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The analyticity properties of helicity amplitudes for binary reactions of particles with arbitrary spins are
studied using the following three properties: (i) the analyticity properties of scattering amplitudes, assuming
these are correctly predicted by perturbation theory; (ii) the crossing relations of helicity amplitudes near
s=0; (iii) the threshold behavior of partial-wave amplitudes. Making use of these properties, kinematical
singularity-free amplitudes for any spin are constructed by modifying helicity amplitudes. MacDowell
reciprocity is generalized to arbitrary spin. Helieity amplitudes are proved to satisfy the Froissart limit
at the high-energy limit.

I. INTRODUCTION

'HE S-matrix theory of strong interactions is based
on the analyticity properties of scattering ampli-

tudes. Among various kinds of amplitudes, the helicity
amplitude introduced by Jacob and Wick' is most
convenient for practical applications. Until now, if one
wanted to know the analyticity properties of helicity
amplitudes, one had to look for the linearly-independent,
I orentz-invariant scalars built up from the four-
momenta and spin parameters of the external particles,
the coefFicients of which are free from kinematical
singularities and satisfy the Mandelstam represen-
tation. (Here, the spin parameters include Dirac
matrices, polarization vectors, and fermion spinors. )
Then, one had to know the relation between helicity
amplitudes and these coef5cients. This has been done
for mw, mS, and SS scatterings'' and their crossed
reactions. 4 ' For more complicated scattering problems,
a prescription for finding kinematical singularity-free
amplitudes has been given. ' However, it is not easy to
follow the prescription. For example, it was diKcult
even for Ãg scattering. Therefore, this indirect method
will not be used in the following. Instead, we will

investigate the analyticity properties of helicity ampli-
tudes from the beginning.

As will be shown in the following, the analyticity
properties of helicity amplitudes are not so complicated
for simple scattering problems. v
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'See, for example, G. F. Chew, S-3fatrix Theory of Strong
Interactions (W. A. Benjamin and Company, Inc. , New York,
1961).' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).' G. F. Chew, M. l. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).

4M. L Goldberger, M. T. Grisaru, S. W. MacDowell, and
I). Y. Wong, Phys. Rev. 120, 2250 (1960).

c W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960).
6 A. C. Hearn, Nuovo Cimento 21, 333 (1961).' Note a difference by a factor of (sp;/pr)'~' in our definition of

helicity amplitudes [see Eq. (2.4) 7. In our definition, the helicity
amplitude for 7I 7f. scattering satisfies the Mandelstam
representation.

8

I"or xX scattering'- "

f+,+ ——cos (8/2) [2M'+ (W' —M' —tt') B],
f, = in(8(2)[(W'+M' —')A

+ (W' M'+p, ')—MB]W '.
For )"LtX scattering4

k (f++,++ f++)=B ,G—»p'Gs+m'Gs
~

' (f++,+++f++, )= —G + 'G ) O'G

l [(1+a) 'f+ ,+ (1 -z) -'—f+ ,
—+]= -O'-Ge, —

(z = cos8),

s[(1+z) 'f+ ,+ +(1 z)-'f-+ , +—]=m'Gs-+-&'G4,

(m/y) f++,+ —nt'E(G——s+G4), (y= sine) .

For the orz. ~Xg process'

f++ ——[—2'+ 2mqB cos8],

f+,——2EqB sin8.

(1.2)

(1.3)

Readers will see from Eqs. (1.1) to (1.3) that the
modi6ed helicity amplitude,

hq, q, qJ,,=—[cos(0/2)]—
~ "+o~[sin(8/2) ]—~"—&~

Xs fx~) e, ) ~)~)

[) =X,—) s, tt=X,—Xo, )=0 (or 1)

if ),—) |,—X,+ha is even (or odd)],

(1.4)

satisfies the Mandelstam representation if we neglect
possible (kinematical) poles at s=0 and p=0. We can
get rid of these by multiplying Eq. (1.4) by stand p'~

(t and 1. can be predicted).
The amplitude (1.4) does not satisfy the Mandelstam

representation in general. However, it will be shown
that we can modify helicity amplitudes for any spin in
such a way that the rnodihed amplitudes satisfy
Mandelstam representations. A list of kinematical
singularity-free amplitudes will be given in Sec. VII.
ivfaking use of this result, a generalized MacDowell
reciprocity will be proved in Sec. V. Helicity amplitudes
for any spin will be proved to satisfy the Froissart limit
at high energies (Sec. VI}.
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II. ANALYTICITY IN COSA AND IN t

In the following, we assume that the analyticity
properties of scattering amplitudes are correctly pre-
dicted by perturbation theory. Then it has been shown'
that the amplitudes of binary reactions a+fi —& c+d
can be written as'

system of the s channel, 8,. is the scattering angle in the
center-of-mass system of the s channel, and

P,e= (s+m '—ms2)/2(s't')

p'= Ls —(m, +m&)'7I s—(m, m—s)27/(4$), (2.5)

T=g B,(s, t,u)tit;(p, ,P,), (2.1)
cos0 = $2$t+$ —$ Q mP+ (m(P —ms ) (mP ma )7—

X(4$pp') '

p", pp', sin(0/2) and cos(0/2)7Lp" or p'~7

x rr Lp, +-7-
i: fermion

In deriving (2.3) we have made use of the fact that the
helicity states are linear combinations of direct products
of ei,&(P) and u2, (P) ()b. stands for helicity and p, is a
Lorentz index), where

ei"(p) = (0; cos0, i, —sin0)/V2,

ee" (P) = (P; P' sm0, 0,P' cos0)/m,

e I"(P) = (0; —cos0, i, sin0)/K2,

uii2 (p) = L(p'+m) cos(0/2), (p'+m) sin(0/2),

P cos(0/2), P sin(0/2)7L2m(P'+m)7 —»2,

u—I/2 (p) =
I

—(p'+m) sin (0/2), (p'+m) cos (0/2),

p sin(0/2), —p cos(0/2)7
X L2m(ps+

for p&= (p', p sin0, 0,p cos0). For example, the helicity —,
'

state of a spin —,
' particle is e~N~~2.

The helicity amplitude, Tq,I„,I,,&,„ in (2.3) is related
to the conventional helicity amplitude of Jacob and
Wick' through

T.. .»=2 ( p/p')"'f:. . (d /dft= lfl').
In (2.3), P,e is the energy of the particle i in the center-
of-Inass system of the s channel, p(p') is the momentum
of the initial (final) particles in the center-of-mass

's= (p,+pp)'= (p.+p )', t= (p p)'= (py pd)', — —
I= (P.—Pd)'= (P~—P.)'.

and

where T is related to the corresponding S-matrix
element through

(p p I~ 1
I p.p—)=(2 )'8'(p+p p. p—)—

X (p Op Op op 0)
—lt2T (2 2)

B2 (s,t)u) Is Rn RIIRlytlc fuIlctloII of $) t, Rnd u Rlld

satisfies the Mandelstam representation. 1V, (p;,P;) is a
polynomial in the four momenta of the external par-
ticles p, and spin parameters P; which include Dirac
matrices, fermion spinors, and polarization vectors.

The expectation value of (2.1) between helicity states
in the center-of-mass system of the s channel (helicity
amplitudes) can be written as

TI,.I,,I.&,=g B;(s,t,u)l Polynomial in P,', P',

In (2.3), 21=0 (or 1) if rt, rtsrt, rta=1 (or —1) due to the
I' invariance of the strong interactions.

Next let us consider the following amplitude:

TI„X, I J,,'=I cos(0/2)7 '+" L»n(0/2)7 " "TI,), I.I„
() =).—Xs and tI=),—Xd). (2.6)

This amplitude has been shown"" to depend on cos8,
but not on cos(0/2) and sin(0/2). Then, we can write
lt as

TI,I, , I,.I,'= P B,(s, t,u) [Polynomial in P,s, P',

p", pp', and cos07Lp~ or p'~7

Lp"+m'7 '" (2.7)
i: fermion

Hence, we have found that for 6xed real s, T' is analytic
in the cose plane with cuts on the real axis. Since cosa
is linear in t, we have also found that T' is analytic in
the cut t plane (for fixed s) with cuts' (t;,~) and'

(—~, P, m, -' —s —u;„). Therefore, we have only to
study the analyticity properties of helicity amplitudes
as functions of s.

III. ANALYTICITY IN s; GENERAL CASE

Thus far, we have only considered the helicity ampli-
tude for the s reaction (Tq, i,„,i,.i„'). As has been shown
in the previous section, the helicity amplitudes for the
t reaction (TI,,I„,I„2,, ) has no kinematical singularities
in s if it is divided by

I cos(0,/2)7 ~ "+&~Lsin(0,/2)7 ~" &~.

Crossing relations between helicity amplitudes in the
s channel, T»,p ', and helicity amplitudes in the t
channel, T~ p. , ~. ', have been proposed by Trueman
and Wick" and by Muzinich. "According to Trueman
and Wick, "

9 q; is defined in Ref. 2.
"M. Gell-Mann, M. L. Goldberger, I". E. Low, E. Marx, and

I''. Zachariasen, Phys. Rev. 133, B145 (1964)."F. Calogero, J. Charap, and E. Squires (to be published);
F. Calogero and J. Charap, Ann. Phys. (¹Y.) 26, 44 (1964).

'2 T. L. Trueman a,nd G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964)."I.Muzinich (to be published).

'4A proof based on Muzinich's relations can be given in the
same way.
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d0 0'"(A)~»"(~ 0—.)A 0"(~ A—)d« -"(0.)T0 $,~ -',
) I

~l P/ ~l

($+m '—m02) (t+m '—m 2)+2m 2 (m02 —m '+m '—mg)
COS1P, =

8 509

COSlP0 =

4pp (st)1/2

(s+m0' —m ') (t+m0' m—q')+2m0'(m ' m0—'+m j m—')

4pp ($/)1/2

sinlP, =m, P1' sin8//$1/2P,

sin/0=m0P/ sin8, /s'/'P,

p „—[t ( + )2]1/2[t ( )251/2/2tl /2

P/'= [t (m0+md—)']"'[t—(m0 m~)'—]"'/2/

cos81= [2$t+t2 t Q m—,2+ (m, '—m, ') (m02 —m02)](4tP, P,')
—'.

At first, let us consider the general case. (We assume any two of the four external particles have unequal masses
and m, )m& and m, )mz. ) In this case, dz„Q;), sin(8//2), cos(8,/2) have no $"' and $ ' type singularities and
sin(8, /2) —+ O($)'" and cos(8,/2) —+ O(1) as $ —+ 0. Therefore, froin the crossing relations, (2.7) becomes

T/, ,q, /,.q,
' ——$ ~" 1"~/2 p B;(S,t,u) f;(s, cos8), (3.1)

where f is a function of $ and cos8 and is analytic in $ at $=0, and from (2.7) and the crossing relations we obtain

T,&, , y /
"=—[ g [2$ / (p, +m, )] ]T/„.y

i: fermion
1 ol pps= $ ~" &~/' p B,(s, t&u) [Polynomial in $'/' p'$, p"$, and cos8]

—ps'" or p'$""
for 2/= . (3.2)

-1

For the sake of simplicity, we consider only the p=o case in the following": Then'6

Tz,z, , z,z,'=- s ~" &'/2 Q B;(s,t&u)[Polynonual in $ and cos8]

)& (1 or pp'$) for BB—+ BB,

[$—(m —m0)']"'Tq, l„ /,./„' ——$ ~" "~/2 p B;(s,t,u) [Polynoinial in s and cos8]

&((1 or pp'$) for FF'~ BB, (3.3)

[$—(m, m0)'5'/2[—s (m, —m—g)'5'"Tq. &„ l„q,
' ——$ ~" &~/' p B;(S,t,u)[Polynoinial in $ and cos8]

since
&( (1 or PP'$) for FF 1 FF',

[2$'/'(p'+m )]'"=(W+m, +m0)[$ (m.—m—0)'5'/' for FF~ BB
i: fermion

= (W+m, +m0) (W+m, +mq)[$ —(m, m0)'5'/'—[s (m, —m—d)']'" for FF —+ FF

and since uO, uu'O, u', etc. , do not have poles at W=s'"= —(m,+m0) and W= —(m, +mq)
For BF—+ BF,

[2$'/" (p 0+m„)]'/'[2$'/'(-p„"+m, )5'/ '= ,' {[2$'/-'.(p„0+. m„)-5'/—'[2$'/2(p„.0+m„,)5'/'+ [2$'/'(p. ' m.)]'/2—
X [2$1/2(p 0 m ) ]1/2+ 1 {[2$1/2(p 0+m )51/2[2$1/2(p 0+m )]1/2 [2$1/2(p 0 m )]1/2

&& [2$1/2(p, 0—m„.)5'/2) =—E($)+s'/20 (s) . (3.4)

"For the g=-1 case, see Sec. VII.
"In the following, 8 and F stand for bosons and fermions, respectively.
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Thus"
F(s)T&„&„,z.z,'=s ~" &'/s P B (s,t,u)LPolynomial in s and cos8](1 or PP's) (3.5a)

and
s"'0(s)T&,z„,z.&,,'=s'/' ~" /'~/s Q B (s t u)/Polynomial in s and cos8](1 or pp's). (3.5b)

Therefore, we can find kinematical singularity-free amplitudes if we can separate the terms that contain the factor
pp's from these that do not contain it. This separation can be made by making use of the threshold behavior of
partial-wave amplitudes.

For this purpose, let us consider the parity-conserving helicity amplitudes de6ned by

T/, .x, , /,.~,+= T/„/„, /. i,,'~ (—1)"+'"+"+""n.naT x,-x.,i.~,,'

=2~s"'2 "+""+'""r.(2J+1)Ls~y'+(s)Fx ~, d x 4'++ ~e,
' (s)F/ x x x '"] (3.6)

where ) =max(~) ~, ~ p ~) and t/ is sr (or 0) for half. -integral J (or for integral J). In terms of T+, we can. write F
matrix elements [Fr, = (St, ——8f~)(2i) 'p' "'p "'] as

F J+—(16~2~) I/s2 ] x+p(/2 ) x s[/2) c) g, )a) y dsL~/, ,'+(s) T/„/„, ~./, ,+(s)+~/.,' (s)T/„i ., )../„(s)+],

where

F/„g„, /,./„= &(JM; ),Xd
~

F
~
JM; X,Xs)~

F
~
J~; ~.i,),=~(—1)~-

I J~;) J,.),.

The cp,„~+ can be written as linear combinations of the Legendre functions I'J q +2„, I'~ q +2,+2, , I'~+),
with constant coefficients. ' The cz„can be written as linear combinations of the Legendre functions I' J $ +Q +],
Ej g ys +s ' ' ' FJ+g s r with constant coeKcients. "For all reactions, eq„+ (eq„) is an even (odd) function
of cos8 if /+max(~X, ~p~)

—2t/ is even and an odd (even) function of cos8 if /+max(~)I. ~&~tr~)
—2v is odd. If we

assume that rt, r/s r/, r/s= 1——, then F~+ is an even (odd) function of both p and p' if J—t/ is even (odd) and F~ is
an odd (even) function of both p and p if J—t/ is even (odd). In the following part of this section, we assume that
max(~ X ~, ~

tr
~
) —v is even. Therefore, we find for BB~ BB,FF ~BB, and FF—& FF

T/, i „,/. /, "+= T/„/, „ i,.),,+,[s (m,.—/rt s)—']""T/„~,, ~.~,+

or

Ls—(/ss, m&)']—'/'[ s (m. ——nsd)']"'T/„&, „,z.z,+= s &/s P B,(s,t,u) LPolynomial in s and cos'8]

or
Tx,xd xlx& Ticked xa/s s L—S (//tu //rb) ] Txcxd, xsxb

&& (1 or pp's cos8) (3.7a)

(s—(m, ms)']'/—'ps (nz, —m—q)']r/sT&„q, &„i„=s &/s p B;(s,t,u) /Polynomial in s and cos'8]

where
&=max(f X—tr /, f) +p, f) .

)C (pp's or cos8), (3.7b)

Therefore, we have found that the amplitudes (3.7a) and (pp's) && (3.7b) satisfy the Mandelstam representations
if we neglect possible kinematical singularities at pp s=0 Lcos8 contains a factor (pp's) ']. The singularity at
pp's=0 can be removed by multiplying Eqs. (3.7a) and (3.7b) by (pp's)~+. The I+ can be determined from the
threshold behavior of phase shifts.

The threshoM behavior of F~"- is
lj' J+ .. ~ O (pl;pelf)

u, u'--+0
('3 q)

Let us define pa''=maxi J—t,;I and p&'=-maxi J—l/I 1'or states of I' ", where t.; and. lt are tlie i-nitial arid final
orbital angular momenta vvhich are compatible with total angular iiiosuentum J. Then, we obtain

I~=maxt p~' —) +2s, p+f —X +2@, and 0].
"In deriving Eqs. (3.3a) and (3.5b), properties of L(s)uO;u and O(s)uO;u have been used.

(3.9)
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Therefore,
hb~Ãs, b~bb & (pp ~) Tb~bs, k~bb (3.10)

satisfies the Mandelstam representations.
For BF—& BF: [we assume (—1)"+""+"+""rt rig=1]

E(s) Tb,x~, &,.bb'+s't'0(s) T i, &, „,&„bb'= s i"p B,(s,t,tt)[Polynomial in s and cos'8](1 or pp's cos8),

E(s) Tb, &,„b.bb' —s'"0 (s) T b, &, „,&,.&b'= s r" P B,(s,t,u) [Polynomial in s and cos'8] (PP's or cos8),

s"'0(s)Tb,&, &,.bb'4E(s)T &„b~,b, ib' sr'"——p B;(s,t, N) [Polynomial in s and cos'8](1 or pp's cos8),

s'"0(s)Tb, &, „,b.ib' —E(s)T b, b, , b,&b'
——s r'"P B,(s, t, tt) [Polynomial in s and cos'8](PP's or cos8),

(3.11)

f =max(i) —
t ~, ~)+t

~

—1)

f'=max(() —tt) —1, [)+tt().
Therefore, we find the following four kinematical singularity-free amplitudes:

.«s(PP'.)~+(E(s)T,,„,„.»'ysifsO(r) T,, „,.»'j,
srl'(pp's) ~ fE(s)Ti,i,-b.)„' s't'0(s) T—~, )„,z.ib'),

sr'I'(pp's) ~+(s't'0(s) Ti„b,,i.)„'+E(s)T b, )„,b.bb'),

sr'"(pp's) ~ (s"0(s)T)-„)„,i.bb' E(s)T b,—z„,i.bb'} .

They are not independent, but Eqs. (3.12a) and (3.12c) are independent.

(3.12a)

(3.12b)

(3.12c)

(3.12d)

IV. ANALYTICITY IIV s; SPECIAL CASES

In this section we consider the special cases: (i)
m, mb =m, =——mg, (ii) m, =m, and mb mg, (iii)——
nz =m& and m, =m&. In these cases, the analyticity
properties of the scattering amplitudes are simpler than
those in the general case.

X[Polynomial in s and cos8], (4.1)

and the amplitude

s~"- ~ &'(p's) 'T)„b„b.b b' (4.2)

A. Boson-Fermion Scattering (m. =m. , mb ——ms)

When m, =m, and mb m~, 0(——s)=2m. Thus, Eq.
(3.5b) becomes" "
Tb.b,b.b '=S " ""P B,(S,t, N)

The difference between (3.9) and (4.4) comes from the
fact that (3.8) is replaced by

in this case.

FJi ~ ()(ph+ly)
p—+P

(4.6)

B. BB~ BB and FF —+ FF (m, = m„mb ——m&)

In this case, (2.7) becomes-""

T)„x,,b.bb'=P B;(S,t, M)S
I'—

7

X [Polynomial in s'I' and cos8], (4.7)

and Eq. (3.1) is still valid here. Therefore, we find that

s~" "~t'(p's) T)„)„,i.g,
' (4.8)

satisfies the Mandelstam representation [I.is given by
Eq. (4.3)],

C. BB—& BB, FF —+ EE, BB+~ EE
(m. =mb, m, =m~)

In this case, (2.7) becomes""
(4 3)

(4 4)

A=max[I+, I ],
Iy =max [py —X~+2'vi 0] 1

2p+ ——max
I
2J

and
(4 5) Tb,b, b.bb'=g B,(s,t, tt)

2

is found to satisfy the Mandelstam representation,
where

'8 Unfortunately, the author has not been able to prove Eqs.
(3.11) in general. The amplitudes for the reaction s+p -+ X+A
can be shown to satisfy (3.11), but for other cases (3.11) is only
conjectured.

"In this case, p '=p ' p~' ——pa'7 p'= p"= pp'7 and
cos8 =1+(t/2p')

"Here, we assume g qq=g, g~= i.

X [Polynomial in s't' and cos8]. (4.9)

"In this case, we do not need to consider the factor
g(p,'+ra;) '~' since sb (p,)O;cc&,(p,) and I&. (pq)O;Nb(pb) are
polynomials in P;b, P, P', sin(8/2), and cos(8/2).

~ In this case7 2pg'=s'/'7 4p'=s —4m'7 4p"=s—4m" and
cos8 = (t I)/(4PP'). —



From (3.3) and (4.9) we iind

r '(pp')'Ti, .i,„,~.),„' (4.10)

Since

if iX Ij+r) —is even in BB—+ BB,
FF~FF

or if X—fi+q is odd in BB&~ FF

if X—p+r) is odd in BB—+ BB,
FF~FF

or if X—p+r) is even in BB&~ FF.

D. Ritual Mass Scattering (m. = ms ——m, = ms)

In this case, (2.7) becomes"

Ti„i,„),.i,,'= P B;(s,&,n)

&(LPolynomial in s'" and cos8]. (4.12)

From Eqs. (4.1), (4.10), and (4.12) we find the ampli-
tude

(4.13)p Tx~xs, x~xs

satisfies the Mandelstam representation, where $ is
given in the previous subsection and )=0 (or 1) if
X—p+r) is even (or odd) in BF—+ BF. L is given in
(4.3).

V. GENERALIZED MACDOWELL RECIPROCITY

MacDowell has found the following reciprocity
relation between the partial-wave amplitudes of xS
scattering~'

where
fi+( ~)= —fi+i (lf'),

fr+= exp(i8&+) sinb&+/p.

(5 1)

Making use of the results of the previous sections,
we can generalize (5.1) for any BF—+ BF reaction to'4

+(~)= —(—1)" "Fi,i, , &,.i, (—Jf ), (5 2)

where F~+ has been defined in Sec. III,

s Ispg y y y += (1/4s-)2 l&+all~ I" ail~

dsLA~ j i e~z, isis +A~ T& c& s, &s& s

"S.W. MacDowell, Phys. Rev. 116, 774 (1959).~If m =mq=m, =my, the factor (—1)" & in (5.2) and (5.3)
should be replaced by (—1)"+&+&. For vector-spinor scattering,
the relations Ii~+(W) = —F~ (—W) have been obtained in Ref.
10. However, the factor (—1)" & is necessary if we use the phase
factor of Jacob and Wick (Ref. 2).

satisfies the Mandelstam representati. on, where

L=maxLL~, L ],
L+——maxLp+' —X +2s, &af X—+2r, 0j, (4.11)

I

T ((const)s(lns)' for s=&1 (6.1)

I
Tl ((const)s'I'(1ns)s~' for —1(s(1 (6.2)

on the assumption that T satisfies the Mandelstam
representation.

It was recognized later by Greenberg and Low" and
by Martin" that it is not necessary to make use of the
full -analyticity assumed in the Mandelstam represen-
tation to obtain the bounds (6.1) and (6.2). It is
sufhcient to assume that T be analytic in an ellipse E.

Kinoshita, I.oeffel, and Martin" have improved (6.2)
and replaced it by

I Tl &const(lns)"' for —1(s(1,
assuming more analyticity than was needed in the Refs.
28 and 29, but less than was used by Froissart.

For the asymptotic behavior of the scattering ampli-
tudes for particles with any spin, Yamamoto has shown"
that they satisfy the Froissart limit. However, his proof
does not cover the most general case, and is somewhat
complicated. Therefore, we have decided to give a
general and simple proof using helicity amplitudes.

In Sec. II we have found that if the analyticity
properties of helicity amplitudes are assumed to be
correctly predicted by perturbation theory,

Ti„i„,i,.&, ,'= L2'" cos(&/2)] ~ "+"~

&& I
2"' »n(0/2) j " " »T»b (6 3)

is analytic in the cose plane with cuts on the real axis
(—ao, —1—a) and (1+P, ~), where n and P are real
positive and approaches 2u;„/s and 2t; /s at the
high-energy limit (s —+ ~), respectively. However, for

"For BP-+ BE, (—1)'&= —1.
"The proof in this section has been carried out in collaboration

with Dr. Louis Salazs.
"M. Froissart, Phys. Rev. 123, 1053 (1961).
ss O. W. Greenberg and F. E.Low, Phys. Rev. 124, 2047 (1961).~ A. W. Martin, Phys. Rev. 129, 1432 (1963).' T. Kinoshita, J. J.LoeRel, and A. Martin, Phys. Rev. Letters

10, 460 (1963)."K.Yamamoto, Nuovo Cimento 27, 1277 (1963).

and"

T—&„—i„,i.i,'(—J4') = —(—1)" "T—x,—i„,i.i,'(If ), (5 3)

we can easily obtain (5.2) for BF~ BF reactions.
For other reactions,

IF"(ll')
I

= IF"(—Jf')
I
.

VI. HIGH-ENERGY LIMIT OF HELICITY
AMPLITUDES

Froissart has shown26'~ that the scattering ampli-
tudes of spinless particles have upper bounds at the
high-energy limit,
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our proof, we need a weaker condition, namely, that T'
is analytic in an ellipse (8) with foci at —1 and 1 and
with semiaxes a and (as —1)"', where a=min(n, P).

From (6.3), we find

T)„is,b,b„(W, s= 1)=0 for X—lb&0

functions, we find"

ICq„(s) I,„&const(J) '~'(1.—1/u') 'u

Therefore, we find

IF........'(W)
I
«'(W) J-" -',

Tx,x„,x.xb(&V, s= —1)=0 for ) +lb/0
(6.4) where R'(W) is a polynomial in W. From the unitarity

of the 5 matrix, we know that

since T' is finite at
I sI =1.

Since'0

Tb,b, b.ib'(W, s) =2zrs"'Q (2J+1)Fg,i, i.ib~(W)

X eb,„s(s),

&''i,b, b,x
' (W) = dec&, ' (s)Tx,x,x xb(W, s)

4~s&~2

IFx,x, , ),J,bs(w) I &(PP') "-.

If we use the results of Ref. 10, we find

I ((1+s)/i2) "+""((1—s)/~~)'" " "Tb.",b.bb(W, s) I

=2 zr's~ zIQ (2J+1)F&„y„b,bb~(W)eb„(s) I

& (const)s'" g (2J+1) I F&,&, &,&bs(w)
I

1
Tb,x,i,x '(t'l, s) = ds

along ellipse B

T),.~, ,b.bb (W,s )
for sin Ji,

where
Xfg(s), (6.5)

f&(1)=1

fJ(s) —+ f(s)/Jv' for —1&s&1.
J~00

«'T)„) s,i.ib'(W, s')
47t-'is'~'

X&~,'(s),

where we can write c and C in the form

and

J+Xm—2v

eb, '(s) = Q ab, "'&s (s),
J—Xzzs+2v

we obtain
1

Fb 'ks, 'k Xb (W) ds TXbko. 'boib (Wp )
8~'as'i'

e„J(s)
ds-

From (6.4) and (6.5), we 6nd

ITq,qs, q,qb(s) I
&constXs(lns)' for s=~1

I
T q„b, &,.q ( b)Is&constsbl'(1ns)@' for —1&s&1.

VII. SUMMARY

In this section, a list of kinematical singularity-free
amplitudes hq, q„,~ q„ is given. The properties used are
as follows: (i) the analyticity properties of scattering
amplitudes, assuming that these are correctly predicted

by perturbation theory; (ii) the crossing relations of

helicity amplitudes near s=0; (iii) the threshold be-

havior of partial-wave amplitudes. "
In the following

T~d d, i.ib'=
I cos(e/2)] ~ "+"~[»n(il/2)] ~" "~Tx,x, .b.x„
(X=X,—Xb and y, =X,—Xa).

where the a are constants. Thus, we obtain

Il".~".~b (W)l& ITb.",~.~b(Ws)l --~
4~2s~f2

X I Cap (s) I max on zL
&

where I. is the length of the path along the ellipse E.

I.&2La+ (u' —1)'~s) =—2u,

u —+ 1+(const/s'i')) 1.

(ii) BB&~FF.

if ) —lb+a is even,

if X—lb+ zi is odd.

hy, i„ i„b,b
——s t~'(s —4zn') T)„b„,bJ„',

CG$8 I. mg= f/'= ~~= ~d, =m

(i) BB—bBB, FF —+FF, and BF—+BF.

/zi„b, b.bb= s t~'-(s 4m')'T)„bs—, b.i b—

"E.T. Whittaker and G. N. Watson, Modern Analysis (Cain-

e assume that
I
Ti(W s) I

is bounded by a poly
bridge Vniversity Press, New York, 192'I), 4th ed., P. 322.

~ This assumption may be replaced by' the crossing relations
nomial in W, Ri(W). From the properties of Legendre near p=p and p'=p.
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Tmr. E I. The 0,~ and P+. We dehne Tq, ) „,y.y,"+ as

Qdd

even

odd 1 0 odd 0

even 1 0 even 0 1

odd 0 1 odd 1 0

even 1 0 even 0 1

odd 0 1 odd 1 0

~»(l&l I/ I)—2 &„n+ P+ I. n P

+ + even even 0 0 odd 0 0
+ + odd odd 0 0 even 0 0

even 0 1 even 1 0
even

TX~'hg, X~Xy

where

~~) ~) g, X~Xb for BB—+ 99,
t s—(m, —m b)']'"Tb ), b.b,+

for FF~ gg
s (//2 2)2 b) 2]1/2LS (52 —2)2 )2]1/2

~'A~xg, &~gy for FF~FF )

Qdd

even

odd

even 0 1 even 1 0

odd 1 0 odd 0 1

odd 0 0 even 0 0

even 0 0 odd 0 0

hb, b, ,b.bb= &/'(pp's) +(ps"') +(p's'/')~+T)„b, ,b.bb™)
where

g=n)ax([){—/4/, f)1+/bf)

and a~ and P~ are given in Table I, and I.~ are given
by Eq. (3.9).

where
)=0 if X—/4+2) is odd,

if 'A —
p, +2) is even.

Case III. m~=m~, m, =m~

(i) BB—bBB and FF —+FF.

»~i& b~bb=S (pp ) Tb~b4, b~bb

where

&
=0 if l1—/tb+r/ is even,

$ = 1 if l1—/tb+2) is odd.

(ii) BB~FF.
/'2b, b, ,b.bb=S '"(PP')»,b, ,b.bb )

Case II. ma=me, mQ=mdp 'ga'gQ=gc'gd

BB—+ BB,FF~FF, and BF—+ BF.

».b„,b.bb ——s~"—&~/'(p's) Tb.b„,b.bb'.

(ii) BF bBF.

We define Tb,b„,b, ),b{') (2= 1, 2, 3, and 4) as

Tb~bg, b~bb F($)Tk,bgb~bb +,$0($))'T b, k4—bg) —b &,

Tb,b, ,b.bb' ' —E(s)Tb,b, ,b.bb' —s"'0(s)vT )„b,,b.) b,
Tb,b„,),.bb"'=s"'0(s)Tb, b, z.bb'+F($)/T )„),b.bb',

'"=$"'0($)T, , x. ' F-($) T , b, ,b—.i,', —-
where E(s) and s'"0(s) are defined in (3.4) and
) = ( 1)"+"+'~'&—'r/, 2/d. Then, —

».&,bd b=s""(pp'$) '(ps"') "(p's"')s'T"'
= sr/2 (ppls) L (ps1/2) a (pjsi/2) /2 T{2)

b,bib =sr ,
/ (pps) +(ps/) +(psi/)s+T{2)

Ib
—sr'/2(pcs) L—(psi 2) a—(p~sl 2) p—T{4)

where
&=~»(l) —

/ I, I)+/ I

—1),

&'=~»(l) —
/ I

—1 I)+/ I),
where

)=0 if )1—p, +2/ is odd,

(= 1 if )1 /4+4// is even. —

and 42~ and P~ are given in Table I, and I.+ are given
by Eq. (3.9).
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