)

Exponential well
F (w) G(w)

Yukawa well
F(w) G(w)

—0.200—0.188—0.176—0.164—0.152—0.140—0.128—0.116—0.104—0.092—0.080—0.068—0.056—0.044—0.032—0.020—0.008

0.323
0.327
0.330
0.335
0.339
0.344
0.348
0.353
0.358

: [ 0.363
0.368
0.373
0.378
0.384
0.389
0.395
0.401

—0.0363—0.0351—0.0337—0.0323—0.0308—0.0292—0.0274—0.0256—0.0236—0.0215—0.0192—0.0168—0.0142—0.0115—0.0086—0.0055—0.0023

0.456
0.465
0.475
0.486
0.496
0.507
0.519
0.530
0.543
0.555
0.568
0.581
0.596
0.610
0.625
0.641
0.657

—0.388—0.398—0.407—0.418—0.428—0.439—0.450—0.461—0.473—0.486—0.498—0.512—0.526—0.540—0.555—0.570—0.586

0.535 —0.651
0.549 —0.668
0.562 —0.687
0.577 —0.706
0.592 —0.726
0.607 —0.747
0.623 —0.768
0.641 —0.791
0.659 —0.815
0.677 —0.841
0.697 —0.867
0.717 —0.895
0.739 —0.925
0.762 —0.956
0.786 —0.989
0.811 —1.024
0.838 —1.061

for

and

~g(w)
wg '(w) =2 (for Vp)

BG)

elf�(w)

wf '(w) = —1 (for b).

(4 9)

(4.10)

Whether such a condition is physically realizable or not
is not immediately clear.

One can also see from Eqs. (4.7) and (4.8) that the
sensitivity coefficients depend only on the logarithmic
derivatives of f(w) and g(w), defined as

F(w)= f '(w)f)f(—w)/-r)w,
(4.11)

G(w) =
g '(w) ag-(w)/Bw

These functions are tabulated in Table II, for the
values —0.2&m &0, which is the range of validity for
negative zv of the formulas in Ref. 10 from which they
were derived. The table gives these functions for a
square well, for the exponential well, and for the
Vukawa well, thus covering the usual range of shapes
under consideration. It is evident from Table II that
there are very large variations among the various
shapes in the sensitivity coeKcients. In particular,
G(w) for a square well is not only an order of magnitude
smaller than for the other two shapes, but its absolute
value decreases with increasing m, reaching a very
small value indeed around m =0. If we could calculate
the small deviations from charge symmetry, this large

variation in the sensitivity coeKcients would give us
a means to obtain information on the shape of the
potential. Under the present circumstances, however,
one can only assume a conservative approach and say
that in the range of m which is most likely to be of
interest to us (—0.2&w& —0.1), F(w) is not larger
than of the order of 0.6 and G(w) is not larger than of
the order of 0.75.

V. CONCLUSIONS

One can conclude from the above considerations that
if the neutron-neutron scattering cross section could
be measured with a 10% error at 20 energies between
20 keV and 2 MeV, with a concentration of energies
near the low and high ends of the energy range, one
could obtain the magnitude of the scattering length u
to an accuracy of 2.8—3.7% and the sign of a with a
quite high degree of confidence (the points corre-
sponding to the two diGerent signs of u being four
standard deviations apart). This, in turn, would permit
us to determine the parameters of the corresponding
scattering potential to an accuracy of at least 0.3%,
and perhaps 0.1%. With this precision charge-depend-
ent and charge-symmetry violating eGects could be
detected. The experiment would also yield a 30—50%
determination of the eGective range ro, but since ro is
relatively insensitive to changes in the interaction
potential, and since the error on this determination is
quite large, the value thus obtained for ro would not
be of much interest.

It is hoped that the foregoing considerations will
serve as positive encouragement for the actual carrying
out of a neutron-neutron scattering experiment in an
underground nuclear explosion using colliding beams.

1Vole added irs proof After sub. mitting the manuscript
of this paper, I encountered an article $M. Bander,
Phys. Rev. 134, B1052 (1964)$, in which the method
of Ref. 7 is discussed further and some of the approxi-
mations used therein improved. In view of the fact,
however, that some of the uncertainties of Ref. 7
remain unresolved, the estimate of the accuracy for the
determination of the scattering length on the basis of
such a calculation (i.e., an error of 1 F) appears some-
what optimistic, and the sign of the scattering length
and value of the effective range remain undetermined.
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