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Effect of Unstable Particle Production on Scattering Amplitudes*
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The model for pion-nucleon scattering proposed by Ball, Frazer, and Nauenberg is solved numerically.
This model yields unitary scattering amplitudes while including the e6ects of p-meson production and the
associated anomalous thresholds. The behavior of the solutions as a function of the width of the p meson
and the pion-nucleon coupling constant is investigated. Cusps as well as broad peaks are generated in the
elastic-scattering amplitude by the p-meson production. The effects of the complex singularities are investi-
gated in detail by comparison with another treatment of pion-nucleon scattering in which anomalous cuts
are absent. Also, the existence of poles on unphysical sheets is studied by means of a simplified model.

I. INTRODUCTION

~

~

~

~

S the analytic structure of two-body scattering
amplitudes has become increasingly well under-

stood and exploited in recent years, it has become
apparent that even at low energies these amplitudes
may be strongly affected by the inelastic production of
low-mass multiparticle states. There seems to be some
experimental as well as theoretical justification for
assuming that these production processes may be
dominantly the production of a two-particle state in
which one or both of the particles are unstable and sub-
sequently decay, producing the multiparticle final state.
A procedure by which scattering and production of
unstable particles may be treated has been developed
by Ball, Frazer, and Nauenberg'; in particular, these
authors have constructed a model for pion-nucleon
scattering in which the effects of the production of a
pion are included. The complexity of the three-body
states is reduced by treating the two pions as an un-
stable p resonance. This model satis6es the unitarity
requirements for all three processes sr+Jtr ~ s+E,
rr+E~ p+X, and p+E~ p+S by having the
appropriate discontinuities for the scattering ampli-
tudes in both total energy and energy of the two pions
forming a p. At the same time, the longest range inter-
action in the m+E~ p+X channel, namely one-pion
exchange, is included. To preserve the conditions
demanded by unitarity, which is the main task BFN
impose upon themselves, it is necessary as well to add
nucleon pole contributions to the one-pion-exchange
approximation. The end result of BFN is a linear
integral equation whose solution allows the calculation
of the various scattering amplitudes by quadrature.
The main difBculty in carrying out this program lies in
the evaluation of the kernel of the integral equation
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' J. S. BaH, %. R. Frazer, and M. Nauenberg, Phys. Rev. 128,
478 (1962). We refer to this work hereafter as BFN.

which requires a numerical integration over complex
singularities arising from the anomalous thresholds
present in this process.

The purpose of this paper is to report on the results
obtained by carrying out the computational procedure
formulated in BFN and to discuss the physical impli-
cations of these results. While the main interest in per-
forming this calculation was as an intermediate step
prior to doing the physical xE —+ pX problem, the
simpler model of BFN a8ords a better opportunity for
an investigation of the scattering amplitudes un-
hampered by inessential complications of spin. Of
particular interest is the effect of the complex singulari-
ties on the scattering amplitudes, especially in the
region near the p-nucleon threshold. Also, the familiar
cusplike behavior in the cross section at the inelastic
threshold2' and its dependence on the pion-nucleon
coupling constant as well as the width of the p can be
studied. Finally, an attempt can be made to understand
the underlying analytic structure of the solutions ob-
tained as well as their self-consistency.

In Sec. II, we give an outline of the calculation, which
is essentially a recapitulation of the relevant parts of
BFN. Section III lists the main results of the calculation
for various values of the parameters involved. %e also
present an interpretation of the results with the aid of
a simplified version of the BFN model.

II. OUTLINE AND DETAILS OF THE CALCULATION

YVhile the conventions of BFN will be used consist-
'ently throughout this paper, we nevertheless list here
the assumptions and definitions given in BFN that are
directly pertinent to our calculation. In the interests of
simplicity, all spins and isotopic spins have been
neglected, including those of the p resonance, and only
S-wave scattering for all channels has been considered.
The amplitudes for the processes xE —+ zE, mlV ~ pE,
pX ~ pX are given by Trr(s, t), Tst(s, t,oo), Tss(s, t,a&,cv'),

' M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962).' J. S. Ball u, nd W. R. Fraser, Phys. Rev. Letters 7, 204 (1961)
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respectively, where s designates the usual square of the
center-of-mass energy, t the invariant momentum
transfer, and co is the square of the energy' of the two
6nal resonant pions of T2~ and T22 in their center-of-
mass frame, while cg' is the same for the two initial pions
of T22.

Amplitudes M», iV», 3I», and 3EI22, which are slowly
varying functions of ~ and co', can then be formed by
factoring out the initial- and final-state interactions
between the pion pairs as follows:

M12(s, t) = Tg2(s, t), (2.1a)

M2l ($)tyo)) = T 2&( $)t,(o) /f (co)=M»(s)t, co), (2.1b)

M22(S, t,n1,~') = T»'(S,t,~,~')/f(a) f(a&'), (2.1C)

where f(~) is the S-wave pion-pion scattering amplitude

f((u) = 161rf01/(co 4t22—)J12e"&~& sinb((o)

and T22' refers to "connected" scattering processes. 4 0
we now specialize to the case ~=~'=m, ', where
m, (=5.4') is the physical mass of the p meson, the
functions M can then be written in terms of 2&(2 e and
d matrices:

M=n(I+d) '

Z

d22(s) = ——
7r

p~($')n($')d»($')
ds

s —s

d22(S) = ——
fr

1 " pg(s„')n1g(s')
ds'

(M+p) s —s

p2(s')n(s') f1+d22(s') j
ds

s —sI

(2.4c)

1 ",(s ')n, (s')ds', (2.4d)
(M+& )

2 s —s

d21($) = ——

1
d22 ($)

(M+2')
2

2
M+2IS)

,p2($+')n»($')
ds

s —s/

p2($+ )n22($ )
ds

s —s

(2.4e)

(2.4f)

where the kernel of the integral equation is

n»($) = B($)+ ds p2($+ )E(s,s')n»(s'), (2.4b)
(M+2p, )

The Particular choice of n and d made by BFN leads I($ $)— ds p, ($ )E($$ )E($ $ )
to the following linear integral equations: (M+p)

n„(s)=B(s)+ ds'p2(s+')L(s, s') n21(s'), (2.3a)
M+2@,)

+— dS"p1($")n($")—
s —s

n22(s) =B(s)+ ds'p2 (s+')I.($,$') n22 (s') . (2.3b)
2

(M+2p, )

These equations have the virtue that they contain
only real functions and the integral is evaluated over a
real contour. All of the complexity due to the anomalous
thresholds is now contained in the kernel I.($,$'). The
remaining e's and d's can then be obtained by quadra-
ture as follows:

E (s+",s) 2in(s")

s"—s 1r (s"—s) (s"—s')

E(s,s') =
B(s)—B(s')

1r (s—s')
(2.5b)

and B(s) is the S-wave projection of the one-pion-
exchange pole term, given by

n11(s) = ds p2 ($+ )E($~$ )1221($ ) ~
2

M+~8)
(24 )

n(s) n(s)+P(s)-
B(s)= ln

n(s) P(s)— (2.6)

B(s)=
i n (s')p, (s')

, d" (")E(,")B(")+-, f2B( ') —B()—2 (")3,
M+@) s —s

(2.7)

n(s) =
{fs—(M+t2)2]fs (M t2)' jfs (M——m, )2—jfs—(M—+Sn )'j}'1'

(2.8a)

g~()=,s' s(2M'+ 1n,2 y—2)+ (M2 —
p,') (—M' —I,')

{fs—(3II+p)2jfs—(M—p)2$}'12
p~($) =

16ms
4See Sec. EE of BFN.

(2.8b)

(2.8c)
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/~(~) =
(8~/~ —1lf)~ {[S (M++M~)2]LS (M M~1/2)2]j1/2-M~ 4+2

de)
I f( ') I',

128m's M

(2.8d)

where M and p are the masses of the nucleon and pion,
respectively, and g is the pion-nucleon coupling con-
stant. The subscript + on the variable s as it appears
in the foregoing equations implies that s is to be taken
at its limiting values just above the various cuts in-
volved. The precise definition of this procedure is given
in BFN. We represent the pion-pion scattering ampli-
tude f(cu) by a Breit-Wigner formula in the following
manner:

f((u) = 16m-L(o/((v —4p')]'"

(7/2) I:(~—4/ ')/~j'"
X (2 9)

m, '—~—i(V/2) L(~—4/ ')/~3'"

in which y is related to the half-width of the p meson on
the co'f' scale by

7,/, ——(y/4m )L(m '—4~~)/m ~J/~ (2 ]0)

Finally, the complex contour C goes from s to s+
where

s =M'+-'m 'Wi(m /2p)L(4M' —p') (m '
4//, ')$'"—

= 59 39 p'%179.89i p' (2.11)

and C may cross the real axis at any point between
(M+//)' and (M+m, )'. In integrals in which the inte-
grand has a cut in that region, the contour is split into
two parts, such that one segment goes from s to a
limiting point just above the cut and the other from a
limiting point just below the cut to s+.

The erst step in solving the e and d equations is to
calculate the kernel L(s,s') for real values of s,s')(M+2/t/)'. This is probably the most diflicult part of
the BFN program, as it requires a numerical integration
over complex singularities arising from the anomalous

S

thresholds present in the problem. Once the kernel is
known, Eqs. (2.3a) and (2.3b) can be solved n.umeri-

cally by a matrix inversion procedure yielding e» and
e~~. The other e's and d's follow directly from Eqs.
(2.4), and the scattering amplitudes can then be ob-
tained. We have carried out this somewhat lengthy,
but straightforward procedure, and the results are
presented in the following section.

III. RESULTS AND THEIR INTERPRETATION

The results obtained for the pion-nucleon elastic- and
inelastic-scattering amplitudes are shown in Figs. 2, 3,
and 4. Actually, what has been plotted are the squares
of scattering amplitudes times appropriate phase space
factors, so that the unitarity limit for the elastic channel
is 1, while that for the inelastic channel is 0.25. It can be
seen that increasing the pion-nucleon coupling constant
causes cusps to grow until they Anally become rather
Qat and near the unitarity limit below the second
threshold but fall off fairly rapidly above that point.
As the width of the p resonance is increased, the cusps
become more rounded or woollier, "but the same gen-
eral trend of growth and loss of symmetric shape w'ith

increased pion-nucleon coupling can be noted.
Figure 5 shows the departure of T» satisfying uni-

tarity from the Born approximation for T» denoted by
8». In the energy region where the Born term is small
compared to the unitarity limit the rise of 8» is closely
matched by that of T» as had been conjectured by Ball
and Frazer. ' Also, for values of the coupling constant
such that B~~ is near the unitarity limit the shapes of
B~~ and T» are quite similar; however, for larger
coupling constants when B~~ is an order of magnitude
above the unitarity limit the shape of T» differs from
that of 8~& in having a slower rise and a maximum at
higher energy.

In Fig. 6, we have plotted the real and imaginary

FIG. 1. The contour C in the
s plane for co=m, '=29.
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Fze. 2. The solid curves 1, 2, 3 give the elastic scattering ampli-
tudes squared for increasing values of the 7f.-N coupling constant
in the BFN model. The dashed curves are the corresponding in-
elastic amplitudes. The quantity W=s'/' and the width of the p
resonance is very small: p=0.1p'. The top curve decreases only
very slowly as it extends left towards the erst threshold.
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FIG. 3. The elastic and inelastic scattering amplitudes squared
for increasing values of the ~-E coupling constant. The p-resonance
width is now p= 1.0 p,', and the eGect of this larger width may be
seen in the more rounded cusps as well as in the more gradual
appearance of the inelastic channel.
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parts of the determinant of the d's,

L(l+dll) (i+d22) d12d21$

which appears as a factor in the denominator for the
scattering amplitudes xÃ~ xÃ, mF —+ pÃ, pÃ —+ pE.
The real part of D is remarkably Rat between sI and s&,

and this behavior is reflected in the flatness of the
elastic scattering amplitude for certain values of g, as
we have already seen. We shall discuss this remarkable
behavior of D later in the section with the aid of a
simplified model. Finally, the D function, which rises
smoothly to its asymptotic value of 1 at s= —~, has
no zeros in the unphysical regions of the s plane, at
least for interesting values of the pion-nucleon coupling
constant. Figure 6 shows this to be true along the real

To try to estimate the effect of the complex singu-
larities on the scattering amplitudes, we also solved the
following variation of the BFN model. Instead of tak. ing
the one-pion exchange as the dynamical input, we
exchanged a particle having the mass of the &. With
this heavier particle, there is no anomalous threshold,
and hence there are no complex singularities. Using this
interaction, we varied the coupling constant and com-
pared the solutions with those obtained in the one-
pion-exchange model. For small values of coupling, the
behavior of these solutions is similar to that obtained
with the pion-exchange interaction in that a small cusp

0.3
Uhl)TARY

LIMIT

0.2—

1

10/. /' I 8)21
1 2

1

o1
6 7 8

()III- M)/ )i

.I

)0

FIG. 5. The solid curves 1, 2, 3 are the inelastic scattering ampli-
tudes squared for increasing values of the m-& coupling constant.
The dashed curves give the corresponding Born terms squared.
The p width is constant at y=0.1p'. Note that the inelastic
amplitudes remain below the unitarity limit.

appears at the p-production threshold and the produc-
tion amplitude increases with increasing coupling con-
stant. However, above a critical value of coupling the
behavior of this solution departs radically from the
pion-exchange solution. The elastic channel (T11) cusp
moves toward lower energy becoming a resonance,
while the production amplitude T2~, which contains the
only interaction terms, decreases with increasing coupl-
ing, becoming negligibly small for very large coupling.

To illustrate the diGerence between these solutions,
we have taken the co coupling large enough to produce
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FIG. 4. The elastic and inelastic amplitudes for increasing g, but
with p-resonance width large: y=10.0 p,'. The increased "woolly"
eftects of a wide p-resonance width can be clearly seen.

axis below the first threshold, and one may check the
rest of s plane using the well-known "principle of the
argument" theorem. ' Thus, the BFN model is seen to
be self-consistent in so far as the scattering amplitudes
contain no spurious singularities, or "ghosts, " which
often plague solutions to this type of problem. '

' See, for example, E. T. Copson, An Introduction to the Theory
of Functions of a CompLex Variable (Oxford University Press,
Oxford, England, 1955), p. 119.

It is well known that ghost poles are produced in the calcu-
lation of one channel partial-wave scattering amplitudes by the
P/D method when the interaction is suKciently repulsive. ln
two-channel scattering processes with an interaction only in the
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FIG. 6. The solid curves give the real and the dashed curves the
imaginary parts of the D function in the BFN model. The labels
1, 2, 3 refer to results obtained for increasing values of the m-&
coupling constant. For these curves y =0.1 p,'.

o8-diagonal channel, which would usually be considered an
attractive interaction for the two elastic amplitudes, ghosts can
also appear. An example of a solution to a two-channel problem
containing a ghost pole occurs in the work of I,. F. Cook and B.W.
Lee, Phys. Rev. 127, 297 (1962).
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FIG. 7(a) The Born terms squared for the x- and &v-exchange versions of the BFN model. The coupling constants have been chosen
so that the Born terms are roughly the same in the low-energy physical region. (b) The scattering amplitudes squared corresponding to
the Born terms of Fig. 7(a). For the cases shown here, the co-exchange model has already developed a ghost pole, while the x-exchange
model does not contain a ghost. (c) The corresponding inelastic scattering amplitudes squared for the Born terms of Fig. 7(a). Note that
the ghost-containing, co-exchange, inelastic amplitude is significantly smaller than that of the 7I--exchange model.

a resonance, and for the sake of comparison, we have
adjusted the pion-exchange coupling so that the input
Born terms for both solutions are nearly equal in the
low energy region as shown in Fig. 7(a). In Fig. 7(b)
we show the T~~ and T2~ amplitudes for each input Born
term. The striking difference between these solutions is
due to a "ghost" pole which appears as a zero in the D
function for the cg-exchange model at the critical value
of the coupling constant and moves to the right as the
coupling constant is increased. Once this "ghost" pole
appears, the physical significance of the solution is
doubtful, since the solution then contains an interaction
pole in each channel of entirely mathematical origin and
without any' physical basis. As has been pointed out,
the pion-exchange model contains additional inter-
actions required by unitarity of the two-pion final state,
and these interaction terms in T2& and T2~, together
with the complex singularities, provide enough addi-
tional interaction to allow the ED ' equation to satisfy
unitarity without producing a spurious singularity.
Thus, unitarity is maintained with only interaction
terms of physical origin. These results indicate that
great care must be exercised in any approximation
scheme to low-mass exchange which ignores the com-
plications of complex singularities.

The precise origin of the shape and size of the curves
presented in Figs. 2—4 can, in principle, kle found from
a thorough investigation of the analytic properties of
the scattering amplitudes as a function of s. Unfortu-
nately, our model is already too complicatl d for practic-
able ventures into unphysical Riemann sheets, but an
approximate 3FN model, which produces results
similar to the original, does allow for easy excursions
away from the physical cut. This approximation is made

by replacing the left-hand partial-wave singularities of
the inelastic channel in the BFN model by a single pole
and also taking the p to be a stable particle. We shall
refer to this simplified version of BFN as the single-pole
approximation.

1
II~, (s) = ——

7l

U, = IV, (so);

p'(s')
ds' — -, i= i, 2 (3.2)

s —s s —sp

si is the position of the first threshold, and s2 that of the
second. The kinematic functions p; are essentially the
same as those of BFN, namely,

p, =
16m

(3.3)

with m~= p, m2 ——m„, but unlike BFN the form of p2 has
been taken here to correspond to the fact that the p
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FIG. 8. The elastic scattering amplitudes squared in the single-
pole approximation with stable p meson. The values of the residue
of the interaction pole appropriate to each curve are shown. The
pole position is at s0 ———500 pP. The top curve remains virtually
constant down to the erst threshold.

With this pole approximation the elastic scattering
amplitude T» becomes

'1'» =E'(Us W)/s(s s—o)D, —
where

D = 1—R'(Ur —Wr) (Us —Ws),
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FIG. 9. The lower solid curve is the imaginary part of the D
function in the single-pole approximation. The upper solid curve is
a term which enters into the real part of D= j.—R'(U1 —8'1)
(U2 —5'a), and the dashed curves are the single-channel contri-
butions to this term. Note that each single-channel curve has a
cusp at its respective threshold, and the resultant product curve is
hence fairly constant between the two thresholds.

meson is now stable. E. is the residue of the interaction
pole, while so is its position. In this model a ghost pole
will appear at s= —~ when R'=1/(UiU2) and con-
tinue to move to the right as R is increased. The limiting
position of the ghost pole with large R, however,
is sg.

The values of the scattering amplitude which are
obtained in this model are shown in Fig. 8. It can be
seen that, the curves resemble those obtained with the
BFN model and develop in a similar way with increasing
R. In particular, the top curve is virtually constant
between sI and s2, as likewise occurred for the preceding
model. The interaction pole position is at so= —500 p,
this point having been chosen because of the close
similarity of the results with those found in our calcu-
lation of the BFN model. In Fig. 9, we plot what are
essentially the real and imaginary parts of the D func-
tion in the single-pole approximation. The single-
channel contributions are also shown, and it may be
noted that it is their product which leads to the virtual
constancy of Re D between s& and s2, which we have
already seen in the BFN model (see Fig. 6).

In order to understand the shapes obtained for the
physical scattering amplitude in Fig. 8 and, in particu-
lar, the rather curious Qat curves near the unitarity
limit for certain values of R, one must study the analytic
behavior of this function in the nearby unphysical
regions of the s plane. This is done in the Appendix. It
is found there that a pole whose position varys with E.
moves close to the region of s~ to s2 for values of R
corresponding to the top curve in Fig. 8. The nearby
pole not only causes the scattering amplitude to rise
towards its unitarity limit in the immediate vicinity of
the pole, but also, because of the Rat behavior of the D
function, can communicate this eGect on the scattering
amplitude throughout the region from sJ to s2. The result
is that the scattering amplitude is nearly constant and

APPENDIX

In the single-pole approximation to two-channel
stable-particle scattering w'ith an interaction pole of
residue E. and position so in the oG-diagonal channel, a
common factor in the denominators of the scattering
amplitudes TII, T2J, and F22 is

D = 1—R'(Ui —Wi) (U2 —Wp),

where the various quantities given in the above equa-
tion are defined in Eq. (3.2). The W, may be written as

W, (s) = )U, (s) —U, (so)$/Ls —soj,
where

1 (M —m)'.,I)— ' r.,()-..(o)&,
16m-

(A2)

and
i = 1,2 (A3)

q, (s) = (1/vr) r; lns;,

r, = (Ps—(M+m;)'j/Ls —(M—m~)'j)'~' (A4)

s'= ( '+ 1)/(r'- 1).
9 ~ and 8 2 are, of course, related to the first and second
channels, respectively. We shall henceforth drop the
suffices wherever both channels are implied. The cuts of
8' in the s plane are determined by the cuts of q. To
And these we must delne the branches of r and lns. If

~&== tan —'
iRes —(M —m)'

02
——tan '

(AS)

Res —(M+m)'
'W. R. Frazer and A. W. Hendry, Phys. Rev. I34, Bj.307

(1964l.

close to its unitarity lim. it between sJ and s2 for these
values of R.

The same argument can be applied to the results
obtained for the BFN model. The behavior of Re D as
shown in Fig. 6 can be traced to the scattering ampli-
tudes' having S-wave thresholds at both sJ and s2. Since
each term of D is the product of two functions, one with
a cusp at s~ and the other with a cusp at s2, the resulting
D function will tend to be relatively Rat between these
two cusps provided the maxima of D at sJ and s2 are
about equal. A nearby pole in the scattering amplitude
will necessarily emphasize this effect. We also expect
that if the threshold behavior at sI were that of a partial
wave with /&0, the cusp-like phenomenon at s2 would
become dominant, producing a resonance behavior
below s2 for sufficiently large coupling constant, as
occurred, for example, in the work of Frazer and
Hendry. '
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and the Riemann surface of r can be speci6ed as follows:

A' C'
I I

(
:zs s s r r sr s rigel/////p//////

I I I
tA IB 1C S-PLANE

sheet 1: 0&0,(2~,
—m&82& m,

sheet 2: 2~(8i(4x,
—x'(82( x'.

(A7)

Pro. 10. The physical, or
unitarity, cut on the physi-
cal sheet (sheet I). Below
is shown a cross-sectional
view of the unitarity cut
and the sheets it connects.

A A' B B' C

The cuts of ln s in the s plane are taken to the left. These
definitions specify the analytic properties of p, whose
sheet we can describe in the following manner:

sheet A: r on sheet 1,
—x(args(x,

sheet 8: r on sheet 2,
—3z'( al gs( —x'

)

sheet C: r on sheet 2,
m(argent 3m, etc.

(AS)

There are, of course, an infinite number of sheets due to
the in6nity of sheets from the logarithm.

One can also show that the various sheets have the
following cuts connecting the Riemann surface. Sheet
A has only one cut to the right starting at (M+m)'. The
sheet reached by going through this cut is sheet 8, but
8 also has a cut to the left starting at (M—m)' and in
passing through this cut sheet C is reached. However,
C has a right-hand cut as well, and this leads again to
further sheets, and so on. Thus, of the infinite number
of sheets of q, one has a single right-hand cut, while all
other sheets have both left- and right-hand cuts. It
follows from the definition of 8' that the locations of
the cuts of 5' are exactly the same as those of p, and
therefore the sheets of 8' may be described similarly to
those of q.

Finally, the physical singularities of D, which specify
the unitarity cuts of the scattering amplitudes, can be
deduced. The physical sheet must contain only right-
hand cuts in D, so the physical sheet (or sheet I) of the
scattering amplitudes is de6ned by taking 8 & and 5 2

on their sheets A, which we shall designate by sheet A»
and sheet A2, respectively. Thus, the physical cut for
Ti~, for example, starts at si due to the discontinuity in
5 ~, but there is an additional contribution starting at
s2 from the discontinuity in 5'2. If one passes through
the physical cut between s& and s2, one arrives on a sheet
which can be described by evaluating S'j on sheet 8&
and 8 2 on sheet A2. We denote this sheet as sheet II.
By going through the physical cut on sheet I above s2,
one can reach a sheet where 8 ~ is evaluated on sheet
Bi and 8'~ on sheet 82. This we designate sheet III.
Finally, one can cross through the cut on sheet III
between si and s2 and arrive on sheet IV, where 8 ~ is
taken on sheet A& and 8'2 on sheet 8&. The unphysical
sheets II, M, and IV will also contain left-hand cuts
which will lead to further sheets, but these four sheets

are those which are most intimately connected to the
physical region and therefore of greatest interest as far
as studying the eGects of nearby singularities on the
physical cross sections are concerned.

In Fig. 10, we show the physical cut on sheet I and
also a cross-sectional view of this cut to illustrate how
the four sheets are connected. We note that the point
s& is cornlnon to all four sheets. Any unitarity preserving
model of two-channel processes will contain sheets
equivalent to these. '

The fourth quadrants of the four sheets and the
singularities they contain in the single pole approxi-
mation are given in Fig. 11. Since Schwarz reQection
applies to the scattering amplitudes, there is symmetry
about the real axis. As the residue of the interaction
pole is varied, poles of the scattering amplitude move
about in unphysical regions as indicated in Fig. 11.The
region about s2 is noticeably bare of poles on all four
sheets unlike the case of Frazer and Hendry, where a
pole moving about s2 was of prime importance to their
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sp ———500 p'.
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results. The behavior shown in Fig. 8 can nevertheless
be reconciled with this somewhat disturbing fact if we
remember that both channels in our model are in 5
w'aves, while in the Frazer-Hendry model, the first
channel is in a D wave. If we look in Fig. 9 at the single-
channel contributions (given by the dashed lines) to
Re|UI—WI) (Us —Ws) j, we see that each has the usual
cusp-like behavior at its respective threshold. Since
both curves represent 5-wave behavior, they have
largely the same character and magnitude about their
thresholds, and the resultant product which enters into
the two-channel solution is thus almost constant be-
tween s~ and s2. Ke emphasize that the shape of this
curve is purely a threshold phenomenon and is inde-
pendent of the poles in the scattering amplitudes. The

eQect of poles, so to speak, is simply to amplify the
surrounding kinematic behavior. Thus, a pole in the
scattering amplitude near the s~ to s2 region will tend to
stress the Rat behavior which occurs in the D function.

We see, in fact, that there is a pole near this region
for appropriate values of 8 corresponding to curves in
Fig. 8; namely, on sheet II there is a pole which ap-
proaches the point s& and eventually emerges on sheet I
as a bound state. Because of the flat nature of the curve
in Fig. 9, this pole can strongly influence the whole
region between sl and s2 and eventually give rise to the
uppermost curves of Fig. 8. The shape of the lower
cusp-like curves of Fig. 8 is due mainly to the numerator
of TII given by E'(Us —Ws), whose real part is plotted
in Fig. 9.
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Polarization of Recoil Protons in ~+p Elastic Scattering Near 600 MeV*
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Angular distributions of recoil-proton polarization in elastic 71- p scattering were measured at 523-, 572-,
and 689-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal
asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. Typical
strong variation of the polarization with pion scattering angle near the mp di6raction minima was observed.
Since existing opinion favors a D» resonance at 600 MeV, a phase-shift analysis was attempted in order to
con6rm the existence and parity of this resonance. Available alp total and differential cross sections, these
polarization data, and some possible restrictive assumptions related to the 600-MeV resonance were used in
the analysis. Though the polarization results aided signi6cantly in restricting the number of acceptable
phase-shift sets, still, many plausible and qualitatively differen sets were found.

I. INTRODUCTION

"/RESENT knowledge of the natures of the various
maxima occuring in the pion-nucleon cross sec-

tions, "for pion kinetic energies below 1.6 &eV (lab),
includes quite certain assignments of angular momenta.
Parities are, however, not confidently understood
except in the well-known case of the 'V'33" resonance
(isotoPic sPin T= us, angular momentum 7= us), occur-
ring in pion scattering at 200-MeU kinetic energy in the
laboratory frame, or 1238-MeV)total energy in the IIX
center-of-mass frame.

Angular distribution in photoproduction' ' and in
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elastic scattering ~ have allowed assignments of angular
momentum to the phenomena here of interest as
follows':

Isotopic
spin

3/2
1/2
1/2
3/2

Pion K. K.
(Lab)

200 MeV
600 MeV
900 MeV

1350 MeV

mS total
c.m. energy

1238 MeV
1512 MeV
1688 MeV
1920 MeV

3/2
3/2
5/2
7/2.
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Our particular concern in this article is the phe-
nomenon at 1512-MeV c.m. energy. Angular distribu-
tionm easurements infer that a J= ~ amplitude is
strong at this energy; but other amplitudes are not


