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Optical-Model Description of Low-Energy Excitations in Nuclear Matter
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The decay of single-particle excitations in nuclear matter is calculated in the low-density-gas approxima-
tion (independent-pair approximation) using a separable nucleon-nucleon interaction. For low-energy ex-
citations this decay is describable in terms of an optical model during a time interval which is longer than
5X10 "sec but shorter than 5&(10 "sec. In contrast to earlier calculations, the applicability of the optical
model is verified and the mean energy of an excitation is computed prior to the evaluation of the optical-
model parameters. Previous calculations of these parameters are shown to lead either to a circumstance in
which an optical-model description of the decay is inapplicable or to an excitation whose mean energy is far
off the energy shell.

I. INTRODUCTION
' 'N this paper we study a system which initially eon-

' sists of nuclear matter in its ground state plus an
extra nucleon in an eigenstate of a single-particle
Hamiltonian. Ke utilize a Green's function method' '
to evaluate the time dependence of the probability
amplitude that this system remains in its initial state.
In certain circumstances the time dependence of the
actual probability amplitude can be approximated
satisfactorily for a limited period of time by that as-
sociated with an optical model in which the nuclear
medium remains in its ground state while the extra
nucleon moves in a complex optical potential. The novel
aspects of our analysis, absent from previous treatments
of the low-energy optical potential, ' s are: (a) our
delineation of the requirements which must be satisfied
for the optical-model probability amplitude to provide
an adequate approximation to the actual probability
amplitude, and (b) our explicit verification thai: an
approximate "actual" probability amplitude associated
with the composite system may be represented by one
associated with the optical model before using the for-
mer to calculate the parameters of the optical potential.

In our analysis we utilize a simple two-nucleon inter-
action which (a) describes low-energy nucleon-nucleon
scattering, (b) yields a saturating ground-state energy
of nuclear matter, and (c) has previously been employed
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in a semiphenomenological calculation of the optical
potential. ' In previous computations of the low-energy
optical potential, ' ' the nucleons comprising the nuclear
matter have been treated as moving in a self-consistent
single-particle potential and the optical potential in
which the additional nucleon moves has been obtained
by evaluating the forward scattering amplitude due to
its (single) scattering from the nuclear-matter nucleons.
We show that such a procedure is internally consistent
only if the saturation density of nuclear matter and
single-particle spectrum of the nuclear-matter nucleons
are calculated using the same nucleon-nucleon interac-
tions and essentially identical computational approxi-
mations as those used in the evaluation of the optical
potential. The use of empirical parameters for the
saturation density of nuclear matter and the average
binding energy per nucleon, together with a simple two-
nucleon interaction which describes low-energy nucleon-
nucleon scattering, leads either to the failure of the
optical-model description of the single-particle excita-
tions or to the failure of the assumption, implicit in
earlier scattering-theory calculations of the optical-
model parameters, that the mean energy of the excita-
tion assumes the appropriate noninteracting-particle
value (i.e., the mean excitation energy is "on the energy
shell" ). By the use of consistency criteria in the deter-
mination of the single-particle potential the excitations
can be constrained to have a mean energy lying on the
energy shell. However, these criteria usually are not
satisfied. '4 ' '

We also demonstrate that although our internal
consistency criteria can be satisfied for arbitrary values
of the density of nuclear matter, the single-particle
spectrum of the nuclear-matter nucleons must be com-
puted separately for each value of the density. In
particular, the single-particle potential which is ob-
tained at the saturation density should not be used in
calculations of the optical potential at lower densities.
This result implies that Fermi-Thomas estimates of the
low-energy optical potential at the surface of a nucleus
would have to be performed with more than the custom-
ary precision. ~'
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The calculated values of the optical potential are
related to those obtained from the phenomenological
analysis of nucleon-nucleus (elastic) scattering experi-
ments by assigning (by definition) to the extra nucleon
in nuclear matter a wave number determined by the
energy the nucleon would have outside nuclear matter.

All of the numerical results presented in this com-
munication were obtained using the Wheeler- Yamaguchi
(WY) nucleon-nucleon interaction. ' I This interaction
is used for two reasons. First, we can solve the indepen-
dent-pair" scattering problem analytically for such a
separable interaction. Second, its use permits us to
compare our results with those obtained by Verlet and
Gavoret' in their semiphenomenological investigation
of the validity of the classical model, "That the WY
interaction is an "unrealistic" nucleon-nucleon inter-
action is evident both from the phase-shift analyses of
high-energy nucleon-nucleon scattering" and from the
meson theory of nuclear forces. Furthermore, the high
saturation density of nuclear matter to which it leads
invalidates the independent-pair model at the satura-
tion density. This latter fact constitutues the major
defect in our numerical calculations. It relegates them
to the role of "illustrative" rather than quantitative
calculations. Nevertheless, we present an internally
consistent perturbation-theoretic treatment of the de-
scription of the excitation spectrum in nuclear matter.
Although it is unfortunate that previous semiphenome-
nological calculations proved to be so misleading con-
cerning the sensitivity of the results to the selection of
the two-nucleon interaction, the method is suKciently
well-delineated that it now can be applied using more
realistic nucleon-nucleon interactions. The modifica-
tions of the results presented herein needed for the in-

corporation of the long-range components of the nu-
cleon-nucleon interaction have been discussed else-
where '4

rr. THE GREEN 8 ZUNCTroN DESCRu TroN OZ
NUCLEAR MATTER

In this part of the paper we initially recapitulate a
few well-known" '5 results concerning the Green's
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function description of large systems. We discuss the
relation of these results to the more familiar formula-
tions" of the evaluation of the nuclear optical potential.
In order to calculate the single-particle Green's function,
we adopt the point of view of perturbation theory and
focus our attention on the situation in which the range
of the two-body interactions is smaller than the mean
which 2(ks/P)'/3s'((1, P ' being an average range pa-
rameter for the nucleon-nucleon interaction, a suitable
internucleon separation in nuclear matter. The possi-
bility of both clustering' "and compressional-mode"
instabilities in systems of fermions interacting via at-
tractive forces has not been explicitly considered. Two
facts suggest that no serious error is incurred by this
omission. In addition to other indications that pairing
instabilities are relatively unimportant near the ob-
served nuclear density, ' we find that Cooper poles"
occur in the independent-pair scattering amplitudes
only for densities less than or of the order of one-eighth
of the observed nuclear density. However, a more
relevant observation is that a zero-energy nucleon out-
side nuclear matter should give rise to an excitation in
nuclear matter with a mean excitation energy above the
ground. -state energy of about 15 MeV. An approximate
calculation of the width of such an excitation should not
be sensitive to small errors in the energy spectrum near
the ground-state energy.

We carry out the perturbation-theory calculations
only for two-body interactions which depend upon
scalar combinations of the spin and isotopic spin
variables of the interacting nucleons. In particular, most
of the results are given only for the WY interaction. As
the WY interaction has no hard core, we treat it in both
the Hartree-Fock and low-density approximations.
After some remarks on the determination of a suitable
approximation for the description of short-lived excita-
tions, we 6nally discuss the calculation of the ground-
state energy and the relation of this calculation to the
determination of the energy spectrum of low-energy
single-particle excitations.

A. Definition of the Boundary Value Problem

In a description of elastic nucleon-nucleus scattering
one envisages a system comprised of 2+1 nucleons
in which, both prior to and after the scattering event,
one Ands an A-nucleon nucleus in its ground state iso-
lated from a nucleon of kinetic energy E; . In this system
the A nucleons in the nucleus are bound in a potential
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(1962).
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well due to their interactions whereas the impinging
and outgoing nucleons are in eigenstates of the kinetic
energy operator. If the kinetic energy E;„of the in-

coming nucleon is much greater than the binding energy
of those in the nucleus, we can remove the asymmetry
between the impinging and bound nucleons by applying
the impulse approximation~ and treating the latter as
free. The generation of systematic corrections to this
model of the scattering process has been discussed
thoroughly. "However, our current interest is in values
of E;„which are comparable to or less than the average
binding energy of the bound nucleons. In order to cir-
cumvent the asymmetry between the bound and im-

pinging nucleons, we forego an orthodox treatment of
the nucleon-nucleus scattering event and analyze an
initial-value problem. We consider the time develop-
ment of the wave function of a composite system which
initially is comprised of nuclear matter plus an additional
nucleon which is presumed to have penetrated the sur-
face of a "large nucleus" while retaining its free-particle
energy despite its entry into a dispersive medium.

The Hamiltonian of the composite system can be
written as

II=p E p (k)a,*a„y-2' g (k„k2~ v~1 „k4)
k1,k2
ks,k4

Xa2,*a2,*a2,a2, , (2.1)
Eto& (k) = T(k)+ U(k), (2.2)

a2(t) =exp(iBt/h)a2 exp( —iHt/k) . (2.3)

Ke restrict our attention to systems which are isotropic
so that E& &(k) depends only on k= ~k~."The single-
particle kinetic energy is denoted by T(k) and the
single-particle potential energy by V(k). The single-
particle basis states with respect to which the matrix
elements (ki,k2~ U~kp, k4) of the nucleon-nucleon inter-
action are defined are given by

for any selection of the single-particle potential V(k).
We have denoted by

~
+p) the state vector of the lowest

energy eigenstate of the nuclear medium. It is evident
that if V(k)WO then both the nucleons originally in
the nuclear matter and the extra nucleon all find them-
selves in the same single-particle potential. We use the
definition of energy conservation through the "surface
region" of nuclear matter to calculate via equation
(2.5b) the value of the wave number of the extra nu-
cleon in terms of its free-particle kinetic energy. When
the extra nucleon is inserted it polarizes the medium
and thereby influences the latter's wave function. It is
convenient in perturbation-theory calculations of

~
x(t=O)) and related quantities to utilize definitions of

E'P&(k) which incorporate some of the effects of this
polarization. In the Hartree-Pock and low-density ap-
proximations, the polarization occurs via the exclusion
principle and the forward scattering of the nucleons in
the medium from the inserted nucleon. In principle,
these eGects are accounted for by including k as an
occupied state in the definition of the self-consistent
potential V(k). Jn practice, we usually describe the
single-particle potential in the effective-mass approxi-
mation and ignore the polarization of the medium.

The probability amplitude that the system with the
state vector ~&t(t=0)) at t=O will still be described by
the same state vector at a subsequent time t)0 is known
to be''

P]c(t) = (+p
~
a2(t)a2*(0) ~%'p) = —iG(k, t); t)0. (2.6)

The quantity G(k, t) is the time-ordered, single-particle
Green's function defined by

G(k, t) = i(+p
(
2 La2(t) ay*(0)] (+p) (2.7)

in which T denotes the Wick time ordering operator. ' '
The Fourier transform of G(k, t) is given by

fk (1)) exp (ik ' r)x 1/2)~ 1/2 (2 4) G(k,E)= exp(iEt/A)G(k, t)dt. (2.8)

E(P& (k) =E, (2.5b)

"See, i.e., M. L. Goldberger and K. M. Watson, Collision
Theory (John Wiley tk Sons, Inc. , New York, 1964), Chap. 11.

2' See also, W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41
(1960); J. M. Luttinger and J. C. Ward, chid 118, 141/ (1960)..

in which r is the position of the nucleon, m is its spin
projection quantum number, and I is its isotopic spin
projection quantu~ number. The latter two variables
have been suppressed in our generic "k" notation. The
symbol 0 denotes the volume of the large system, and
the a2(t) are the Heisenberg representations of the
annihilation operators al, defined on an antisym-
metrized basis of the single-particle states given by (2.4).
Using Eqs. (2.1) through (2.4) we replace the original
scattering problem by an initial-value problem in
nuclear matter. The initial (Schrodinger) state vector
of the composite system is schematically indicated by

~x(t=O))=a2*(0) ~+p), (2.5a)

G&+&(k,E)= lim
Q~p+

G& &(k,E)= lim
Q—pp

g&,
&+& (x)dx

)
x+p E ih——

g2& &(x)dx

/i —x E+iA—
(2.9b)

(2.9c)

in which p is the separation energy of a nucleon from
nuclear matter. At the saturation density, the separa-
tion energy is independent of the number of nucleons in
the nuclear matter. In the future we will not explicitly
indicate the 6—+ 0+ limit. The spectral functions

The properties of G(k,E) as a function of the complex
variable E for fixed values of k have been studied
extensively. "'4"We note only that G(k,E) admits a
Lehmann-Kallen representation

G(k, E)=G~+& (k,E)+G&-& (k,E), (2.9a)
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g&,
&+& (x) and g&,

& &(x) satisfy the sum rule

Lg&, &+&(x)+g&,& &(x)5Cx=1. (2.10)

1; k=iki&k.
ist&'&(k) =

0; k= iI i&k,

is = L&n'rt/(2s+ 1)(2i+ 1)5't'

(2.16b)

(2.16c)

(A/SE) «&P/r (k)5 (2.13)

in which AI is the energy interval over which the ap-
proximation of (2.12a) by (2.12b) is satisfactory. In
the event that DE&21'(k), we say that the system
exhibits approximate single-particle motion' and that
the optical model is valid for scattering events in which
the nucleon-nucleus interaction occurs during time
intervals specified by (2.13). The depths of the real
and imaginary parts of the optical potential are given by

V(E;„)=Ep(k) —T(k), (2.14a)

W(E;„)= —I'(k), (2.14b)

respectively, as functions of the bombarding energy E;„.

B. Evaluation of the Green's Function
by Perturbation Theory

In this section we present two perturbation-theory
calculations of G(k,E):the Hartree-Fock approximation
and the low-density approximation. By using perturba-
tion theory the Green's function may be written as

The optical model consists of an approximate descrip-
tion of the composite system in which changes in the
state of nuclear matter are ignored while the additional
nucleon is considered to move in a complex single-
particle potential. In such a case P&, (t) would become

P (t) =c(k) exp(iEp(k)t/A —I'(k)t/5), (2.11)

which is known'4" to be inconsistent with Eqs. (2.9).
However, if the spectral function

g&, &+&(E—tt) = (sri)-' ImLG(k, E)5; E&tt (2.12a)
C

is well approximated by the form

ImG(k, E)= L&ti'(k) c(k)5/$(Eo(k) —E)'+r'(k) 5 (2.12b)

near E=Eo(k), then when (E&&(k) —tt)»r(k), Eq. (2.11)
provides a satisfactory approximation to Eq. (2.6)
during the time interval'4"

P= kz+k4,

P'=k, +k, ,

p=-,'(kz —k4),

p'=-', (k&—kz).

(2.18a)

(2.18b)

(2.18c)

(2.18d)

Con6ning our attention to the WY interaction, "we
obtain

(k„kz~ Vrs~ks, k4)

= d&(P—P') ( Pi9 rs/rrt) grs(p') —grs(p), (2.19a)

in which k p is the Fermi wave number of the noninter-
acting Fermi gas used as the zeroth-order description
of the composite system; s is the spin of the individual
fermions;i is their isotopic spin; e is the particle density
of the system; and E&o&(k) is specified by Kq. (2.2).
The quantity Z(k,E), referred to as the proper self-
energy of a nucleon characterized by the quantum num-
bers k, is expressed in perturbation theory as an in-
finite sum of diagrams, Only the final expressions ob-
tained by the use of diagrammatic methods are pre-
sented herein because the methods themselves have been
described elsewhere. ' '

Our analysis has been performed for nucleon-nucleon
interactions which depend upon scalar combinations of
the spin and isotopic spin variables of a pair of interact-
ing nucleons. In a representation characterized by the
spin (S) and isotopic spin (I) of the pair, together with
the momenta of the individual fermions, the matrix
elements of the nucleon-nucleon interaction become:

(I',s', I „k,i vil, s,k„k,),
=s,

, , s, ,, L(l „I,i v„ik„l,)
—(—1) + (kz, k&~ Vrs~ks, k4)5. (2.17)

The subscript .4 signifies that the matrix element is
evaluated with respect to an antisymmetrized two-body
basis; 51 I denotes the Kronecker delta; and V~q
designates the nucleon-nucleon interaction in the iso-
topic-spin state I and spin state 5. We introduce the
definitions

G(k,E)= fGo '(k E)—Z (k E)5 ' (2.15) grs(p) = (p'+p. s') ', (2.19b)

in which rrt denotes the average nucleon mass and b(x)
is the Dirac delta function. From (2.17) and (2.19)
we see that only the (I=O, 5= 1) and (I= 1, S=O) WY
interactions possess nonvanishing antisymmetrized ma-
trix elements. The nonvanishing matrix elements are
augmented by a factor of two because of the antisym-
metrization. The values of the parameters in (2.19)
obtained from the neutron-proton effective range data"
are presented in Table I. They adequately describe the
neutron-proton t;ot;a1 cI o~s sections for relative energies

1 st&o& (

E&'& (k) —E—ih
Gp(k, E)=k

st&'& (k)+, (2.16a)
E«» (k) E+iA—

~ D. J. Thouless, The Qeantlm Theory of Many-Body Systems
{Academic Press Inc. , New York, 1961),p. 69."P. Nozieres, Theory of IrtteractAtg Fermi Systems (W. A.
benjamin, Inc. , New York, 1964), p. /0.,
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TAnLE I. Parameters of the Wheeler-Yamaguchi (Refs. 9 and the nucleons interact via the Wp interaction we obtain
10) interaction obtained from the neutron-proton effective range
data (Ref. 13). The Wheeler-Yamaguchi interaction is speciffed
by Eqs. (2.19) in the text.

' '
k J ——i & /~1Z q~r8/PI8g

I,8

Spin S Isotopic spin I PIS X tan 'f(k+kz )/2Pzsj+tan 'P(kz k—)/2Prsj
0.425 F 3

0.154 F 3
1.46 F '
1.18 F ~ -(k.+k) +4p»——(Pzs/k) In

(k p —k)'+4pzs'
(2.22)

below 80 MeV and are used throughout our numerical
work.

As the %Y interaction possesses no hard core we can
evaluate the Hartree-Fock contribution to the proper
self-energy. Using an arbitrary scalar nucleon-nucleon
interaction, we obtain the result

Z&H F & (k,m, zz, E) = —(4&rz) ' P (2I+1)(25+1)rz "& (l)
I,8,1

X((k,l~ Vrs(k, l)—(—1) + (I,k~ Vrs~k, l)), (2.20)

which is independent of the spin and isotopic spin
projection quantum numbers, ns and N, respectively, of
the nucleon with wave vector k. The Hartree-Fock
contribution to the proper self-energy is evidently
independent both of the value of E and of the direction
of k. Therefore, we may incorporate it into the zeroth-
order single-particle Green's function by use of the
single-particle potential

Vi" F & (k,m, m) = U&" ~ & (k)
—= —AZ'" F & (k rw N, E) . (2.21)

The use of (2.21) eliminates all diagrams with equal-
time self-energy insertions from the perturbation-theory
expression for the proper self-energy. '4'4 In the event
that the extra nucleon is inserted with ~k~ =kz and

If the added nucleon does not lie at the Fermi surface
special provision must be made for its contribution to
the I sum in (2.20).

Envisaging nuclear matter to be a low-density gas in
which 2(kz/P)'/3zrs((1, P ' being an average range
parameter for the nucleon-nucleon interaction, a suitable
approximation to the proper self-energy is obtained by
selecting only those diagrammatic contributions to it
which are linear in the density. ' ' "In the absence of
external fields (i.e., any single-particle potentials arise
solelyfrom the nucleon-nucleon interactions themselves)
we obtain the low-density approximation to the proper
self-energy:

SZ&L n &(k,m, N, E)
= U(')-(') ' ~ ('~+')("+')""'(')

I,8, 1

XP(k, li Tzs(E+E"'(I))
i k, I)

—(—1) + (I, k~Tzs(E+E&'&(l))~k, l)7, (2.23)

which, like the Hartree-Fock self-energy, is independent
of nz, u, and the direction of k. Therefore, we will no
longer explicitly indicate these variables in our symbol
for the proper self-energy. The quantity Tzs(x) is
dehned by the integral equation

(k, l ( Vza
~

k', I') (1 ni" (k'—))(1—rsvp'& (I'))(k', I'( Trs(x) ( k, l)
(k,l( Tzs(x) [k,l)= (k,l( Vrs(k, l)+ g (2.24)

I Iz x—E&'& (k') —E&'& (l')+ih

We require that E's& (k) be independent of the spin and
isotopic spin projection quantum numbers. Such is the
case for the kinetic energy and, as we see from (2.20)
and (2.21), the Hartree-Fock single-particle potential.

Equation (2.24) is evidently just a restatement of the
Brueckner-Bethe-Goldstone equation. " For computa-
tional convenience we treat the single-particle energies
E&'&(k) in the effective mass approximation, i.e.,

V (k) = —Vs+k'k'/2 , o(2.25a)

E' & (k) = —Us+k'k'/2m*, (2.25b)

rN*= rzzo/(r&s+o) . (2.25c)

We do not consider the extension of Eqs. (2.25) to

~ J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1937).

momentum-dependent values of the effective mass. 5"
For the single-particle potential given by (2.25), Eq.
(2.24) can be solved analytically for separable nucleon-
nucleon interactions as discussed in Ref. 27, hereafter
referred to as DI. The scattering amplitudes calculated
in DI are not directly proportional to the T matrix of
Eq. (2.24) because in the analytically continued scat-
tering amplitudes the value of x is a function of the
values of k and 1. The solution to (2.24) is obtained
from Eq. (13) in DI by (a) requiring k=k' in the

"In the case of hard-core two-body interactions P ' is taken to
be the zero-energy scattering amplitude. Detailed references to
the literature may be found in Ref. 2.

s' See also, e.g., J. Dabrowshi and J. Sawictu, Nuoi. Phys. 22,
318 (1961)."C. B. Duke) Ref. 11.
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(+)
gk(E-p. )

with the results of the previous section, we envisage
the situation illustrated in Fig. 1. If (a) I«I'(k) and
(b) (Ep—I'(k))))p, , as shown in the figure, then by the
use of (2.26) and (2.9b) we obtain the result

(G(k,Ep)), —
ggi+& (x)dx

p @+p—Ep—iI
=G(k,Ep) . (2.27)

FIG. 1. The solid line is a schematic representation of the spec-
tral function associated with a system which exhibits approximate
single-particle motion. The dashed line shows the model Lorentzian
spectral function which best approximates the actual spectral
function near the latter's maximum. The width 1'(k) of the model
spectral function and an appropriate energy-averaging intervalI are also indicated.

(G(k,Ep)). —=

" (I/rr)G(k, E)dE

(E—Ep)'+I'
=G(k, Ep+r'I) (2.26)

for an average taken about the real energy Eo, If the
concept of an optical model provides an adequate de-
scription of the composite system then, in accordance

"G. E. Brown, Rev. Mod. Phys. 31, 893 (1959). The author
is indebted to Professor Brown for several informative discussions
concerning the material presented in the remainder of this section.

"A. M. Lane and R. G. Thomas, Rev. Mod. Phys. BO, 257
(1958), Sec. XL

numerator of that formula and giving them both the
value

) p~ kefined in (2.18c), and (b) calculating X in
the denominator of (13) in DI by use of Eq. (16) re-
lating kp to our energy variable E via Eqs. (17) and
(18). The quantity E in Eq. (2.23) is denoted by Ei in
DI. We have not succeeded in performing the last two
of the three I integrals in (2.23) analytically. We recall
from DI that the T matrix exhibits singularities the
location of which depends on the total momentum P
of an interacting pair and on the Fermi wave number,
k&, as well as on the relative energy of the pair. The
numerical methods used to perform the singular inte-
grals occurring in (2.23) are discussed in Sec. III.

Before discussing the low-density approximation in
more detail we comment on its relation to the optical-
model description of low-energy nucleon-nucleus scat-
tering. The fundamental concept on which the optical
model is based is that the model describes the "energy-
averaged" cross sections observed in low-resolution
experiments. ""Therefore, in our initial value problem
we expect it to describe those short-lived excitations
obtained from a Green's function averaged over an
energy interval I&0.1 MeV. The energy average of a
function like Gi+&(k,E) which has singularities only
for Im(E) &0 is conveniently obtained using the
dehnition" ":

Because we require only the average Green's function
for the calculation of an optical potential, the validity
of the low-density approximation as a description of the
composite system is a sufhcient but not necessary con-
dition for the approximation to provide an adequate
estimation of the validity and parameters of the optical
model. As emphasized by Brown, '8 the necessary condi-
tions for the applicability of (2.23) in describing the
decay of an energy-averaged single-particle excitation
are (a) the dominance of incoherent two-body scatter-
ings in determining the initial decay mechanism of the
excitation, and (b) the requirement that the replenish-
ment of the initial state by processes of higher order in
the density (i.e., multiple scattering) create fine struc-
ture in the spectral function whose energy width, I'„„,
is considerably less than I'(k). If these conditions are
satisfied, then by selecting I'„„&IXI'(k)we can elimi-
nate via Eq. (2.27) the influence of the higher order
terms on the average single-particle Green's function.
The extent to which the higher order e6ects are evident
in a particular scattering experiment depends on the
energy resolution with which the experiment is
performed. 4 "

Once the nucleon-nucleon interaction has been
speci6ed and the saturation density of nuclear matter
calculated in the low-density approximation, we justify
the use of the low-density approximation by estimating
higher order corrections to the proper self-energy. The
long-range components of the nucleon-nucleon interac-
tion could cause the excitation of collective modes in
nuclear matter to be an important decay mechanism
for the single-particle excitation. The relevant contribu-
tion to the proper self-energy may be obtained by sum-
ming the contributions due to the particle-hole "polari-
zation" diagrams. ' " However, for the nonsingular
short-range WY interaction we shall consider only
those terms in the expansion for the self-energy which
are quadratic in the density. There are four types of
these terms: (1) those arising from the use of the low-
density propagators in the final term of Eq. (2.24);
(2) those resulting from particle-hole interactions which
occur after the first scattering of the extra nucleon from

~ See also A. K. Kerman, L. R. Rodberg, and J.E.Young, Phys.
Rev. Letters 11, 422 (1963); R. H. Lemmer and C. M. Shakin,
Ann. Phys. (N. Y.) 27, 13 (1964).

"The diagrammatic analysis was erst given by J. Hubbard,
Proc. Roy. Soc. (London) A240, 539 (1957) for the high-density
electron gas. G. E. Brown, J. A. Evans, and D. J. Thouless,
Nucl. Phys. 24, 1 (1961) have applied similar methods to describe
collective vibrational oscillations in closed-shell nuclei.
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one of those in the nuclear matter; (3) those arising
from the presence of correlations in the ground-state
wave function of nuclear matter; and (4) those resulting
from triple interactions between the incident nucleon
and one in nuclear matter in which one of the interac-
tions is "shielded" by a particle-hole intermediate state.
Detailed estimates of these terms are unwarranted for
the %Y interaction because the high saturation density
to which it leads indicates the prima fgcie failure of a
low-density expansion. Both Brown" and Shaw have
performed semiphenomenological estimates of some
of the above terms. Their results are consistent with
the above picture provided we select I I'(k)/3.

C. Determination of the Ground-State
Properties of Nuclear Matter

Galitskii and Migdal' have shown that the momentum
distribution of the particles in a uniform many-fermion
system and its ground-state energy are given by

FIG. 3. The solid
line represents the sin-
gle-particle potential, -300
V&" F &(k), calculated in
the Hartree-Pock ap-
proximation for the
Wheeler- Yamaguchi' "
interaction at the Har-
tree-Pock value of the
saturation density, I E 350=2.965 F '. The dashed
and dotted lines show
two effective-mass ap-
proximations to V&H'~ )

(k) characterized by Vo
=391.7 MeV, o.=1.079
m and Vp=435.3 M

400o.=0.858 m, respectively.

n(k) =- lim (i/2xA) exp(iEA/k)G(k, E)dE, (2.28)

Eg= lim(i/2mk)g exp(iED/k)
+~0+ k

450 I l I I I I I

0 0,2 0.4 0.6 03
k/k~

l.0

X{T(k)+(1/2)LV(k)—&~(k,E)))G(k,E)tiE, (2.29) V(k) and reduce (2.29) to the form

respectively. The single-particle potential, , V(k), in
(2.29) is caused by the interactions between the fermions
and is not due to external fields. If we use an approxima-
tion for Z(k,E) in which it depends only on

I kI, then
we can incorporate all of Z(k, E) into the definition of

Eg=g n(k) tr (k)+ V(k)/2j (2.30)

in which n(k) is defined by (2.28). The most evident
such approximation is the Hartree-Fock approximation
(2.20) which, for our nonsingular WY interaction, yields

-I0
I

I

Eg (3nOksk~s/10m)I1 ——40rr P—Mrsj,

Airs=)mrs/1+ Urs tan '(Urs)

(2.31a)

-20
I

(MeV) ~

I

-30—
I

I

I

I

I

-40 I

l.4
I l I

I.S 2.2 2.6 3.0 3.4 3.8
~F-li

Fxo. 2. The solid line represents the binding energy per nucleon,
Eg/E, calculated in the Hartree-Fock approximation for the
Wheeler-Yamaguchi (Refs. 9, 10) interaction. The dashed line
indicates the empirical value of the Fermi wave number (Ref. 37).

—(Urs s+3/2) ln(1+ Urss)g, (2.31b)

Urs= ks/Prs (2.31c)

The sum over (I,S) in (2.31a) runs over (I,S)= (1,0)
and (0,1).The binding energy per nucleon as a function
of the Fermi wave number is shown in Fig. 2. The mini-
mum value of Eg/N, X=nQ, occurs at k~ 2.965F '——
and is given by

T(k~)+ V(k~) =Eg/X= —39.9 Mev.

The large saturation density and binding energy per
nucleon are characteristic of simple s-wave potentials
without a hard core." The single-particle potential,
V'" &(k), calculated at the saturation density, is
shown in Fig. 3 together with two eGective-mass ap-
proximations to it. The effective-mass approximation

"H. A. Bethe, Phys. Rev. 103, 1353 (1956).



866 C. B.

Ei') (k&;) —p,
—AZ(k&;, p) =0,

Z(kp, &u) is real.

(2.32)

(2.33)

The value of p obtained from (2.32) depencls upon the
selection of the single-particle potential V(k). If we
select V(k) by requiring that the noninteracting-particle
term of the Hamiltonian (2.1) yield a description of the
system which exhibits the correct separation energy,
then we obtain the stronger criterion

shown by the dashed line results from selecting
Us ——391.7 MeV and o = 1.079m in (2.25) in order to fit
VtH F &(k) for 0.9k~(k&k&;. The dotted line shows the
best over-all fit to VtH F &(k) and is characterized by
Vp=435.3 MeV and 0 =0.858m. The discrepancy be-
tween the two values of 0- is a measure of the inadequacy
of the effective-mass approximation as a description of
the single-particle energy spectrum.

In a perturbation-theory calculation of Z(k, E) we
must recognize the special role of the Fermi surface:
Any excitation with k= k p must be stable and possess
the separation energy p de6ned by"

low-density approximation are given by

Ii .)(k) = {1+kB/Z n (k E)j//BE) 'z L'«(k. ) j (2 36)

Eg Q t——siL o &(k)LT(k)+ V(k)/2

—(k/2)Z&L )(k E,(k))$. E,(k) &p (2.37)

E„(k)—Eo)) (k)+AX& ) (kE~(k)) =0. (2.38)

Equation (2.38) defines E«(k) for an arbitrary selection
of U(k) with Z'L.D'(k, E) being given by Eqs. (2.23)
and (2.24). The sum over k in (2.37) runs only over
those values of k for which Es(k) &p. If, in addition to
(2.38), we utilize the consistency criterion (2.34), the
sum over lt in (2.37) runs over all

~

lr
~

&ks. The satura-
tion density is calculated by computing Eo/ct for dif-
ferent numerical values of k~, enforcing the desired
consistency criteria for each of the numerical values,
and minimizing the resulting Eg/ii as a function of k&;.

It is well known that the Hartree-Pock approximation
yields a minimum value of E&G/l'&/ for which the Hugen-
holtz-Van Hove relation" is satisfied, i.e.,

Eg//)/= (BEG/BN) u==p=-E"'(ki) . (2.39)

Eis) (kF) =p,

Z(ks, p) =0,
(2.34a)

(2.34b)

However, the low-density approximation is not expected
to satisfy (2.39) because (a) eiL D & (k) instead of ti~') (k)
occurs in Eq. (2.37), and (b) factors of ei )(k) occur in
the second term of (2.24). Our approach can be made
analogous to that of Puff'4 via the introduction of
coupling between Eqs. (2.23), (2.24), (2.36), and (2.38)
by employing eiL n'(k) rather than e' &(k) and Es(k)
in lieu of Et" (k) in (2.23) Lbut not in (2.24)j.

A systematic low-density calculation of the saturation
density and binding energy per nucleon has not been
performed. For the nonsingular WY interaction the
Hartree-Fock approximation is expected to be reason-
ably accurate at high densities. "The qualitative nature
of the anticipated results indicates that more precise
computations are unwarranted.

We observe that (a) the Hartree-Fock calculation of
Eg/1V as a function of kz yields a curve which is flat
near the saturation density, and (b) near the saturation
density the values of (T obtained from the IIartree-Pock
single-particle spectra are insensitive to changes in the
value of k p. Therefore we can enforce the satisfaction of
(2.34) for the calculation of the excitation spectrum by
a simple expedient. Using the effective-mass-approxima-
tion potential shown by the dotted line in Fig. 3 and
computing Zi n )(k&;,E")(k~)) from (2.23) and (2.24),
we lower the value of k~ from the Hartree-Pock satura-
tion value until (2.34) is satisfied. This procedure yields
k~ = 2.940F ' and p = —46.7 MeV. Although the change
in the value of kg exhibits the opposite sign to that
which we would obtain by a systematic application of
the low-density approximation, we estimate that p, Vp,
0, and kp lie within a few percent of the values which
they would assume as a result of their computation in
the low-density approximation.

35 N. M. Hugenholtz and L. Van Hove, Physica 24, 363 {'1958).

which is a self-consistency criterion on the choice of
V(k). In the Hartree-Fock approximation Eqs. (2.34)
are satisfied identically. In general, a sensible definition
of a self-consistent energy spectrum for all values of k
is provided by the requirements

Es(k) =Ebs) (k), (2.35a)

ReLZ(k Eio) (k))j 0 (2 35b

Equations (2.35) are the analogs of (2.34) for an arbi-
trary value of k. They define a single-particle spectrum
with the property that if the system exhibits approxi-
mate single-particle motion in the sense of Sec. A, the
mean energy of an excitation lies at the energy predicted
by the noninteracting-particle term of (2.1).

In the low-density approximation the exclusion prin-
ciple requires that Z& ) (k E) be real for E&E&') (kz).
Only if (2.34) is used to define p are the perturbation-
theory restrictions due to the exclusion principle treated
in a manner which is internally consistent with the more
accurate treatment of the dynamics contained in the
evaluation of Zt &(k,E). The application of (2.34)
and (2.35) in the low-density approximation is discussed
in the Appendix. In this Appendix we also discuss the
major sources of the distinction between our approach
and the application of PuG's'4method to uniform nuclear
matter.

The final formulas for e(k) and Eg computed in the

~ J. M. Luttinger, Phys. Rev. 119, 1153 (1960).
~ R. D. Pu8, Ann. Phys. (N. Y.) 13, 31'/ (1961);D. S. Falk and

L. Wilets, Phys. Rev. 124, 1887 (1961);J. C. Reynolds and R. D.
Pu8, ibid 130, 18'/'/ (1963);A. S.. Reiner, ibm&i 133, 31105 (1964). .
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III. CALCULATIONS OF THE EXCITATION SPECTRA

A. Comyutational Procedure

The single-particle Green's functions are calculated
from (2.15), (2.23), and (2.24) as described in Sec. IIB.
Although (2.24) can be solved analytically for the WY
interaction, the sum over occupied states in (2.23) must
be performed numerically. As the sum over l exhibits
azimuthal symmetry about an axis along k, we use the
relation

2.0

f+)
~ps (E-)i)

(wv ))

0.5

—46.7

(5.6)
((U))

I
(2.8)

(

54.$

P e&'&(f) ~ (2s) ' Pdl d(cosf)), .i). (3.1)
I

0

We found in DI that when off-energy-shell propagation
is considered, the T matrices exhibit singularities the
locations of which are not easily specified. The failure
of the independent-pair scattering problem to possess
solutions at the values of the relative momentum as-
sociated with these singularities indicates that a princi-
pal-value boundary condition should be used in the
integration in (2.23).'s

The integrations were performed using a computer
program written by the author for the GE 225. In this
program provisions are made to automatically locate
any singularities of the integrand and provide principal-
value boundary conditions about the singular point.
In order to save computing time, the integration in the
neighborhood of a singularity was adjusted to provide
only 0.5% accuracy. The initial numerical grid, prior
to the (automatic) detection of rapid variations in the
integrand, is specified by

cos8~. i = —1.0(0.142)1.0,
l= 0.0k p(0.2k p) 1.0k p.

(3.2)

Sample calculations performed with a more refined
grid indicate that the use of (3.2) yields results which
are accurate to within 0.5% except for low densities
or large values of

~

it
~

. In these situations the integrands
possess many singularities.

B. Excitation Spectra at the Saturation Density

In Fig. 4 are shown the spectral functions associated
with several values of the free-particle energy of the
extra nucleon. These spectral functions were computed
in the low-density approximation. The single-particle
spectrum of the nuclear-matter nucleons was treated
in the effective-mass approximation by using the single-
particle potential shown by the dotted line in Fig. 3.
We see that an optical-model description of the excita-
tions is justified at all of the free-particle energies con-
sidered. The parameters of the optical poential are
presented in Table II. The sum rule (2.10) is satisfied
to within 20%%u~ by all of the spectral functions shown
in Fig. 4. The spectral functions associated with low

36 A derivation of the validity of this result for the calculation of
the ground-state energy is found in Ref. 18.

values of E;„yielded the 1argest deviations from unity
of the integral in (2.10).

We see in Fig. 4 that, as the energies of the excitations
move further above the Fermi energy, they also move
below the corresplnding noninteracting particle en-
ergies. This "oR-energy-shell propagation" of the excita-
tions reflects the inadequacy of the effective-mass ap-
proximation for the single-particle energies. This aspect
of the effective-mass approximation has long been real-
ized. s" 6 In our formalism it can be remedied by the
use of more terms in expansion (2.25a) plus the self-
consistency requirement (2.35).

From Table II we find that our values of the imagi-
nary part of the optical potential differ from those ob-
tained by numerous other authors~ ' only in that they
rise more slowly with increasing values of E; . This fea-
ture of the results is a consequence of the large value of
the saturation density obtained with the WY interac-
tion. However, almost all calculations based on the
independent-pair model or its semiclassical limit yield
values of the imaginary part of the optical potential
which are equal to within a factor of abour 2.'4 The
novel features of our calculation are that (a) we explic-
itly verify the applicability of the concept of an optical

ALE II. Parameters of the optical potential associated with
the spectral functions shown in Fig. 4.

Z; (MeV) V(Z; ) (MeV) W(E; ) (MeV)

1.010
1.020
1.040
1.058
1.070
1.080
1.090
1.100

—38.9—31.0—15.0—0.4
9.6

17.9
26.3
34.9

—223.4—220.4—214.5—209.2—205.7—202.8—200.0—197.3

—0.09—0.18—0.36—0.52—0.63—0.72—0.82—0.91

-46.7

Fxe. 4. The solid curves represent spectral functions calculated
using the Wheeler- Yamaguchi interaction (Refs. 9, 10), in the low-
density-gas approximation from Eqs. (2.1), (2.2), (2.12a), (2.15),
(2.23), and (2.24) in the text. The single-particle potential used in
the calculation is shown by the dotted line in Fig. 3. The value of
k~ was taken to be 2.940 F '. The dashed line in the figure
indicates the energy-shell value of E=E; .
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m*=0.8ns and Vo is determined by requiring a nucleon
with ~k~ =kr ——1.197F ' to have a binding energy
E&s&(ks) =p, = —10 MeV. We verify the equivalence of
their calculation and ours by observing that for m~= nz

we recover the results given in Table I of Ref. 6 to
within a few percent by using the definitions

'U&r =—U(k) —k Re)Z& D'(k E"&(k))$ (3.3a)

O,I—

'Ur—=—
&s ImLZ' '(k E'& (k))j.

The linearization factor of' "
(3.3b)

-10 0 IO 20 30 40 50
E(Me V)

I

60 70 80 90 I00

FIG. S. The solid and dashed lines represent spectral functions
associated with E; =27.2 MeV and 79.3 MeV, respectively. The
single-particle potential used in the calculations is specified by
Eqs. (2.25) in the text with Vs=47.2 MeV and m*=0.8ra. These
values as well as that of kg= 1.197 F ', are identical with the ones
used in Ref. 6. The computations were performed using the
Wheeler-Yamaguchi (Reis. 9, 10) interaction and Eqs. (2.1), (2.2),
(2.12a), (2.15), (2.23), and (2.24) in the text.

C. Failure of Semiphenomenological Calculation
of Optical-Model Parameters

We classify as "semiphenomenological" any nuclear-
matter calculation of optical-model parameters in
which the properties of the nuclear matter are not ob-
tained by using the same nucleon-nucleon interactions
and equivalent approximations as those used in the
calculation of the optical-model parameters themselves.
For energy-shell propagation our calculations are almost
identical to those of VG, ' Therefore, we can illustrate
the dBFiculties inherent in one particular semiphenome-
nological calculation by reperforming their analysis
using our more general method. Following VG, we con-
sider the nucleons in nuclear matter to move in the
single-particle potential given by (2.25) for which

model for excitations inside nuclear matter (the only
case in which the low-energy independent-pair-model
calculations are well defined); and (b) we obtain the
actual energy of the excitation without resorting to an
a priori assumption that it is on the energy shell for
some (specified) value of the effective mass. We feel
that despite the qualitative nature of the numerical
results, the above two accomplishments represent a
substantial clarification of the nature of the nuclear-
matter estimates of the optical-model parameters. This
clarification is particularly interesting because in the
next section we demonstrate that for low-energy incident
nucleons, the semiphenomenological calculations of
VG' either do not correspond to a situation in which
the concept of an optical model is applicable, or else
lead to propagation which is o8 the energy shell by
about 20 MeV in contradiction of their implicit u priori
assumptions.

(1+kB)Rex & ' (kyE) j/BE} 's=&. &'&
&ki (3.4)

has been omitted from the definition of 'Uz in order to
achieve compatibility with the definitions of VG.

The values of 'U~ and 'UI calculated by VG correspond
to those of V and W, respectively, in Eqs. (2.14) pro-
vided that the assumptions

Eo(k) =E&'& (k) =PPk'/2m' —Us, (3.5a)

A(BLReZ ' ' (k E)j/BE}s—@0&s&(&1. (3.5b)

are satisfied. We calculated the spectral functions as-
sociated with E;„=—10 MeV, 27.2 MeV, and 79.3MeV
corresponding to the energies in Table I of Ref. 6. The
spectral functions associated with E;„=27.2 MeV and
79.3 MeV are shown in Fig. 5. For E;„=—10 MeV, the
spectral function ga& &(x) exhibits a delta-function
peak whereas ga&+& (x) is almost invisible on the scale of
Fig. 5. Assumption (3.5b) is satisfied only for E;„=79.3
MeV. We see from Fig. 5 that assumption (3.5a) can
be satisfied only for E;„)80 MeV. The satisfaction of
(3.5a) for large values of E;„ is expected because for
these values of E; the impulse approximation is
valid. " For values of E;„below 27 MeV, Es(k) lies
more than 20 MeV below E&s& (k). This failure of assump-
tion (3.5a) indicates the occurrence of a serious in-

consistency in the energy-shell calculations of optical-
model parameters.

The use of a more recent value of the nuclear den-
sity, '~ yielding k+ ——1.42F ', and the volume binding
energy per nucleon in nuclear matter of —15.8 MeV"
fails to mitigate the difhculties inherent in the calcula-
tion of VG. This result is illustrated in Figs. 6 and 7 in
which spectral functions associated with E;„=27MeV
and 79 MeV, respectively, are presented. These 6gures
also demonstrate the importance of using "dressed"
nucleons in a polarized medium as the noninteracting-
particle basis states in a perturbation-theory calcula-
tion. H such a set of basis states is not used (i.e.,
m*= m in our calculations), then we see from the figures
that an optical-model description of the excitation
spectrum is appropriate only at energies sufFiciently
high that we recover the validity of the impulse ap-
proximation. This fact suggests the inadequacy of an
analysis of surface effects by the use of a local Fermi-

sr D. G. Ravenhall, Rev. Mod. Phys. 30, 430 (1958).
s' A. E. S. Green, Rev. Mod. Phys. 30, 569 (1958).
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APPENDIX: SELF-CONSISTENT CALCULATION OF
THE PROPER SELF-ENERGY IN THE

LOW-DENSITY APPROXIMATION

For a system of noninteracting but "dressed" nucleons
we find from (2.1) and (2.9) that

G&+'(k,E) =S(1—e"&(k))/(E&')(k) —E—iA). (A1)

If the system has a specified density, we follow Landau'
and write (A1) in terms of excitations which correspond
to excited states of the "dressed" nucleons.

G&+) (k E) k(1 ~&o) (k))/(oio) (k)+p E iA)—; (—A2)

o(k) =E&'&(k) —p, .

It is well known' that (A2) is the zero-temperature
analog of a temperature-dependent Green's function
such as that used by Puff. '4 The excitations are properly
described by use of the grand canonical ensemble
because the number of excitations is not a constant of
the motion even for a fixed number of nucleons in
nuclear matter.

Pu8's results are a consequence of using the grand
canonical ensemble to describe the nucleons themselves.
To recover his results we replace E&o) (k) by E«'(k) —

»&

in the temperature-dependent analog of (A1) arid use

E&'& (k) = T(k) .

Puff's simple treatment of the two-body T matrix
stems from his observation that T(k) —»&)0 for all
values of k. This simplification occurs only when we
abandon any self-consistent-6eld description of the
"dressed" nucleons in nuclear matter. In the case
described in Sec. C of part II, we would obtain
E' ) (k) —p&0 for all values of

~
k

~
&k». The application

of Puff's methods to this situation leads to a coupled-
equation problem like the one discussed in II-C except
that a hole-hole propagation term would be added to
the analog of (2.24).

A well-known" feature of the low-density approxima-
tion is the reality of Z&L n &(k,E) for E(E&'&(k»). This
result, which follows directly from (2.23) and (2.24),
implies that

G&—
& (k,E) = —2prihI)(E —Eo(k))/

{1+)&»BLZ&L & (k)IE) ]/BE}s=sp&o) (A3)
= —2iri7ie& & (k) l)(E—Ep(k))

E,(k) &E&o) (k,)

in which»»&L. i»(k) and Ep(k) are defined by (2.36)
and (2.38), respectively. For E&E& )(k ) Z& )(k,E)

has the energy dependence of a E. function" so that

BLZ &L n ) (k,E)7/BE) 0; n &L n. ) (k) (1. (A4)

We reemphasize" that (A3) and (A4), which stem from
the reality of Z&L n )(k,E) for real values of E, are a
direct consequence of the neglect of hole propagation
in a low-density system. The validity of (A3) for
Eo(k)=E&p)(k») is a general feature of perturbation
theory. ' "Most selections of V(k) (e.g. , that obtained
by using a semiphenomenological effective-mass ap-
proximation with the WY interactions) lead to the
consequence that Ep(k») &E")(k»). Such a result
implies that the inQuence of the exclusion principle is
overestimated in the evaluation of (2.23) and (2.24).
In order to mitigate this overestimation while retaining
the simplicity inherent in the perturbation theory use of
e& &(k) rather than n& n )(k) in (2.23) and (2.24), we
could adopt the following procedure for the calculation
of Eg in a system with a specified density.

(1) Determine k» from the density via (2.16c).
(2) Select for V(k) a form which contains adjustable

parameters and evaluate 1

»&==E") (k») =- T(k»)+ V(kp) . (AS)

(3) Select. a, value of k and compute Z& '(k, E) for
as many values of A, L&&p, , as necessary to determine
the solution Ep(k) to Eq. (2.38).

(4) Perform step (3) for a suitable grid of values of
k until the function Ep(k), Ep(k) (p, has been deter-
mined. It is likely that Ep(k») (»& and k, defined by
1&'p(k„, ,„)=)» satisfies k„.„)k».

(5) Adjust the parameters in V(k) so that E"'(k)
=Ep(k) as closely as possible subject to the constraint
that E'"(k») =Ep(k»)

(6) Iterate steps (3) through (5) until the parameters
in V(k) do not change appreciably from one iteration to
the next.

(7) Compute Eo(k») from (237) using the self-
consistent U(k). Note that Z&L n &(k,Ep(k)) will be small
for ~k~ &k» and zero for ~k~ =k».

The above procedure is evidently similar to that of
Brueckner and Gammel. 4' In order to obtain the satura-
tion density and binding energy per nucleon we mini-
mize E',g(k»)/cV (k») as a function of k». The satisfaction
of the Hugenholtz-Van Hove relation" and the introduc-
tion of coupling between Eqs. (2.15), (2.23), (2.24),
(2.36), and (2.38) are discussed in the main text.

E. P. Wigner, Ann. Math. 53, 36 (1951).The proper self-en-
ergy and single-particle Green's function associated with an
"in6nite" medium are not 8 functions in general because they are
not real for real values of K

4'K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).


