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The analyticity properties of helicity amplitudes for binary reactions of particles with arbitrary spins are
studied using the following three properties: (i) the analyticity properties of scattering amplitudes, assuming
these are correctly predicted by perturbation theory; (ii) the crossing relations of helicity amplitudes near
s=0; (iii) the threshold behavior of partial-wave amplitudes. Making use of these properties, kinematical
singularity-free amplitudes for any spin are constructed by modifying helicity amplitudes. MacDowell
reciprocity is generalized to arbitrary spin. Helicity amplitudes are proved to satisfy the Froissart limit

at the high-energy limit.

I. INTRODUCTION

HE S-matrix theory of strong interactions is based
on the analyticity properties of scattering ampli-
tudes.! Among various kinds of amplitudes, the helicity
amplitude introduced by Jacob and Wick? is most
convenient for practical applications. Until now, if one
wanted to know the analyticity properties of helicity
amplitudes, one had to look for thelinearly-independent,
Lorentz-invariant scalars built up from the four-
momenta and spin parameters of the external particles,
the coefficients of which are free from kinematical
singularities and satisfy the Mandelstam represen-
tation. (Here, the spin parameters include Dirac
matrices, polarization vectors, and fermion spinors.)
Then, one had to know the relation between helicity
amplitudes and these coefficients. This has been done
for wm, N, and NN scatterings®* and their crossed
reactions.*® For more complicated scattering problems,
a prescription for finding kinematical singularity-free
amplitudes has been given.® However, it is not easy to
follow the prescription. For example, it was difficult
even for NN scattering. Therefore, this indirect method
will not be used in the following. Instead, we will
investigate the analyticity properties of hehc1ty amph~
tudes from the beginning.
As will be shown in the following, the analyticity
properties of helicity amplitudes are not so complicated
for simple scattering problems.”
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For =V scattering??®

fre=cos(0/2)[2M A+ (W?>—M?—

frm=sin(6/ DLW+ M2~ A
+ (W2 — M2 +-2) MBI,

/-’IZ)B] ’
(1.1)

For NN scattering*

(frrrr— foi ) = E2G1— 2p°Ga+m*Gs

3 ([t T fir,—) = (BGetm*Ge)z— p°Gs,
LA+2) o e— (L) fom i = — 97Gs,

(z=cosb),
LA4+2) ot (=2 e J=mPGot Gy,
(m/y) fitp—=—m*E(Ga+Gy), (y=sinb).
For the 7= — NN process®
fir,=[—2pA+2mgB cosb ],
f4—,=2FEgB sinf.

(1.2)

(1.3)

Readers will see from Egs. (1.1) to (1.3) that the

modified helicity amplitude,
Ixona nany= [cos (6/2) T+ [sin (6/2) I~
X2 fx hadahss
[N=Ne—\s, m=Xe—Ma, £=0 (or 1)
if Aa—As—A+Na is even (or odd) ],

(1.4)

satisfies the Mandelstam representation if we neglect
possible (kinematical) poles at s=0 and p=0. We can
get rid of these by multiplying Eq. (1.4) by sfand p*¢
(¢ and L can be predicted).

The amplitude (1.4) does not satisfy the Mandelstam
representation in general. However, it will be shown
that we can modify helicity amplitudes for any spin in
such a way that the modified amplitudes satisfy
Mandelstam representations. A list of kinematical
singularity-free amplitudes will be given in Sec. VII.
Making use of this result, a generalized MacDowell
reciprocity will be proved in Sec. V. Helicity amplitudes
for any spin will be proved to satisfy the I'roissart limit
at high energies (Sec. VI).
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II. ANALYTICITY IN COSO AND IN ¢

In the following, we assume that the analyticity
properties of scattering amplitudes are correctly pre-
dicted by perturbation theory. Then it has been shown®
that the amplitudes of binary reactions ¢+b— ¢+d
can be written as®

T=5 By(su)N;(paf), (2.1)
J

where T is related to the corresponding S-matrix

element through

(pepal S—1| papo)= (2m)4i6* (pot pa— pa— ps)
X (pa()PbOPcO dO)*l/QT. (22)

B,(s,t,#) is an analytic function of s, ¢, and # and
satisfies the Mandelstam representation. N;(p:,8:) is a
polynomial in the four momenta of the external par-
ticles p; and spin parameters 8; which include Dirac
matrices, fermion spinors, and polarization vectors.

The expectation value of (2.1) between helicity states
in the center-of-mass system of the s channel (helicity
amplitudes) can be written as

Trranare=2 Bj(s,t,u)[ Polynomial in p,2, p2
J

", pp’, sin(0/2) and cos(6/2) [p" or p'7]
X H [P,;O—l—mi:]_lﬂ. (23)

i: fermion

In deriving (2.3) we have made use of the fact that the
helicity states are linear combinations of direct products
of ex*(p) and u(p) (A stands for helicity and u is a
Lorentz index), where

e1*(p)=(0; cosb, 7, —sinf)/V2,
€ (P) = (P; PO Sino;O;PO COSG)/’WL )
e_1*(p)=(0; —cosb, 1, sinf) /V2 ,

w172(p) =[(p°+m) cos(6/2),(p*+m) sin(6/2),
p cos(8/2),p sin(8/2) I 2m (p*+m) 1172,
t-12(p) =[— (p°+m) sin(6/2), ($*+m) cos(6/2),
psin(6/2), —p cos(9/2)]
X[2m(p+m) 12,
for pr= (p%p sind,0,p cosh). For example, the helicity 2
state of a spin £ particle is euy)2.
The helicity amplitude, T ;2.0 10 (2.3) is related

to the conventional helicity amplitude of Jacob and
Wick? through

Trranas=27(5p/ B Fronanars (do/d2=| f|2) . (2.4)

In (2.3), p is the energy of the particle ¢ in the center-
of-mass system of the s channel, () is the momentum
of the initial (final) particles in the center-of-mass

and

s=(patpp)®=(pctpa)?,

u=(pa=pa)’=(po—1)" = (pa=po)*=(po—pa)",

YASUO HARA

system of the s channel, §; is the scattering angle in the
center-of-mass system of the s channel, and

po= stmat—mi)/2(51),
p*="Ls— (matmy)*Ls— (ma—me)*]/ (45), (2.5)
and
cosf=[2st+s*—s Z mE+ (ml2—my?) (m2—md)]
X (4spp) .

In (2.3), 7=0 (or 1) if namena=1 (or —1) due to the
P invariance of the strong interactions.?
Next let us consider the following amplitude:

Txpranars = [cos(0/2) 7PH#I[sin(6/2) T4 Ty ngxahs
()\:‘:)\a*kb and M=>\c“‘)\d)- (26)

This amplitude has been shown!®! to depend on cosé,
but not on cos(6/2) and sin(6/2). Then, we can write
it as

Traranars =2 Bi(s,t,u)[Polynomial in p2, p?
i

P2, pp’, and cos@][ p7 or p'7]
x II [potm 12,

i: fermion

(2.7)

Hence, we have found that for fixed real s, 77 is analytic
in the cosf plane with cuts on the real axis. Since cosf
is linear in {, we have also found that 7" is analytic in
the cut ¢ plane (for fixed s) with cuts' (fmin, ) and!
(=, 2 imP—s—umin). Therefore, we have only to
study the analyticity properties of helicity amplitudes
as functions of s.

III. ANALYTICITY IN s; GENERAL CASE

Thus far, we have only considered the helicity ampli-
tude for the s reaction (Tangna0,°). As has been shown
in the previous section, the helicity amplitudes for the
¢ reaction (Thpuans’) has no kinematical singularities
in s if it is divided by

Ccos (6,/2)T-P+#([sin(8,/2) -+1.

Crossing relations between helicity amplitudes in the
s channel, Tj,,4.°% and helicity amplitudes in the ¢
channel, T4 470, have been proposed by Trueman
and Wick® and by Muzinich.'®* According to Trueman
and Wick,

99; is defined in Ref. 2.

M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, B145 (1964).

4 F, Calogero, J. Charap, and E. Squires (to be published);
T'. Calogero and J. Charap, Ann. Phys. (N.Y.) 26, 44 (1964).
(1;26’411‘) L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
18T, Muzinich (to be published).

14 A proof based on Muzinich’s relations can be given in the
same way.
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Tovpa*= 2. dosYa)dyy (m—Yo)dp s (r—¥s)daa®*Wa) Top var’s

al ,ylﬂlal
where
(s+ma2—my2) (+ma—m2) 4 2ma? (my2—m2+md—mg?)
cosy,=
4pp,(st)!? ’
(s4-m?—ma2) (1 m e —mg?) +2ma? (g2 — my*+magt—m.?)
cosyp= >
4pp (s)'1?

sinyg, = mqp,’ sinfy/s'?p,
singy=myp, sinb,/s'%p
po=[t— (matm ) 2Lt— (ma—mo)* 2/ 2002
pd =Lt~ (mytma)? "2[t— (my—ma)* ]2/ 2012,
cos0,= (2502 —t 3 mi-t (mad—m) (mid—m) 1 tpepd ).

At first, let us consider the general case. (We assume any two of the four external particles have unequal masses
and m,>m;, and m.>ma.) In this case, dr,(¥s), sin(8,/2), cos(6,/2) have no s¥/? and s~ type singularities and
sin(6,/2) — O(s)"2 and cos(8,/2) — O(1) as s — 0. Therefore, from the crossing relations, (2.7) becomes

Taonanarg = 825" Bi(s,tu) f(s, cosd), (3.1)
j

where [ is a function of s and cosf and is analytic in s at s=0, and from (2.7) and the crossing relations we obtain

Thoana’ =0 IT  [2512(p04m) T Txnanans’

i: fermion

1 or pp's 0
=s~I=ui2 3" Bi(s,t,u)[ Polynomial in s/2, p%s, p'%s, and Cos()]l: ] for n=l: :' . (3.2
i psi2 or p'si? 1

For the sake of simplicity, we consider only the n=0 case in the following!®: Then!®
Trirangry =S 1Aul2 Z B;(s,t,u)[ Polynomial in s and cosf]
] X1 or pp's) for BB— BB,
[s— (ma—mp)2 12T\ g nany = sTIVHI2 Z Bj(s,t,u)[ Polynomial in s and cosf]
J X1 or pp’s) for FF— BB, (3.3)
[s— (ma—mp)2 2 [s— (me—ma)? /2T x g nans = STIAHII2 Z Bj(s,t,u)[ Polynomial in s and cos6]
i

X1 or pp’s) for FF— FF,
since

IT  [2s2(pL2+m) 2= (W matms) [ s— (me—myp)? 42 for FF— BB

i: fermion
= (WHmatmp) (Wmet+ma)[s— (me—mp)* 1[5 — (me—ma)*J"* for FF— FF,
and since @0 O, etc., do not have poles at W=s"2= — (m,+ms) and W= — (m+ma).
For BF — BF,

2518 (p ot mr) 2812 (04 mo) 12 H L2 (put-ma) JPL252(p - m) T2 (251 (pd—m) 12
XL252 .0 m) V2 T25 24 ma) T2 O4-me) 12— L2542 (0 —ma)
X[2542(p 0~ m,) 12y = E(s)+5°0(s) . (3.4)

18 For the n=1 case, see Sec. VII.
16 In the following, B and F stand for bosons and fermions, respectively.
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Thus”
E($)Tananary =5 #1237 Bi(s,t,u)[Polynomial in s and cos6](1 or pp’s) (3.5a)
i

and
SY20(S)Taghanan, = sYE" =412 57 B/ (5,4,u)[ Polynomial in s and cos6](1 or pp’s). (3.5b)
j

Therefore, we can find kinematical singularity-free amplitudes if we can separate the terms that contain the factor
pp’s from these that do not contain it. This separation can be made by making use of the threshold behavior of
partial-wave amplitudes.

For this purpose, let us consider the parity-conserving helicity amplitudes defined by

7 - 7
Troranans™= T anary &= (— 1) Mmbsctsaon 0T sy adads

= 2 s 22HRIBD=0I2 57 (2 T+ 1) Lene”™ (2) Faonanare” 0’ @) Faoanens” ™ (3.6)
7

where An=max(|\|,|x|) and v is £ (or 0) for half-integral J (or for integral J). In terms of 7+, we can write F
matrix elements [Fy/= (S;:7 —8:) (26)71p"~12p~12] as

1
Frxaanany” £= (16725) 7122~ IMrul 2= ul /2 / 2Lone (3) Tagnanare® (@) Fonn”™ (@) Trpranary(8)T 1,
-1

where

Faxpangn =T M s Noha| F|TM ; Nahy )
and

PlIM; Naho)p= £ (=177 [ TM ; Naho) ..

The c\,/* can be written as linear combinations of the Legendre functions Py xmiav, Pramizoss, * * 5 Poyrm—so
with constant coefficients.® The ¢),”~ can be written as linear combinations of the Legendre functions P xmyavt1,
Py smiooss, * 5 Priam—2o—1 With constant coefficients.’® For all reactions, ex,”* (/) is an even (odd) function
of cosf if J+max(|\|,|u])—2vis even and an odd (even) function of cosf if J+max(|\|,|u|)—2v is odd. If we
assume that nas=nms=1, then F/* is an even (odd) function of both p and p’ if J—v is even (odd) and F'~ is
an odd (even) function of both p and p’ if J—wv is even (odd). In the following part of this section, we assume that
max(|\],|u|)—wv is even. Therefore, we find for BB — BB, FF — BB, and FF — FF

174 -
Trxpanans T=Tapunarsh 05— (ma—mp) 2T\ ng rang”™
or

[s— (ma—mp)2J2[s— (me—ma)* T Tr g narst =552 B;(s,t,u)[ Polynomial in s and cos?§]
j

X1 or pp'scosd) (3.7a)
and
Tronvarars "=Drananars ™ [5— (Ma—m) 12T gy~
or

[s— (ma—my)* T2 s— (me—ma)* PP Tan grarg =52 Y .B;(s,t,u)[ Polynomial in s and cos?6]
i

X (pp's or cosf), (3.7b)
where

E=max(|N—p[,[M-pl).

Therefore, we have found that the amplitudes (3.7a) and (pp’s) X (3.7b) satisfy the Mandelstam representations
if we neglect possible kinematical singularities at pp’s=0 [cos contains a factor (pp’s)~Y]. The singularity at
#9's=0 can be removed by multiplying Eqgs. (3.7a) and (3.7b) by (pp’s)¥+. The L. can be determined from the
threshold behavior of phase shifts.
The threshold behavior of [7* is
FIE o O(phip's). (3.8)

»,p"0

Let us define pyf=max|J—1/;| and p,/=max|J—/;| for states of T, where I; and /; are the initial and final
orbital angular momenta which are compatible with total angular momentum J. Then, we obtain

Ly=max[p,"—Nn+29, pi.f —Nm+22, and 0]. (3.9)

1 In deriving Egs. (3.52) and (3.5b), properties of E(s)#0;u and O(s)#%0;u have been used.



ANALYTICITY PROPERTIES OF HELICITY AMPLITUDES BS511

Therefore,
Inranane= 2P’ ) Dy pnanars (3.10)

satisfies the Mandelstam representations.
For BF — BF: [we assume (— 1)Mwtsctsd=vg p,—17]

ES)Tapanars +520(5)Tnpranary =552 > Bj(s,t,u)[ Polynomial in s and cos?§ (1 or pp’s cosb),
i

E($) T anarsy —SPO(S) T rpranary =552 3 Bj(s,t,u)[ Polynomial in s and cos?](pp’s or cosf),
i

(3.11)
SPO(S)Tapanars FEG)Txgranany =523 Bji(s,t,u)[Polynomial in s and cos?6 (1 or pp's cosb),
S0 () Tagnanars —E () Trprgnany =572 Z B;(s,l,u)[ Polynomial in s and cos?d|(pp’s or cosh),
where!8 ]
¢=max(|\—p[, [Mp[—1)
and
¢=max(|\—p|—1, [\ tul).
Therefore, we find the following four kinematical singularity-free amplitudes:
SS2(pp' ) IHE(S) Tapnanars 5720 () Tore—ranars } (3.12a)
s2(pp's) A E(S) Taararars —50() Treranans'} 5 (3.12b)
s82(pp') {0 () Tagrarare T E() Trranars'} (3.12¢)
sS(pp's) {120 () Tagranars — E () Toro—rgrars } - (3.12d)
They are not independent, but Egs. (3.12a) and (3.12c) are independent.
IV. ANALYTICITY IN s; SPECIAL CASES The difference between (3.9) and (4.4) comes from the
In this section we consider the special cases: M fact that (3.8) is replaced by
o e e T e cascs the anaipticy 2,00 )

properties of the scattering amplitudes are simpler than  jp this case.
those in the general case.
B. BB — BB and FF — FF (m,=m,, my=my)

A. Boson-Fermion Scattering (m,=m,, my=my) In this case, (2.7) becomes?
, (2.

When m,=m, and my=maq, O(s)=2m. Thus, Eq. ,
(3.5b) becomes!®:® Tapanars =2 Bj(stu)s—e

7
! — ¢—IN—ul/2 .
T_““’“"” s XJ: B;(s,tyu) X [Polynomial in 52 and cosf], (4.7)

X[Polynomial in s and cosf], (4.1) and Eq. (3.1) is still valid here. Therefore, we find that

and the amplitude s (P2) E N hgnars’ (4.8)
SRS ETy 55 vy (4.2) satisfies the Mandelstam representation [ L is given by
_ ) ] Eq. (4.3)].
is found to satisfy the Mandelstam representation,
where C. BB — BB, FF — FF, BB = FF
L:maX[L-th] ) (43) (ma =Mpy M= md)
Ly=max[pr—Ant+20,0], (4.4) In this case, (2.7) becomes™??
and
2pi=max[2]—l¢—lf| . (45) T)\c)\dv)\a)\blzg Bj(S,t,M)
18 Unfortunately, the author has not been able to prove Egs. X [Polynomial in s'/2 and cosf]. (4.9)
(3.11) in general. The amplitudes for the reaction m+p — K+A
can be shown to satisfy (3.11), but for other cases (3.11) is only 2 Tn this case, we do not need to consider the factor
conjectured. TI(p:24+ms)=12 since an(po)Oiun(pa) and din(pa)Osur(ps) are
WIn this case, pl=pd, PpP=pd, p*=p7?=pp', and polynomialsin p:, p, p’, sin(6/2), and cos(8/2).
cosf =1+ (¢/2p%). 2In this case, 2p%=sV% 4p*=s—4m? 4p"?=s—4m’, and

20 Here, we assume nanp="nc14= 1. cosf= (t—u)/(4pp").
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From (3.3) and (4.9) we find
STEPP) I paars’
satisfies the Mandelstam representation, where
L=max[LL 7,
Ly=max[py ' —An+29, po/ —Nn+22, 0], (4.11)

(4.10)

and
£=0 if N—u+tn isevenin BB— BB,
FF— FF
orif N—u+%n isoddin BB&FF
and
£=1 if A—p+n isoddin BB— BB,
FF — FF
orif A—p+n isevenin BB&FF.

D. Equal Mass Scattering (m,=m;=m,=m,)

In this case, (2.7) becomes®

Tronanarns =2 Bj(s,tu)
7

X [Polynomial in s'2 and cosf]. (4.12)

From Egs. (4.1), (4.10), and (4.12) we find the ampli-
tude
(4.13)

— ’
s EPZLT‘)\c)\d.)\a)\b

satisfies the Mandelstam representation, where ¢ is
given in the previous subsection and £=0 (or 1) if
A—p-+n is even (or odd) in BF — BF. L is given in
(4.3).

V. GENERALIZED MACDOWELL RECIPROCITY

MacDowell has found the following reciprocity
relation between the partial-wave amplitudes of #V
scattering?

fitr(=W)=—fur (W), (5.1)

where
fiE=exp(i6;*) sind; %/ p.

Making use of the results of the previous sections,
we can generalize (5.1) for any BF — BF reaction to*

Fxpanas” (W) == (=) *Frpgnans” (=W), (5.2)
where F7* has been defined in Sec. ITI,

Sy p grang” E= (1/4ar) 21wl 2= Dl 12

1
X/ dz[C)\;tJ-'_]‘)\,)\d,)\akbi—i_c)\quT)\c)\d,)\a)\b:F] .

-1

% S. W. MacDowell, Phys. Rev. 116, 774 (1959).

#If mo=mp=mc=ma, the factor (—1)*=# in (5.2) and (5.3)
should be replaced by (—1)Mw#*1. For vector-spinor scattering,
the relations F/*(W)=—F/=(—W) have been obtained in Ref.
10. However, the factor (—1)*~# is necessary if we use the phase
factor of Jacob and Wick (Ref. 2).
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Since
4 ’
T Tapnanads ET A ra0ahs

Trpanars (—W)= (=1 #Ty g reniy (W),
and?
Txeranary (—W)=— (=1 HT s agnary (W), (5.3)

we can easily obtain (5.2) for BF — BF reactions.
For other reactions,

|[F7=W) | = [F7=(=W)]
VI. HIGH-ENERGY LIMIT OF HELICITY
AMPLITUDES

Froissart has shown?:* that the scattering ampli-
tudes of spinless particles have upper bounds at the
high-energy limit,

| 7| < (const)s(Ins)? for z=-1 6.1)

(6.2)

and

| T| < (const)s¥4(lns)¥2 for —1<z<1

on the assumption that T satisfies the Mandelstam
representation.

It was recognized later by Greenberg and Low?8 and
by Martin® that it is not necessary to make use of the
full analyticity assumed in the Mandelstam represen-
tation to obtain the bounds (6.1) and (6.2). It is
sufficient to assume that T be analytic in an ellipse E.

Kinoshita, Loeffel, and Martin® have improved (6.2)
and replaced it by

|T| <const(lns)®? for —1<z<1,

assuming more analyticity than was needed in the Refs.
28 and 29, but less than was used by Froissart.

For the asymptotic behavior of the scattering ampli-
tudes for particles with any spin, Yamamoto has showns!
that they satisfy the Froissart limit. However, his proof
does not cover the most general case, and is somewhat
complicated. Therefore, we have decided to give a
general and simple proof using helicity amplitudes.

In Sec. II we have found that if the analyticity
properties of helicity amplitudes are assumed to be
correctly predicted by perturbation theory,

Trnanary =[2Y2 cos(0/2) T+l
X[242sin(8/2) T™# Ty pynmny  (6.3)

is analytic in the cosf plane with cuts on the real axis
(=, —1—a) and (148, ), where & and g are real
positive and approaches 2umin/s and 2fmi,/s at the
high-energy limit (s — o), respectively. However, for

26 For BF — BF, (—1)%=—1.

26 The proof in this section has been carried out in collaboration
with Dr. Louis Bal4zs.

2 M. Froissart, Phys. Rev. 123, 1053 (1961).

28 0. W. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961).

% A. W. Martin, Phys. Rev. 129, 1432 (1963).

% T. Kinoshita, J. J. Loeffel, and A. Martin, Phys. Rev. Letters
10, 460 (1963).

% K. Yamamoto, Nuovo Cimento 27, 1277 (1963).



ANALYTICITY PROPERTIES

our proof, we need a weaker condition, namely, that T”
is analytic in an ellipse (E) with foci at —1 and 1 and
with semiaxes ¢ and (a2—1)'2, where ¢=min(,8).

From (6.3), we find

T)\c)\d,)‘a)\b(W, Z2= 1) =0 for )\"‘ﬂ?ﬂ)
(6.4)

T)\;)\d,)‘a)\b(nf, Z= —1)20 f()l' )\+,Lt?£0
since 77 is finite at |2]=1.

Since!?

Taeranars (W,2)=2ms"2 37 (2T 4+1)Frpx grany” (W)
J
1 X eXuJ (Z) )
f deon? () Trmanens (W),
1

4sti2 J _

and

I apans” (W)=

and

1
T?\c)\d,)\albl (I/V,Z) =— dz’

2w along ellipse E

Trovanars (W,2") .
X—————— for zinkE,
72—z
we obtain
1
Frpapans” (W)= f dz' Trapnanans (W,2)
87r2’1:51/2 B
Loow’(2)
X dz
1 -3
1 d ’ 7 /V' 7
= T J
41%51/2}; % Toagnanars (W,3')
XCx’ (2)

where we can write ¢ and C in the form

J4Am—2v
o’ (@)= X a7 Pr(2),
J—Am+2v
and
J4-Mn—2v
(@)= X  an70r(2),

J—Am+2v

where the a are constants. Thus, we obtain

[ Faonanars” (W) <Z1r;s:/_zl Thrrarary (W,2) | max on E
X |Cou? (2) | maxon EL,
where L is the length of the path along the ellipse E.
L<2[a+ (a®—1)12]=2u,
u— 14 (const/s'?)>1.

We assume that |7/ (W,2)| max is bounded by a poly-
nomial in W, Ri(W). From the properties of Legendre
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functions, we find®
|Cri” (2) | max<comst(J)V2(1—1/u?) =71,
Therefore, we find
| Fxgnanare” (W) | <R/ (W)JHou

where R’ (W) is a polynomial in W. From the unitarity
of the S matrix, we know that

| Fapanars” (W) | < (pp)) 12
If we use the results of Ref. 10, we find
| ((142)/V2) 12 ((1—2) NZ)PHET g rarg (W2) |
=2ms'/2| g 2T+ 1) Frnanars” Wers” (2)]|

Faoapans” W) |

X f1(2),

< (const)s'? 3 (2J41)
J

(6.5)

where

fr()=1
fJ(z)J:;f(z)/JW for —1<z<1.

and

From (6.4) and (6.5), we find

| Trpanars(z) | <constXs(lns)* for z=z1
and

| Trpanars(2) | <consts¥4(Ins)*?  for —1<z<1.

VII. SUMMARY

In this section, a list of kinematical singularity-free
amplitudes %ang.aqnp 15 given. The properties used are
as follows: (i) the analyticity properties of scattering
amplitudes, assuming that these are correctly predicted
by perturbation theory; (ii) the crossing relations of
helicity amplitudes near s=0; (iii) the threshold be-
havior of partial-wave amplitudes.3
In the following

Troranary = [c0s(8/2) T4 [sin(8/2) 7MH T pgrars
(X= Na—Np and u——‘)\c—)\d) .

Case I. mo=mp=m.=mq=m
(i) BB— BB, FF — FF, and BF — BF.

Inrgnary= S~ (s—4m®) P T xg iy
where
£=0

£=1
(i) BB=FF.

— 7
Inpranars=5"2(s—4m®) ETxpg xars 5

if N—utn
if N—ptn

is even,
is odd.

2 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, New York, 1927), 4th ed., p. 322.

3 This assumption may be replaced by the crossing relations
near p=0 and p'=0.
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TasrE I. The a4 and 8.
nam e max(A|,|u])—v Ly ey B4 L- a- B-
+ 4+ even even 0 0 odd 0 O
+  + odd odd 0 O een 0 O
even 0 1 even 1 O
+ - even

odd 1 0 odd 0 1

even 1 0 even 0 1

+ - odd

odd 0 1 odd 1 0

even 1 0O even 0 1

- + even

odd 0 1 odd 1 0

even 0 1 even 1 O

- -+ odd

odd 1 0 odd 0 1

- = even odd 0 O een 0 O
- - odd even 0 O odd O O

where
(=0 if AN—p+n isodd,
(=1 if AN—u-+tn iseven.

Case I1. mo=mc, Mp="ma, NaNo="7Nd
BB — BB, FF — FF, and BF — BF.

— — ’
Innanane=SPH2(P2) ETy r g 2oy -

Case I11. mo=mp, me=maq
(1) BB— BB and FF — FF.
Indanars=S"2(pp") ETxranars 5

where
£=0 if N—p+n iseven,

=1 if N—u+n isodd.
(i) BB FF.
aanare=5"2(pp) Toapranany
where
£=0
g=1

if A—utg
if A—pty

is odd,

is even.

Case IV. General Case

Any two of the m’s are not equal and mq>m; and
W >Ma.

(i) BB— BB, BB FF, and FF — FF.

YASUO HARA

We define T)\c%d,)\alb”:t as
Trpanars™ for BB— BB,

[s— (ma—ma)* I Tr pg pare™

Tapanary == for FF— BB,
[s—— (ma—mb)z:lllz[s— (mc_md)z]uz
Taparaes for FF— FF,

where

Trpanars™™= Drapgaars = (— 1D)MAmp g (— 1) sctee
KT nergdary
Then
Inpanaro=S552(pp's) L= (pst2) *=(p's )BT\ g i,

where
g=max(|A\—p|,| M pl)

and e, and B, are given in Table I, and L, are given
by Eq. (3.9).

(ii) BF — BF.

We define T7\c)\d-)\a)\b(i) (i—’: 1, 2, 3, and 4.) as

Trorarars P =E(8) Trpranars 1570(8)vToxoranars s
Droranare®=LE(8) Trangnans’ — S0 (8)v T2 —xahars’ s
Dapnanars®@=5"0() Targrars +E()vT 2 xanans
Taranars @ =520(8) Tapgrane —ES)vT-re-ranars
where E(s) and sY20(s) are defined in (3.4) and
y=(—1)MImtsctsi—vy p, Then,
Inganane=SS12(pp's) Lt (pstiZ) e+ (p'sUHB+T D
Inananane= S5 (pp's) L= (psti®)e=(p's')-T' ™,
Inanane= S5 (pp/ ) I+ (ps2) =+ (p'sUB)B+T @) |
Ingnanans= 55" 2(pp"s) 1= (psti®) o= (p's2)-T'®
where
¢=max(|]A—ul, [\Mu|-1),

and
¢'=max(|N—p|—1, N ul),

and a,. and B, are given in Table I, and L, are given
by Eq. (3.9).
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