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The Einstein equations for a spherically symmetrical distribution of matter are studied. The matter is
described by the stress-energy tensor of an ideal Quid (heat Qow and radiation are therefore excluded). In this
case, the Einstein equations give a generalization of the Oppenheimer-VolkoR equations of hydrostatic
equilibrium so as to include an acceleration term and a contribution to the eRective mass of a shell of matter
arising from its kinetic energy. A second equation also appears in this time-dependent case; it gives the rate of
change of an appropriate "total energy" m(r, t) of each Quid sphere in terms of the work done on this sphere

by the Quid surrounding it. These equations would be an appropriate starting point for a study of relativistic
gravitational collapse in which an adiabatic equation of state more realistic than the p =0 form of Oppen-
heimer and Snyder could be used.

I. INTRODUCTION AND SUMMARY

HE original discussion of an idealized problem of
gravitational collapse due to Oppenheimer and

Snyder' assumes a spherically symmetric distribution
of matter, adiabatic flow (no viscosity, heat conduction,
or radiation), the equation of state p=O, and simple
initial conditions. In this note we maintain the assump-
tions of spherical symmetry and adiabatic Qow, and
consider the introduction of pressure gradient forces
into the equations. Our purpose is to cast the equations
into as simple and physically transparent a form as we

can, preliminary to their numerical solution.
Much of the recent interest2 in gravitational collapse

centers about the possibility (in a stage of collapse where
the gravitational binding energy GM'/R becomes com-
parable to the rest energy Mcs) of a large energy outPut
of a star, a discussion of which falls outside the scope
of the equations derived here. Nevertheless, a study of
these equations may provide a useful first step in a
more realistic analysis of the gravitational collapse of
stars —which would presumably include the effects of
rotation, departures from spherical symmetry, and
radiation —as well as some insight into the issues of
principle involved in gravitational collapse. '

In the remaining paragraphs of this section we will

summarize our results. These are derived in the succeed-
ing sections.

Associated with an ideal Quid is a stress energy given

by the tensor

T "= (p+e)u u"+pg" (1.1)
* Supported in part by NASA Grant No. NsG 436.
f' NSF Postdoctoral Fellow, 1963—64.
' J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
'W. A. Fowler, Rev. Mod. Phys. 36, 549 (1964); F. Hoyle,

W. A. Fowler, G. R. Burbidge and E. M. Burbidge, Astrophys.
J. 139, 909 (1964); H. Y. Chin Ann. Phys. 26, 364 (1964); F. C.
Michel, Astrophys. J. 138, 109I (1963); S. A. Colgate and R. H.
White, Bull. Am. Phys. Soc. 8, 306 {1963).

J. A. Wheeler, in Gravitation and Relativity, edited by H. V.
Chiu and W. F. Hoffmann (W. A. Benjamin Company, Inc. ,
1964), Chap. 10.

where nI' is the four-velocity field of the Quid, e is the
internal energy of the Quid per unit proper rest volume,
and p is the pressure. Because this tensor is diagonal in
the local rest frame of the Quid, it cannot describe the
energy Qow associated with heat conduction or radia-
tion. Using Eq. (1.1) in the statement u„T&".,„=0 of
local energy conservation shows that the entropy of
each particle in the Quid is constant, m&s, „=0.We sum-
marize here the equations in the isentropic case, where
one further assumes s,„=0,so that the specific entropy
is constant throughout the volume of the Quid.

The metric is chosen to have the diagonal form

where

ds'= e'&dfs~ e"dr'—+R'dQ'

dQs=- d8'+sin'ed&ad'.

(1.2)

(1.3)

Then the hydrodynamic equations TI"",.„=0 give the
result

where h=u+pv= (e+p)/n is the specific enthalpy or
heat function for a unit amount of fluid (the amount
containing a mole of baryons). LThe specific internal
energy I and the specific volume v are related to the
matter density or baryon number density n(r, f) by

=uaensd v=1/n. We choose units of n(r, t) so that
e —+ n and h —+ 1 as p ~ 0.] In order to compute h, it is
sufficient to specify the adiabatic equation of state

6=6 N (1.6)

Here p, X, and R are each functions of r and t to be
determined by the Einstein held equations. We shall
worl» in a system of coordinates moving at each point
with the material located at that point (comoving or
Lagrangian coordinates). The components of the four-
velocity are thus
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for then the pressure equation p(n) can be deduced via
the thermodynamic relation

(1 7)

and from h= (e+p)/n one finds that

Here D& is the comoving proper-time derivative

B trB)
D& u" =-—e—&l —

l
.

Bx" ~ Bt),
(1.10)

One also uses in place of X(r,t) a function m(r, t) defined

by
2m(r, t)--' BR)'

e"&''&=g = 1+U'—
l

. (1.11)
R Brj

The full set of Geld equations are then the three Grst-
order dynamical equations

D,E.= V,

D,m = —4srR'p U,

1+U' 2mR ' tBp —)-
e+P (BR( g

(1.12-R.)

(1.12-m)

(m+4srR'p)
(1.12-U)

The remaining Geld equations for this problem take
a simple form if one defines a quantity V which gives
the relative velocity Vd8 of adjacent Quid particles on
the same sphere of constant r,

V=DgE=—e &R.
m(r. ,t) =M (1.16)

is a constant and, in fact, the interior metric (1.2)
can be joined smoothly at the surface r, to an exterior
Schwarzschild metric whose mass 3f is given by Eq.
(1.16).

It is also necessary to require that at r=o the func-
tions R, m, and V all vanish.

II. THERMODYNAMIC PRELIMINARIES

Local properties of a Quid such as pressure, tempera-
ture, specific entropy, internal energy density, etc. ,
which are scalars in nonrelativistic physics can all be
defined in special and general relativity so that they are
again scalars. For, to be scalars, they need merely
have a well-defined value at any event, independent of
every arbitrary choice of a coordinate system. One
achieves this by defining these quantities to have (in any
coordinate system) the values measured by an observer
who is at rest relative to the chosen small piece of Quid

at the time in question.
The basic law of thermodynamics4

m(r, 0), and U(r, 0). Equation (1.13) then defines e(r,0)
which gives the values of p, n, and ts through an equa-
tion of state and thus allows the time derivatives of E,
m, and U to be obtained from Eqs. (1.12). One thus
obtains a solution for all times without invoking Eq.
(1.14); but this equation merely defines dA/dr initially,
and it is possible to show that the time derivative of the
left member of Eq. (1.14) vanishes as a consequence
of Eqs. (1.12), (1.13), (1.5), and (1.7). Thus, Eq. (1.14)
is a first integral of this system of equations.

The above system of equations is to be solved subject
to the boundary condition that

p =0 at r =r,=constant, (1.15)

where r, deGnes the outer boundary of the distribution
of matter. It is then evident from. Eq. (1.12-m) that

dl = Tds pd8—(2.1)

two equations free from time derivatives, namely, Eq.
(1.5) and the equation

(Bm)
4srR'e,

EBRi,
(1.13)

and the equation of continuity (nn&), „=0. The con-
tinuity equation can be written in a form

4srR'n BR dA i
(1+U'—2mR ')'t' Br dr j g=s

(1.14)

appropriate to our comoving coordinates, where the
amount of matter dA in any spherical shell deGned by a
Gxed coordinate range dr is independent of time.

Solutions to the above system of equations can be
obtained by specifying arbitrary initial values for R (r,0),

applies to a fixed amount of matter which, for con-
venience, we take to be a unit amount. The fact that
the amount of matter does not change can be expressed
by introducing the particle number density n= (1/n)
and requiring it to satisfy a continuity equation:

(nu&)., „=0. (2.2)

This law of co+servation of matter in hydro'dynamics
can be derived from the microscopic law of conservation
of baryons.

4The discussion in Secs. II and III is based on that of L.
Landau and E. Litshits, Fled 3Iechanscs (Addison-Wesley
Publishing Company, Inc. , Reading, Massachusetts, 1959), Chap.
XV, especially in its emphasis on the continuity equation (2.2).
For more complete discussions of the subject see: (i) A, Lich-
nerowicz, Theories Relativistes de Le &avitation et de L'E/ectro-
mugnetisme (Masson et Cie, Paris, 1955); (ii) J. L. Synge, Rela-
tivistic Hydrodynamics, Proc. London Math. Soc. 43, 376 (1937).
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dh dp Tds

h (e+p) h
(2.4)

which will be useful later.

III. HYDRODYNAMICS REVIEW

The equations of motion of a Quid described by the
stress-energy tensor4 Tl"" of Eq. (1.1) and an equation
of state e= e(s,e) are T&"

, „=0.One of. these four equa-
tions„namely, I„'lI"".„=0, reduces as a consequence of
Eqs. (2.2) and (2.3) to the heat transfer equation for
an ideal Quid, which is the condition of adiabatic Qow

When Eq. (2.1) is rewritten in terms of the energy
density e=u/v and particle number density e, it reads

de =NTds+ (e+p) s drz (2.3)

and gives Eq. (1.7) in the case ds=0. Thus, e=e(s,e) is
a convenient fundamental thermodynamic relationship
for describing a Quid; it immediately gives the pressure
equation p(s, rt) via Eq. (1.7). By differentiating the
definition of specific enthalpy, h=u+pv=(e+p)/ri,
and employing Eq. (2.1) or (2.3), one obtains a relation

and the surrounding empty space in order that the
interior metric (1.2) can be joined smoothly to the
exterior Schwarzschild metric

ds'= —(1 2M—R ')dt'+ +R'dQ'. (4.3)
1—2MB. '

These conditions will serve to relate the exterior coordi-
nates R and t to the interior t coordinate and interior
metric component ggg=R'(r, t). Assume that in the
exterior E,t coordinates the interface is described by
an equation

(4 4)

The metric on the interface is obtained by inserting
this in Eq. (4.3), or alternatively by setting r =r,=const
in Eq. (1.2). By equating these two expressions,

2M
(ds').„,s= —(1— ds'+ +R,'dB'

R, i—2MR, '

= —(e'4') dt'+R'(r t)dn' (4 5)

we find an equation for the interface in the exterior
coordinates. It reads

(3.1)NI s q=0.
(4.6)R=R, (t) =R(r„t),

The remaining equations can be reduced to the form of
relativistic Euler equations:

p, e

u u"= —(g "+u u")

provided that we insist that the interior and exterior
time coordinates agree on the surface. This boundary
condition on t then leads to one on e&, namely,

(3.2)

In the special case of isemtropic gou(, where one
assumes the specific entropy s to be constant throughout
the Quid s,„=0, the Euler equation can be rewritten as

u' u"=—(g""+u"u")(lnh), , (3.3)

by use of Eq. (2.4).
It is evident that in the isentropic case we may

consider e, p, and h as functions of the particle number
density n alone, i.e., e= e(rs), p= p(u), h=h(e).

(e&)„,,= L1—=2MR, 'jL1+U,2—2MR 'j—'t', (4.7)

where we have defined

BR)
U. = (e e).B.—=(e e

at),
(4g)

The function U, (t) is the rate of change of R, with
respect to the proper time of a comoving observer. The
conditions derived from the continuity of the deriva-
tives of the metric can best be considered later.

R(0,t) =0. (4.1)

Next, in order for the usual I,orentz-Minkowski
geometry to be valid in an infinitesimal neighborhood
of the origin, we must require that the circumference
2+E. of an infinitesimal sphere about the origin be just
2m times its proper radius e~"dr, or

e"= (8R/Br)' at r =—0.

Other conditions must hold at the interface between
the region occupied by matter (defined by a certain
constant coordinate value r = r,, for the inf:erior solution)

IV. COORDINATES AND METRIC

The metric (1.2) must satisfy certain conditions at
the origin r=0 to assure regularity there. The first is

V. EULER EQUATION

In the comoving coordinates delned by Eq. (1.4),
one obtains from Eq. (3.2) only one nontrivial Euler
equation, which reads:

cjoy'/~r = —L1/( +P) j~p/~r. (5.1)

In the isentropic case we may use Eq. (2.4) to integrate
Eq. (5.1).With the boundary condition (4.7), one finds

1—/2M/R, (t)]
(5 2)

when h is normalized so that h= 1 at the surface r= r, .
However, the coordinate conditions (1.4) and the
diagonal form of the metric (1.2) are preserved by
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transformations of the interior time coordinate t of the
form t —+ f(t), so it is possible to change e4' by a factor
which is an arbitrary function of time. Consequently,
the solution (1.5) is also acceptable. IJse of Eq. (1.5)
synchronizes the interior time coordinate with the
proper time of a comoving observer at the interface
r=-r„and prevents the interior time coordinate from
inheriting the singularities of the exterior time coordi-
nate when the surface falls through the Schwarzschild
"singularity" (R, (t) —2M) ~ 0.

When different layers in the body are allowed to have
different adiabatic equations of state e(is), it is not
possible to integrate Eq. (5.1) in terms of the specific
enthalpy, but an integrated form such as

1 Bpg=+ —— dR
g e+p BR

can of course be written. The boundary condition in-
corporated into Eq. (5.3) makes e&=1 at the surface
R=R, as in Eq. (1.5). The analogous generalization of
Eq. (5.2) is evident.

VL INITIAL VALUE EQUATIONS

87reR'=8 (RU' Rf)—/BR (6.6)

and thus yields the solution f= U' —2mR ' as given in
Eqs. (1.11) and (1.13). To interpret Eq. (1.13) it is
best to rewrite the integral

m(r, t) = 4irR'edR (6.7)

in terms of the element of proper volume

of Oppenheimer and Volkoff ~ in the static case,
where e "=1—2' ', indicates something of the form
the solution might take. But the boundary condition
(4.2) suggests some modifications of this. The form
e ~=X' 2—2m' ' satis6es these boundary conditions if
(m/R) ~0 as r —+0, but it is inappropriate for di-
mensional reasons: The Lagrangian coordinate r is
arbitrary at time /=0, and therefore can be assigned
a dimension independent of all other quantities in the
problem, while m/R is dimensionless. This leads us to
try the form e "=R' '(1+f) which simplifies Eq. (6.5)
so that it reads

The Einstein equations corresponding to the metric
(1.2) can be found in Landau and Lifshitz. ' Since one
knows' that the I'0' and T equations will contain no
second time derivatives, one may hope to 6nd some-
thing simple in them for a starting point. In the present
case, the T„' equation is the simplest. It reads

to obtain
V3V =4~x~~»2' (6.8)

(6.9)

e 6.=2U'/R', (6 1)

and
ci/aR= (1/R') (8/Br),

D, =e—e(8/Bt)„

(6.2)

(6.3)

to rewrite the initial value equation (6.1) in the form

Dies=2(BU/BR) .

This equation may then be used to eliminate A from all
the other Einstein equations. When it is used in the To'
equation, one 6nds

87reRs= 1+U +R(BUs/ciR)
—L2RR"+R"].-~—RR'(e-&)'. (6.5)

Since this equation is of erst order, and even linear,
in e " we try to solve it for this function. The work

'L. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1951), Sec. 11-7, Problem 5.

Y. Bruhat, in Gravitation: An Introduction to Current Re-
seorch, edited by L. Witten (John Wiley 8r Sons, Inc. , ¹wYork,
1962l, Eq. (4-1.8l.

where we use dots and primes to indicate the partial
derivatives with respect to f and r, respectively, and
define U by Eqs. (1.6) and (1.7). We may use the
differential operators

This last form reminds us that when considered as an
energy, m includes contributions from the kinetic energy
and the gravitational potential energy.

It is now possible to rewrite the constraint (6.4) in
an interesting form by substituting for X from Eq.
(1.11). The computation involves interchanging the
operators Di and 8/Br to write

BU Bp
D, lnR'—= +U

8E I9R
(6.10)

Using this identity and Eq. (5.1) gives

( 2' 'I' 1 Bp
D, ln~ 1+U'— = —U . (6.11)

e+p aR

7 J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374
(1939).

8 H. Bondi, 3Eonthly Notices of the Royal Astronomical Society
107, 410 (1947).

This equation is a useful erst integral in the cases con-
sidered by Oppenheimer and Snyder' and by Bondi
where p=0. For then, since e&= 1 by Eq. (1.5), it reads
-,'8' —(nz/R) =E=const and will give Newtonian free
fall for R(i) when we later discover that m(t) is constant
with this special p=0 equation of state.
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VII. EQUATION OF MOTION

It is known' that the Einstein equations

R'r =8~(T'i kg—'i T".) (7.1)

for i, j=1, 2, 3 contain as leading terms just BK;;/Bt,
where K;; is the second fundamental form of the
t=const surface. Equivalently, the only second time
derivative that appears in Eq. (7.1) is B'g;;/BP Th.us,
the R„„equation will contain just X and will be an
identity since we have eliminated X from our scheme
by solving Eq. (6.5). The Rg& and R«eq uati ons will be
equivalent (by symmetry) and each will contain just
B.They read

6—4irR (e—p) =e &B(RRe &)/Bt+~e '&RRX
c'

+1 e"'2B(—RR'e "~')/Br e ERR—'rt'

Because we have rather thoroughly reshu8. ed the
Einstein equations of the metric (1.2) in obtaining a
system of equations for independent field variables E., m,
and U, it may be of interest to prove directly that for
each r, Eq. (8.3) gives a constant of motion for the
system of equations (5.1), (1.12), and (1.13) supple-
mented by an adiabatic equation of state e(m) for
each r. The computation begins by forming the loga-
rithmic derivative of Eq. (8.3)

D]A' D,n 2D,E D,E'
+ + —-,'B, lr (l.+U'—

A' e R E.'

2m

R)
(8 4)

In the second term of Eq. (8.4) we can write by (1.12-R)
that D&R= U; the third term has been rewritten in
Eq. (6.10); the derivatives in the last term can all be
evaluated from Eqs. (1.12) and give Eq. (6.11) which,
by (5.1), reads

=Reg = (sin'8) —'R„„. (7.2)

In this equation we introduce the operator D& of Eq.
(1.10) and, for some intermediate computations, the
operator

2m)'~' BP
D l ~1+U —

~

=U
Rj BR

%e thus obtain the reduced form

(8.5)

D e
—x/2 ] +U2

Bt' R gR
(7 3)

Then X is eliminated using Eq. (6.4), 8 is replaced by
U via Eq. (1.9), and p' with p' via Eq. (5.1).This result
is Eq. (1.12-U) which includes the well-known Oppen-
heimer-Volkov~ equation of hydrostatic equilibrium in
the limiting case U=0.

Using the main equation (1.12-U) we can carry out
some of the differentiations in Eq. (6.11) to reduce it
to the form (1.12-m). Et is this form which shows that
m=0 in the case of a p=0 equation of state.

A = iiu'( —g)'t'd'x (8.1)

taken over a /=const surface is independent of t. Its
value A is analogous to the mass number of a nucleus
and represents the total amount of matter, or total
number of baryons, in the system. In comoving coordi-
nates satisfying Eq. (1.4) the corresponding integral
over any fixed domain of the spatial coordinates
x'(i=1, 2, 3) is time-independent, since Eq. (2.2) then
reads

VIII. EQUATIGN GF CGNTINUITY

The continuity equation (2.2) implies quite generally
that the integral

DA' Dm
+— (R'U) .

Z2 aZ
(8.6)

Because of the adiabatic condition D~s=O, changes in
density are related according to Eq. (2.3) by

De D]c

rl e+p
(8.7)

In the reduced system of equations for E, m, and U,
the density e is given by Eq. (1.13) which we differ-
entiate to obtain D&e.

81Ã
Di = 8rrRUe+4rrR2Dge.

(9E.

To evaluate the left-hand side of this equation we need
the commutator

B- Bg( B BU BD„=
i

Di—U
BR BR& BR BR BR

(8.9)

in which BP/BR can be eliminated using Eq. (5.1). We
find then with the use of Eqs. (1.12-m) and (1.13) that

B(riu'g —g)/Bt =0. (8.2)

For our problem we can insert expressions for I' and

Q—
g here to obtain the statement that

4~m~R'/tt1+ U' 2mR rjrt2=A'(r)—-
is time-i~deperiderit.

9 Reference 6, Eq. (4-1.9).

Bm BU
Di —— 8+RpU 4mR'(e+—p)—

BR R

which allows us to rewrite Eq. (8.8) in the form

1 8
D, e = —(e+p)— (R'U) .

E.' BR

(8.10)

(8.11)
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Combining this with Eqs. (8.7) and (8.6) then gives hypersurface r=r, one has

DfA'=0 (8.12) Kg.g. = —R, 'L1+ U,'—(2gg4/R. )]t", (9.3)

as we wished to show.

4= ( gg„;,dx "dg—g"), , (9.1)

IX. BOUNDARY CONDITIONS

The condition, previously discussed, that the metric
or first fundamental form of the boundary surface
should be the same whether obtained from the interior
or exter ior metric, guarantees that for some coordinate
system the metric components g„„will be continuous
across the surface. In order to guarantee that coordi-
nates can be introduced for which the first derivatives
of the metric, g„„, , are continuous, it is sufhcient that the
second fundamental form be the same whether the
boundary surface is considered imbedded in the in-

terior or the exterior space-time. ' For any hypersurface
s with unit normal vector eI", the second fundamental
form 4 is defined as"

while the exterior metric gives, for the hypersurface
R=R, (1),

K ~ = —R 'L1+ U ' —(2M/R, )]" (9.4)

p, =—p(r„t) =0, (9 5)

as can be seen by comparing the interior and exterior
components K«and using the field equation (1.12-U).
The interior computation gives

2M~'I' 1 rip
Ks c

= —
I

1+U'—
R ) e+pBR

(9.6)

Matching these components of 4 therefore gives M =m,
which is Eq. (1.16). Since M is a constant this equation
can be differentiated with respect to t with r =r, to
give m, =0 which implies, through Eq. (1.12-m), that

p, U, =0. The correct boundary condition is more

specifically

while the exterior giveswhere the subscript s means that one of the coordinate
differentials is to be eliminated using the equation of
the surface. For example, one sets (dR A,dt), =0—in the
exterior coordinates of our problem. For comparison
purposes, we write

2M~-'~' M
IC + +(1+U'— =I +D,U . (9.7)—

R1 R'

@=Kg g. (egdt)s+Kg g DR,d8)s+ (R, sin8dq)']

and compute from the interior solution that for the

The difference of these two, using Eq. (1.12-U) and

(9 )
m M is

K, , + K, , = —L—1+U,—s (2M/R, )]—'l'4grP, R,. (9.8)

' D. L. Beckedorff, thesis, Princeton University, Mathematics
Department, 1961 (unpublished); and C. W. Misner and D. L.
Beckedorff (unpublished)."E.Cartan, Lecons szsr la Geometric des EsPaces de Riemunn
(Gauthier-Villars, Paris, 1951), Sec. 207.
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