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Variational Upper and Lower Bounds for Multichannel Scattering*
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Upper and lower variational bounds are given for all elements of the reaction matrix. These, in turn, lead
to upper and lower bounds on the elastic and inelastic cross sections. We explicitly discuss two-particle
scattering, coupled two-particle channels, and three-particle scattering situations, and our methods will
work for any number of particles. Numerical examples are given, including phase shift bounds for s-wave
electron-hydrogen scattering. It is hoped that this approach will lead to a tractable calculational scheme for
strongly interacting relativistic particles.

I. INTRODUCTION AND MOTIVATION

HE single most striking fact in the theory of
strong interactions is the difFiculty of making

reliable calculations. The only quantitative test of a
theory so far has been the check that the forward
pion-nucleon dispersion relations proposed by Gold-
berger' are satisfied by the experimental data. ' The
difhculties in performing calculations in relativistic
theories which necessarily allow an infinite number of
particles in virtual states are self-evident but probably
not completely known.

There have been a number of approximate calcula-
tions which yield agreement with the data but it is not
clear whether the agreement is due to the approxima-
tions made or to the physical model underlying the
various calculations.

It is important to note that the approximations used
to handle such problems arrange themselves into two
distinct levels. The deep approximation is the restric-
tion to a hnite number of particles in intermediate
states. This is a necessary step in order to handle the
problem at all. The shallow approximations are made in
extracting numbers from a theory after the number of
particles has been restricted. These latter approxima-
tions can be tested, as we shall see, simply because the
problem can be stated mathematically. It is our pur-
pose here to develop techniques which allow one to
calculate upper and lower bounds on certain physical
parameters, for instance, the elastic phase shifts, after
the number of particles considered has been made
finite.

The type of approach to strong interaction physics
that we are advocating is roughly as follows. Sum all
Feynman graphs with S particles or less in inter-
mediate states into a coupled system of Bethe-Salpeter'
type equations. This defines a model theory of order X.
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Exact crossing symmetry is, of course, destroyed by
this procedure; however, unitarity is satished in the
g-particle sector. This coupled system predicts certain
parameters, among which are the elastic phase shifts,
and one then calculates a set of numbers 8~(N).

The next state in the procedure is to increase Ã to
N+1 and the new coupled system of equations written
down with improved kernels which are crossing-sym-
metric to order N+1. These equations then yield the
predictions 5~(N+1). In principle, at least, this pro-
cedure is repeated ad inhnitum, and one calculates all
quantities of physical interest.

It is an interesting question whether or not the model
phase shifts converge as one increases S, and if they do,
whether or not they converge to the full relativistic
theory values. These are deep questions and will not
be discussed here.

The obvious difficulty here lies in extracting the
phase shifts from such a complicated set of equations.
While it is probably impossible to calculate the phase
shifts exactly, it is our purpose here to develop methods
which allow one to place simple upper and lower varia-
tional bounds on the phase shifts.

The use of Bethe-Salpeter equations in the above ex-
ample is used only for illustrative purposes and because
we are sure our procedures will work in such a case.
We hope that we will be able to extend our bounds to
scattering amplitudes defined by analyticity and uni-
tarity requirements only. We have already extended
some of our results to partial-wave dispersion relations
and this will be discussed later.

In this paper we will develop methods which allow
one to get bounds on phase shifts (much of what we do
can be carried over directly to the eigenphase shifts)
and elements of the E matrix for potential scattering,
In a later paper, the more complicated Bethe-Salpeter
case will be discussed.

In this paper we will need to study directly the eGect
of changing the potentials on the elastic phase shifts. 4

To that end, we must study explicit formulas for 8~(E)

4This paper is an extension of the work reported by R.
Blankenbecler, lectures given at the Scottish Summer School of
Theoretical Physics, 1963 (unpublished).
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and not just the equations which the Green's functions
or T matrices satisfy. The Fredholm determinantal
approach seems to be the simplest tool for this study.
However, in order to carry out this discussion, we must
demonstrate that solutions exist, and we must develop
what seem to be slightly more general methods than
used before.

The two-body problem has been discussed many
times. Two important discussions, where previous refer-
ences may be found, are due to Hunziker' and Newton, '
who also discussed the coupled channel case. The general
three-body problem has been discussed by Faddeev, '
whose work was considerably extended by Lovelace. '
Weinberg' has considered the X-body problem with an
approach which is closer to our own discussions than
the Faddeev-Lovelace approach.

These authors were more concerned with general
questions of existence than with viable calculational
schemes. These will be our main concern. The roots of
our approach are to be found in the classic minimum
variational method of Rayleigh-Ritz' and the interest-
ing work of Bazley-Fox" on maximum variational
methods. These authors deal only with eigenvalues
whereas we will be mostly interested in the continuum
problem. A generalization of the Bazley-Fox eigenvalue
scheme so that it applies to any Hamiltonian will be
presented. This will be needed in our discussion of the
multichannel situation.

Undoubtedly the most important theoretical de-
velopment in variational principles for the scattering
of complicated systems has been the minimum principle
developed by Spruch and collaborators, " as an exten-
sion and simplification of the work of Kato." Our
minimum principle works for all energies in the elastic
region and is quite distinct from the Spruch approach.

As an illustration of our method, electron-hydrogen
and positron-hydrogen scattering will be discussed, but
detailed calculations will be presented only for the
former problem. The theory of these processes has been
thoroughly discussed in the literature. Those which
bear some resemblance to the treatment given here are
the works of Spruch" with the magni6cent calculation
of Schwartz, "and theory and calculations of Ternkin, "

' W. Hunziker, Helv. Phys. Acta 34, 593 (1961).
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Dokl. Akad. Nauk SSSR 138, 565 (1961); 145, 301 (1962)
(English transls. : Soviet Phys. —Doklady 6, 384 (1961); 7, 600
(1963)g.
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and the optical potential approach of Watson and
Mittleman. "The close-coupling approximation used by
Burke and Schey' also has certain similarities. In this
connection we would like to mention the excellent re-
view article of Burke and Smith. "

Our work will involve the use of separable potentials
and in that connection we should point out the work by
Mitra" and the solvable stripping models of Amado. "

Finally, and most importantly, we note that our
treatment can be extended to give upper and lower
variational bounds on all elements of the reaction ma-
trix. This result is based on the fact that we have de-
veloped both an upper and lower variational bound on
the effective potential matrix for the many-channel
situation. The bounds on the reactance matrix lead in
turn to bounds on both elastic and inelastic cross
sections.

In Sec. II, the problem of upper and lower bounds on
phase shifts and eigenvalues is discussed for two-
particle scattering. In Sec. III, some numerical examples
are presented and an upper and lower bound on the
value of the Regge trajectory at zero energy is worked
out. Both the weak and strong coupling limit is
examined.

In Sec. IV, the problem of coupled two-particle
channels is taken up. In Sec. V, the three-body problem
is formulated and bounds on the E matrix are given in
terms of effective potentials. In Sec. VI, the problem of
electron-hydrogen scattering is discussed and pre-
liminary numerical results given. This is done as a
test of the feasibility of our method in a complicated
problem —one cannot hope to improve on the numerical
results of Schwartz. '4 Section VII is devoted to a review
of results.

II. SINGLE-CHANNEL POTENTIALS

A. Scattering

Befoxe we can start on any discussion of multichannel
and multiparticle scattering, the problem of two-
particle scattering must be dealt with. We will treat
this latter problem so as to bring out its close analogy
to our later discussion of the more interesting problem
of multiparticle scattering. Our point of departure is
the Lippmann-Schwinger equation for the full Green's
function g in the presence of a potential V,

g=G+GVg—=G+mg,

where G is the free Green's function, given formally
by (E—He+is) '. The T matrix can be introduced by

' K. M. Watson, Phys. Rev. 105, 1388 (1957);M. H. Mittleman
and K. M. Watson, ibid. 113, 198 (1959);B.A. Lippmann, M. H.
Mittleman, and K. M. Watson, ibid 116, 920 (1959)..' P. C. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).

' P. C. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).
'~ A. N. Mitra, Phys. Rev. 127, 1342 (1962)."R.Amado, Phys. Rev. 132, 485 (1963).
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defining

ol
T= V+Vgv.

The formal solution of Eq. (1) is

g= (1—v) 'G—=EG.

It is well known that Fredholm theory cannot be di-
rectly applied to the calculation of the resolvent E.
The difhculty is that the Fredholm determinant, given
by

det(1 —v) =exp[Tr ln(1 —v)], (4)

does not exist for any local potential since Trv is in-
finite. This disease can be cured in many ways. We will
choose a method which can be extended to more compli-
cated problems. Let us attempt to write the resolvent
in the form

K=L[M (1—v)L]—'M, (5)

where L and M are arbitrary kernels. In order that (5)
satisfy the Lippmann-Schwinger equation, we must
require the existence of

1 F (r) U'(r')
d'rd'r'

(4v)' [r r—'[' F(r')

Xexp( —2 Imk[r —r'[) . (7)

There are many F's which make T finite even when
Imk is zero. In fact, let us choose the local F which
makes T a minimum (or at least stationary). We have
for the change in T when we vary Ii

bF r F(r)8F(r')
v'(" )

()
8T= d'rd'r'S(r, r')

I'(r') F'(r')

where 5 is symmetric in r and r'. If r and r' are inter-
changed in the second term, then the requirement that
the variation of T vanish leads to

The determinant D will be an entire function of the
coupling constant if we can show that there exists an Ii
which makes T finite. There are an infinite number of
suitable operators; for example, if we choose to make Ii
local in coordinate space, then T becomes

and
(a) M '

(b) D=det[M(1 —v)L]. (6)

or
F(r) =+V(r),

M= [aU(r)]-'~'.

Then
L= exp(v)M '.

D= det[exp(v) X (1—M 'vM)],

These are quite weak restrictions on I.and 3I. There
are two choices of these kernels that lead to familiar
forms of the determinant. If M= 1, and L= 1+v, then
one finds

D = det[1 —vv].

This is equivalent to iterating Eq. (1) once as was done
by Khuri. "If one chooses M= 1 and L= exp(v), then

D= exp Tr[ln(1 —v)+v].
This corresponds to the prescription of Jost and Pais"
and Baker." It is equivalent to the replacement of
Tr(v) by zero everywhere that it appears in the ex-
pansion of the ordinary determinant given by Eq. (4).

In order to prove that the determinant exists for
physical energies and is an entire function of the
coupling constant, let us reexamine D for the choice

This is the optimum choice for a local F(r) and is the
operator advocated by Scadron, Weinberg, and Wright"
to make the kernel of the Hilbert-Schmidt class for all
energies on the physical sheet and its boundaries.

However, this is not the optimum choice for 3f if
nonlocal operators are admitted. A simple choice is the
separable operator.

M- =(+V) '[1+[b)c(b[V],

where [b) is an arbitrary state with variational pa-
rameters and c is an arbitrary constant. This leads to a
separable Ii, and we find

F=& [V 1V[bB&( b[U]

F '=&[1/V —[b&c'B(8—c) s(b[],

a=c(2+c(b[ V[b&).

It is now a simple task to construct T. The arbitrary
constants should be chosen so as to minimize T, where

and by direct manipulation (see Baker, Ref. 23) or use
of Schwartz's inequality, we see that 7=Tr[VGVGt] —[8'c'/(8 —c)']

X[[(b[VGV[b&['—(b[ V[b&(b[ VGVGtV[b&].
[D['&exp Tr[(M 'vM)(M 'vM) t]=:expT,

where the dagger means Hermitian conjugation. De-
fining F= (MMt) ', we have

T=Tr[FvF 'vt]

' N. Khuri, Phys. Rev. 107, 1148 (1957)."R.Jost and A. Pais, Phys. Rev. 82, 840 (1961).
"M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).

Schwinger has shown" that Z' gives an upper bound
on the number of bound states. Therefore we see that
the separable choice for M yields a variational bound
for this number.

24M. Scadron, S. Weinberg, and J. Wright, Phys. Rev. 135,
3202 (1964). See also K. Meetz, J. Math. Phys. 3, 690 (1962)."J.Schwinger, Proc. Natl. Acad. Sci. (U. S.) 47, 122 (1961).
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U V(r) falls off exponentially with range R, and F is
chosen to fall off the same way, then Eq. (7) tells us
that T is finite even if (Imk) is continued to negative
values. One can therefore continue T to the second
energy sheet until 2(Imk) = —R ', which allows us to
define the determinant D(E) on the second sheet in
this strip. This result will be important later when we
construct the partial-wave amplitudes by an analytic
continuation of the determinant.

The important point in this discussion is the fact that
if F, F, and T exist, then D is an entire function of the
coupling constant, and does rot depend on F. Neither
does the resolvent E. The F's simply serve as a device
for getting a 6nite bound on the series for D. Having
shown that suitable F's exist, we mill not explicitly
write then down from now on.

The conditions on V (r) which guarantee the existence
of T can be easily ascertained if the angular integration
in Eq. (7) is carried out and the variable r' is changed
to x, where r'= rx. The result is that the potential must
be smaller than 1/r' at infinity and smaller than 1/r'
at the origin. Actually, it is a simple matter to 6nd L
and M's which allow D to exist for quite singular
potentials, but we shall not make use of this possibility
here; it will be important in a later discussion of the
Bethe-Salpeter equation.

The essential feature of the examples quoted above
is that the product LM is of the form

LM=1+u+ f(ii),

where Trf(e) exists. Therefore, there are an infinite
number of ways of making Fredholm theory work. It is
clear that the freedom of choice for f(v) corresponds to
the obvious freedom of rearranging the convergent
power series expansions of the Fredholm method. In
specific calculations it is possible to take advantage of
this arbitrariness by using physical insight to make a
judicious choice for L and M to simplify the calcula-
tion of D (that is, to make D as close to unity as
possible).

Let us now turn to scattering in a state of definite
angular momentum in order to derive bounds on the
phase shift. The partial wave Green's function g~

satisfies Eq. (1) with Gi given, say, in coordinate
space by

'

Gi(r, r', k) = —(i/k) Ui(r&) Vi(r&),
where

Ui(r) =krji(kr),
Vi(r) =krki~'i(kr),

where j~ and h~('& are the conventially normalized
spherical Bessel functions. For later use, we record here
the static or zero-energy Green's function

Gi(r, r'; 0)= $1/(21+1)]r&(r,/r))'

For nonzero energy, one finds that Trig, where

ii —=GiV, exists if the potential is not larger than 1/r at

infinity and is no worse than 1/r' at the origin. In this
case, both L and M may be taken to be unity.

Examination of the convergent power-series expan-
sion for Di(E) =Di(k2) shows that each term is analytic
in the E plane, with a cut along the positive real axis.
This arises from the fact that the only energy depend-
ence is in the free Green's functions which have their
spectrum lying along the positive real axis.

Our next problem is to relate the Fredholm deter-
minant to the phase shift and to the scattering ampli-
tude. Along the positive real axis, we have

G, (E~i~) =~G,~(~/k) ) ki&(ki ~,

where EP"~ is the principal value or standing wave
Green's function and ~kl& is a solution of the free
Schrodinger's equation, normalized so that (r

~
kl&

= Ui(r). Using the fact that

«tL1+
I ~&(~ I ~]=1+(~

I
~

I
~&,

we find

Di(Eai e) =det[1 —PGV]
X(1+(i/k)(kl~ V(1—PGV) '~kl&}.

However, the matrix element in the curly brackets is
just the E matrix, so we immediately see that

Di(E+ie) =det[1 —PGV](1&i tan5i}
= )Di~ exp(Wihi). (11)

Therefore, the phase of the I'redholm determinant is the
negative of the phase shift. Finally, me see that the t
matrix is given by

&((E)= [D((E+ie)—Di(E—ie)]/2ikDt(E+ie). (12)

This is a trivial result in the two-particle case but its
generalizations to the many-channel case4 will be ex-
tremely useful in our later discussions. In any calcula-
tion, one can use Eq. (12) to define a unitary scattering
amplitude from an approximate determinant.

Our next aim is to construct approximate D's which
will yield bounds on the phase shift. We will make the
further requirement that the bounds be variationally
correct and improvable. Let us begin by examining the
dependence of the phase shift on the potential. That is,
we allow the potential to depend on some parameter x
and calculate the derivative of the phase shift with re-
spect to x. As x —+ x+dx, ii —+ @+de, D~ D+dD, the
phase shift must change to 5+d8. We will drop the sub-
script l from now on—no ambiguity will arise. It is
directly seen that

Ini(dD/D) ==- —
~
1+dD/D

~
sindhi = d5—

and
D+dD= det/1 —GV —Gd V]

=D detL1 —gd V]=—D(1—Trgd V) .

Finally, we can derive the continuum version of
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Feynman's theorem, "namely,

d8(x) ( dV 1 dv
=+Im»I g = —-Q(~) I IW(~)&, (13)

dx « dx u dx

where P(x) is the exact incoming or outgoing wave
function from which g can be constructed. Integration
of this formula yields

'dx dv(x)
~()—~(3)=— —Q()I le()& («)

g k dx

This shows that the phase shift is monotonic in the
potential. That is, if Vy) Vp, then by choosing

in matrix notation, and 8')8. If the potential V is
, negative definite (attractive) then the phase-shift in-

equality is reversed.
This expression for the phase shift is equivalent to

the Schwinger variational principle and the bound
property was first proved by Kato" under the unneces-
sary condition that the phase shift be sufficiently small.
We see that (18) is a maximum variational principle
for V&0, and a minimum principle for U)0.

It should be noted that as the number of trial func-
tions is increased the bound on the phase shift is always
improved. Suppose that a calculation is performed with
a set of E trial functions

I
i). The separable potential is

v = vlq~)a (q~l v,

we see that
U(x) = Vo+x(Ui —Vo), where lq~& is an X-dimensional column vector. If one

trial function is added, the separable potential becomes

V"+'= V
I q~+i)A "+'(qivpi

I
V.

Thus the larger (more repulsive) the potential, the
smaller the phase shift. This is obviously true for local
potentials but Eq. (15) states the same is true of non-

local and/or energy-dependent potentials. We will call
a potential difference positive definite if aQ its diagonal
matrix elements are positive, and by (15) one sees
that the correponding phase-shift difference is nega-
tive definite.

The problem of constructing comparison potentials,
which bound the potential of interest and which can be
solved explicitly, is easily accomplished with the aid
of a generalization of Schwartz's inequality. Let the
potential V be positive, that is, repulsive (we will

relax this requirement later), and consider the form

«~l+r. ,*('I)«l~&+Z. , l'»&o,

where li) is a set of X arbitrary functions. If the ex-

pression is minimized with respect to the c; s, then we

find

(kl vlf»E', 9 I vli&~'(jlvl4&,

where A;; is the inverse of the matrix (il Vl j). Since

I
tP) is arbitrary, we can write this in matrix notation as

v& vlq&~(ql v=—v (16)

where (ql and
I q) are column and row vectors made

up of the set li). Then the Fredholm determinant for
the potential V, is

D'=detL1 —&(ql VGvlq)7, (17)

and the determinant is taken in the discrete space of
the X functions

I i). The phase shift is given by

tan8" = —(1/k) (I I
V

I q)

XL(ql V—VPGVIq)7 '(ql Ulema& (18)

"R.P. Feynmann, Phys. Rev. 56, 340 (1939).

In order to show that VN+') VN, we introduce the
%+1-dimensional column vector lp), lp;)= li), i=1,

X, I p&~i) = 0, and use Schwartz's inequality with

I p). Since

and

we have

v "Ip)=vip)

UN+1.)0

vx+i
I p)(pl van+i

V) UN+1) —VN

(pl v"+'I p&

If 1V is increased until the
I i) form a complete set, then

the phase shift will converge to the exact value. It is
also easily seen that if one trial function in the set li)
is the exact wave function lf), then

lq)L~ ' —
(ql vt'Gvlq&7 '(ql vll)= lu&, (»)

and the phase shift is given correctly by (18).
It is a more dificult matter in practice to obtain the

opposite bound. It is necessary to find a solvable po-
tential Vp such that V& Vp. For a positive definite V,
one may write

V= Vo+ (V—Vo) = Vo+ Vi,
v& v~= vo+ vi

I p&&(p I
vi

where we have again used the Schwartz inequality and
introduced a matrix notation. The matrix 8 is dehned by

~-'=(pl v
I p), (20)

where
I p) and (pl are X component row and column

vectors, respectively. The phase shift 8' is calculated
from

8= detL1 —G(V,)7= detI 1--Gvo]
X«tL1 —go(v( —Vo) 7,

where go
—-- (1—G V„)-'G.

Assuming that gp and the corresponding phase shift
P are known, we find for our other bound on the phase
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shift

tan(8' —5') = —(1/k)&yel Vil p)
XI &pl Vi —Vi Regsvilp)g-'(pl Villus), (21)

where fs is the wave function in the potential Vs with
either incoming or outgoing wave boundary conditions.
The real part of go is related to the standing wave
Green's function I'go by

Regs ——Pge+ I $s)(Ps I
cosh' sin5',

where @s is the standing wave solution in the potential
Vs. Precisely, Qs at infinity approaches a unit sine term
plus a cosine term times tan5'. Rewriting Eq. (21) in
terms of the standing wave quantities yields

tanb' —tanb'

= —(1/u) &y, l
v,

l p&l:&pl v, —v,rg, v,
l
p&&-'&pl v,

—= —(1/&) &&o I vil p&ci&p I vil ~o& (22)

It is clear from (22) that as V ~ Vs, the bound becomes
exact. It is desirable and even essential for accuracy
that (22) also be forced to yield the correct phase shift
as V —+ 0. This is easy to accomplish; it is sufficient to
include the free wave function Isi) in the set lp). Then
we find for V 0 that

Ip&ci&plvil&o&~ l~)

by the same reasoning that leads to Eq. (19).As V —+0,
the exact wave function for the potential V& is a plane
wave and obviously tanb'=0. This does not necessarily
mean that 6' is zero, since it could also be a multiple
of ~. Now, if 5(v) differs from 8' by more than Xm., then
5' does not provide an accurate bound. To see this, we
note that as V~ increases from zero, the determinant of
Ci ' in Eq. (22) can vanish at most S times. Therefore
(8'—5') cannot be larger in magnitude than X~. Com-
putationally, this simply means that one should increase
the number of trial functions until 5' stops jumping by m.

Even if V is not small it is advantageous to include a
plane wave In& in the set

I p), since then one finds

+(1/&)&&oI v
I
p&c &pl v I&o&

= tan8'+(e
I
V+ VPg, V

I u&+O(V')

Thus the explicit contribution of Vo, namely, 8, will
cancel. Again, if the exact wave function is among the
set

I p&, then Eq. (22) will yield the correct phase shift.

B. Binding Energies

In our discussion of multichannel and multiparticle
scattering, it will be necessary to have both upper and
lower bounds on the energy of any bounds states that
occur. - I et us handle that problem now and we will

start by considering a Hamiltonian with a single (this
condition will be relaxed later) bound state at 8=Es&0
and a continuous spectrum starting at E=O. An upper
bound, on Eo can be obtained by the Rayleigh-Ritz

Now
0&J 2.

&clalc&&slalom& —&~laic&&clal~&=F1 J.2

and hence

&cla I c)—(&clal a)&a I
a

I c&/z, ') &o.

But since C is arbitrary

where

a'=a (a
I
a)&s I

a—/z, ') & o,

a=a'+(ala&&ala/z, ')&a„

a'Ia)&ala' ala&&ala
a, = +

&~ Ia'I w& z, '

(23)

Now the lowest eigenvalue of H„EO", is less than Eo.
It should be noted that we really have a variational
principle for Eo and that if either 3 or 8 is the exact
ground-state wave function for H then Eo"=Eo. In
any case, we have

E Il&E &E I

In a practical calculation where the number of bound
states is not known, it is necessary to perform higher
order Rayleigh-Ritz calculations until it is no longer
possible to obtain eigenvalues that are negative. Since
we have developed a variational upper bound for the
number of bound states Lsee the discussion following

Eq. (7)], this tells us the maximum number of Rayleigh-
Ritz eigenvalues which may be present.

If there are E negative Rayleigh-Ritz eigenvalues
E~.~', A~ - .E~ ~', then it is possible to construct g

271. Rosenberg, I.. Spruch, and T. F. O' Malley, Phys. Rev.
118, 184 (1960}.

''l E. A. Hylleraas and B. Undheim, Z. Physik 76, 759 (1930}.
See also J. MacDonald, Phys. Rev. 43, 830 (1933).

variational principle. Let us suppose that we have a
normalized trial function 8 that is good enough so that

z,«a I al a)—=z,'&0.

In this case a lower bound on Eo can be obtained by an
extension of the method of Bazley and Fox."They show
that if a solvable Hamiltonian H, can be constructed
such that H, &H, then the eigenvalues of H, are less
than the corresponding eigenvalues of H. This is easy
to prove using Feynman's theorem. In order to con-
struct H„ it is sufficient to write H as the sum of a
separable term and a term that is positive definite. The
positive definite term can then be made separable by
using the Schwartz inequality as was discussed earlier.

Following Rosenberg et ul. ,
'~ let us imagine perform-

ing a two-dimensional Rayleigh-Ritz calculation on H
using

I 8) and any other normalized trial function
I
C).

We will obtain " two approximate eigenvalues Pi and
E&'2 such that

Ep& F1&E',
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orthonormal trial functions Bl, 82, . ,B~.The positive
definite operator H' is then given by

~ III',)&a, leH'= II

and the generalized Schwartz inequality can now be
used to obtain lower bounds on all binding energies.
Since B' is positive definite, the eigenvalues of the
Hamiltonian

will also give variational lower bounds on all of the
binding energies.

Let us now consider some examples.

III. EXAMPLES AND APPLICATIONS

Since it is always possible to obtain the exact phase
shifts in single-channel scattering by a simple numerical
integration of the Schrodinger equation, this section is
included only to give a few numerical tests of our
method and to derive a few more general results. The
bounds on the phase shift will be useful only if it is
possible to choose separable potentials which lead to
simple analytical expressions. For simplicity we restrict
ourselves to calculations of scattering lengths, but we
will present one calculation for the phase shift for a
range of energies.

The first potential we consider is the old favorite

The optimum choice for C which makes Vl as small as
possible but still positive is C=Xe . The s-wave phase
shift for Vo is

where
2L+1= (1—4C)'~' (28)

These integrals yield

A (exact) & A '= —X—-'X'

x ' XL
—4X'-dx- — ——1 . (2&g)

p (1+x)' (2I+1)

The first two terms are recognized as first- and second-
order perturbation theory. The last term vanishes if
C ~ 0(I.~ 0), and is of order X' if C= Xe '. The scat-
tering length bound A' is infinite when (2L+1) is zero,
and this condition together with Eq. (26) yields bounds
on the coupling strength required to produce a bound
S state

and we assume that C is less than ~ for the moment.
The scattering length is easily calculated from Eq. (22)
if we assume a single plane-wave trial function

A (exact) &A '= (r I
V+ Ugp V

I r),
where

V= —('A/r) e (24) e/4=0. 68&ii(exact) &10—(68)'I'=1.75.

The trial wave function will be chosen to be

Ic)=(r,r')

which should be appropriate for s waves. The scattering
length A' is given by (5'= —kA', k —+ 0)

A(exact)&A'=+(rl Vlg)
X[&vl V—Vt GVI q)]- &ql Vlr). (25)

We find

&rl Vlv)= —~(1,2),

and the other integrals can be easily carried out with
the result that

A(exact) &A'= —X[1—sX][1—pX+p2X'] '.

These bounds are, of course, very rough since we
have done no work. They become better, however, if
we consider higher partial waves. Our bounds will be
expressed in terms of the largest angular momentum l

which has a bound state. In terms of the Regge tra-
jectory, we will derive upper and lower bounds on pp(0).

The upper bound is again derived by introducing the
potential Vp as in Eq. (27). For arbitrary l, however,
Eq. (28) becomes

2L+ 1= [(2l+1)'—4C]"'

The vanishing of the square root is again the condition
for a zero-energy bound state and the bound on the
exact angular momentum 0. becomes

The condition for a zero-energy bound state yields a
bound on the coupling constant

2n+ 1&2 P,/e)'~' (30)

'A(exact) &X=10+ (68)'"=1.75, 81.25. (26)

The exact value for the occurrence of the first bound
s state is 1.6798, and for the second bound s state, 6.464.

A rough upper bound on the scattering length can be
easily calculated by choosing [see Eq. (22)]

The lower bound will be calculated from Eq. (25) by
assuming a trial function of the form

q=r~e "
with two positive variational parameters b and c. The
condition for a bound state is

aild
Vp ———C/r'

V, = X(e "/r) +C/r'. — —(27)
&vl viz)=&el vt'aviv&.

Evaluation of the integrals leads to the requirement
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where

(2l+1) (1+2c)"
=4&

I (l,b) (1+c)'b+'

I(l,b) = dx x'+'(1+x) ' ".

(31)

The value of y which optimizes the bound is

y4= X/e.

The value a in the limit is bounded by

2P /e)"'&2n+1) 2(X/e)'~' —(X/e)'~'+ . (34)

The exact value of Xq for the occurrence of a p-wave
bound state is 9.080.

This inequality, Eq. (32), is true for all values of b

However, there are two limits in which the bound can
be strengthened by choosing the optimum value of b.
If X —+ 0, we see that n is greater than or equal to minus
one-half. From Eq. (30), we also see that c4 is less than
or equal to minus one-half. Therefore, the leading
Regge trajectory at zero energy goes to (——', ) as the
coupling vanishes.

In the limit of large ), the optimum choice of b can
be determined. If the coupling constant is large, then a
is also large, and the integral I approaches the bound

I(n, b)&(n+b+1) '2 ' 'b

Even for o.=O, b= 1, this estimate is only wrong by a
factor of 2. Solving (32) for o. yields

where
2~+» L+f(y)+y'/43'" —-.'y,

f(y) = (1—1/y)'
= (y —1)2 " for 1&y&2

(33)

y=1+2b

As X gets large, it is easily seen that the optimum value
of b is also large, and f(y) becomes

f(y) = exp jy ln(1 —1/y) j
= e '(1—(1/2y)+.

Since I is a decreasing function of /, the parameter c
will be chosen to maximize the right-hand side of Eq.
(31). This value turns out to be c=b ', if —b)—-',, and
c=-0, if b &-, . The exact value of the angular momentum
0. then must satisfy the inequality

(2m+ 1)/I(n)b) & 2X[4b/(2b+1) )"+' (32)

for b&-,' and &O'Ab if 0(b(—', .
Let us test this inequality by calculating the coupling

constant required to produce an s-wave and p-wave
bound state at zero energies. Choosing b=1, a not un-
reasonable value which simplifies the integrals, we find
for the s wave

I(o,1)= s,
Xo& 27/16 & 1.69,

and for the p wave

I(1,1)= ln2 —e,
) g&9.28.

This is quite a general result as far as the dependence
of n on the coupling constant is concerned. For the ex-
ponential potential

V= —Ae r

the bounds become

4(A/e')'~ & 2n+1& 4(A/e')'I 2(A—/e')'~4+ . . (35)

The dependence on the coupling constants of these in-
equalities seems to be true for quite general potentials,
even the square well, as the reader may easily verify.
This dependence of n in the strong coupling limit has
been found previously by Tiktopoulos and Treiman. "

The bounds on n for the Vukawa case may also be
compared with the numerical calculations of Ahmad-
zadeh, Burke, and Tate."The largest value of P which
they considered was X= 8, and for that value, n turned
out to be 0.9. For this value of the coupling constant,
the optimum choice of y in Eq. (33) turns out to be
between 2 and 2.5. The resultant inequalities compared
with the exact values are

3.43)2n+1= 2.8& 2.0.

For the value X=5, we find y is again approximately 2,
and

2.72& 2m+1= 2.04& 1.45.

These limits are not bad considering the crudeness
of the upper bound and the inaccuracy of the estimate
used in the lower bound for I(n, b) when n is small. To
estimate this latter error, let us evaluate I(n, b) exactly
when n= —,', b= —,'. We know from the numerical calcula-
tions that X is slightly less then 5. We find

I= ln2 ——.,' =0.193,

whereas our bound yields

Ib =0.125.

The values of X given by these two estimates of the
integral I are, respectively,

X& 1/I =5.23

P, (1/Ib=8 0.

The accuracy of the first result is obvious.
The lower bound on the s-wave phase shift for an

attractive Yukawa potential has been calculated for a
range of energies. The strength of the potential was

~ G. Tiktopoulos and S. B. Treiman, Phys. Rev. 135, B711
(1964}.

"A. Ahmadzadeh, P. G. Burke, and C. Tate, Phys. Rev. 131,
1315 (1963).
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FIG. 1. Comparison of s-wave phase shifts for Yukawa potential
with a bound state for nucleon-nucleon scattering. Trial functions
were chosen to be of the form sinEr.

IV. MULTICHANNEL SCATTERING

In this section we will consider the problem of multi-
channel scattering. We will restrict ourselves to the
case in which there are a finite number of channels
each of which contains two particles. Our starting point
is again the Lippmann-Schwinger equation. However,
the operators are now to be considered to be matrices
whose rows or columns are labeled by the channels.
The potential matrix is symmetric and the free Green's
function is a diagonal matri. x whose elements are given
by

G,,= S,,G(k,r) —=5,,G, . (36)

G(k,r) is the two-particle free Green's function em-
ployed in Sec. II and k; is the wave number in the ith
channel. If the threshold for the ith channel is at
energy E; and the reduced mass in that channel is m;,
then k; is given by

E=5'k;2/2m, +E;,
where E is the total energy of the system.

Just as in the case of single-channel scattering,
Fredholrn theory can not be applied directly to the
three-dimensional Lippmann-Schwinger equation. Again

chosen so that there was a bound state very near zero
energy, the range was chosen to be one fermi, and the
mass corresponds to nucleon-nucleon scattering. The
results are presented in Fig. 1 for one and two trial
functions and compared with an exact numerical calcu-
lation. The trial functions were chosen to be

~ qg) = sink, r,
~ qg) = sink2r.

The variational parameters k~ and k2 were chosen to
(roughly) maximize the phase shift at each energy point
calculated. It shouM be noted that the value of X which
we chose gives a particularly severe test of the theory.
If A. was less than 1.69 then there is no bound state and
all the phase-shift curves would start out at zero. If X

was greater than 2, then even the one trial function
case has a bound state and all the curves would start
out at ~.

does not exist. However, this defect can again be
remedied by the same method that was used in the
single-channel problem, namely, by choosing appro-
priate L and M kernels.

Let us now consider the problem of scattering in a
state of definite angular momentum. If there are A
channels, it is convenient to define X column vectors
U'~, ,U'~ such that in coordinate space, the ith com-
ponent of the jth vector U';; is given by

U', , (r) = 8;,k,rj t, (k,r) .

In terms of these vectors, the T matrix is given by

T ~=(U t
~

V
~

U ~)(k k )-u~
i—GgV

which for the diagonal elements can be written in terms
of the phase shift as

Tg ———e" sinb.

The free G-reen s function G~ is a diagonal matrix with
elements in coordinate space given by

G&,., = —(i/k;)k;r& j&(k~&)k~&k(o&(k~&).

It will often be convenient to write it in the form

G+((E+ie) =PG(—i+ —
~

U )(U,'(,
j=~ k,.

where I'GI is a diagonal matrix whose elements are the
appropriate standing wave Green's functions.

If the diagonal elements of the potential matrix are
smaller than 1/r at inanity and smaller then 1/r2 at
the origin, then TrG~V exists and both I. and M may
be taken to be unity. By examining the Fredholm ex-
pansion for D&(E), we see that each term is an analytic
in the E plane with cuts starting at the threshold of
each channel and running along the positive real axis.
This is true even if there are anomalous thresholds
which explicitly show up in the k plane. '

In order to construct the T~ matrix from the Fred-
holm determinant, we must consider particular "com-
plex conjugate" D's. D+ is defined to be the value of
D on the real axis just above all of the cuts. D; is
obtained by following the path in Fig. 2. The dotted

FXG. 2. Continuation
path.
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part of the path is on the second sheet of the E; cut.
This path takes the complex conjugate of quantities
that have branch points at E,, but leaves other quan-
tities unchanged. As a result, the Green's functions
become TIy = —8 sing ) (50)

The angular momentum label l has been omitted.
Below the 6rst inelastic threshold 622 is real, so that
Di ——(Di+)*.As a result, Tii can be written in the form

so that
G -=G~+(»/&) IU')(U' I,

D, =det! 1—G(, V]

(4o) and D= ID!e ", where h is real. Since the first deter-
minant in Eq. (48) is real, we have a one-channel
problem with an effective real potential H~ given by

(41)
W = Vi1+ V12g22 V21 1 (51)

and we have
T;;= (D+ D; )/2—iD+. (42)

In order to obtain the oB-diagonal elements of T, it is
necessary to consider D&, , which is obtained by going
onto the second sheet of both the E~ and E; cuts. Using
the fact that

and we know from the results of Sec. II that one can
obtain an upper (lower) bound on h in the elastic region
by replacing 8' by a smaller (larger) potential. Since it
is almost as easy to integrate the one-channel Schro-
dinger equation numerically as to apply the bounds dis-
cussed in the previous section, the real problem here
is to find a bound for g22 and hence B'.

A. No Bound. States in the Inelastic Channels

G~~ ~+=GI++(»/&~) I
&'~) If H22 does not have any bound states, then g22 is a

X(&, )I+(2./& ) I «)(« I (43)
ne ative definite operator for E(E2. Schwartz's in-
equality then givesand that

g22+g22 I ~) (~ I g22 y (52)

we find

Dy; =D+f(1 2iT&k)(1 —2i—T;;)+4T)„T;gj. (45).

detL1+A
I ~~)(&~Ill+A I

& )(& I ~3
1+(U,!m!v,) (U, !m!v;)
(p, !&AID',) 1+(/J, !BA IU, )

' where Is) is an arbitrary iV —1-dimensional column
vector. We obtain a more useful form by taking Is)
= (8—H22) Iq) so that

ll 12

kQ Q
(47)

where Q2i is an JV—1-dimensional column matrix with
components Q2i, QS~, ,QNi, and Qi~ is an cV—1-
dimensional row matrix. Finally, the operator Q22
stands for an E—1-dimensional square matrix.

The Fredholm determinant can now be written as

D =detL1 —G22V22]
Xdet! 1—GiiVii —GiiViggggV2ij, (48)

where
g22=! 1/(1 —G22V22)]G2~= 1/(& —&») (49)

As a result, 4 '

Tg;T, g TIp= (D+DI,—— DI D; )/4D+'—. (46)

The reader can easily check that the T matrix dined
by (42) and (46) satisfies unitarity. In fact, starting
from any approximate D that has the same analyticity
properties as the exact determinant, Eqs. (42) and (46)
can be used to de6ne an approximate but symmetric
T matrix that satisfies unitarity exactly.

Our next objective is to obtain approximate D's that
will yield bounds on as many of the scattering pa-
rameters as possible. We will be concerned with the
case in which E~&E&E2, so that only elastic scattering
is possible. It is convenient to write our operators in
the matrix form

g»& I v) (v I.
(q!&—%~I q)

Using this result and Eq. (51), we find

IV+ Wz= Uig+ Vi2 I q) (q I
V21 ~ (54)

(v I
(&—&») I v)

Writing 8"g out explicitly in con6guration space, we
have

Wi, (r,r') = Vii(r)h(r —r')

where q;(r) is the ith component of the column vector
I q). (We have chosen its indices to run from 2 to X.)
If the one-channel Schrodinger equation is solved with
the potential S I,, then the resulting phase shift 51, is a
lower bound on the true b. If the exact wave function
for the 1V-channel problem is f= Qig2), and if (tt! is
chosen to be P2, then it is easy to see from the Schro-
dinger equation that hz,

——h. In addition, if (q=$2+htP2
then h —hr, is of order (g)' if hP is small. We thus have
a variational principle for the phase shift that gives
the exact answer if the trial function is exact and gives
a lower bound no matter how bad the trial function is.
The bound can of course be improved indefinitely by
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I qr&&qrl

g s& 2 I q'»' (q I
&-

(qrlE-H»I qr&

(56)

where 2;; is the inverse of the matrix (q;I E—H»l q;).
As a result,

W& Wr, &""=—Vrr+ Q Vrsl q, &Ay(q;I Vsg,

Vrs I qr&(qr I VsrW' '&W "l=—V+ (57)
(qt I (E—H») I q~&

{M)+g {1)

using more and more complicated trial functions. It
can also be improved by using the generalized Schwartz
inequality discussed in Sec. II. If lqr&, lq2) Iqsr) are
a set of arbitrary trial column vectors, then

it follows from Schwartz's inequality that

J&0.
Finally, we see that

W&W =—Var+Vrsgss(1) Vrr. (63)

sV

(II»-Es) & 2 (H»-Es) IP.».,&P, I (H» —Es)

If the one-channel Schrodinger equation is solved with
the potential lV„, the resulting phase shift 6 will be
an upper bound on 8. Again if p=Ps, then 8„=5, and if
P= A+&/, then 4—8 is of order 5P for small 8P. We
thus have a variational principle that gives the exact
phase shift if the trial function is exact and gives an
upper bound on the phase shift for any other trial
function. Again the bound can be improved by using
the generalized Schwartz inequality

Again, if Ps is included in the set q, then 6r. t'ul = &.

In order to obtain an upper bound on the phase shift,
it is necessary to construct an operator that is smaller
(more negative) than gss. Now

It is easy to see that

(H22 E2)8 & (H22 E2) I

(H» Es)—, . —

(H22 E2)& (H22 Es) I p)- (p I (H22 E2)
&plH» —Esl p)

—= (IX„—Es)„(58)
where p is an arbitrary X—1-dimensional column
vector. Now consider the Green's function

g „(x)=
I (E—E,)—(II» E,)—

—*((H —E).—(H —E))j ' (
where

gss(0) = gss
and

g (1)=l:(E—E)—(H —E).]-'
= (E-I )-'(&+I'I p&i&pl p(1-~)

I pH-(pII'),
(60)

where Ii = (Hss —Es) (E—E,.)—'. In order to show that
gss(1)&gss(0), it is necessary to show that for any
state (fl,

(61)&fig s(1)—g (o) If)&o.

Noting the identity
I

J—=&fig»lf) —&fig»(o) If&= «—&fig»(&)lf)
p dx

«(fig ()L.(H —E) —(H —E)jg (*)If),

g»(E) =L(E—Es) —(H2s —Es)] ',

and if H22 has no bound states, and E2 is the lowest
inelastic threshoM, then H&2 —A2&0. Since E2—E&0,
gss will decrease if we replace (H2s —E,) by a smaller
oper'ator. To make this precise we first note that

8,; is the inverse of the matrix (p, l Hss —Esl p;) and

pr . p~ is a set of M arbitrary trial functions. As a
result,

g»&g»(1)=L(E—Es) —(H» —Es) .j '
&g' (1) («)

and the corresponding inequalities on the phase shifts
are obvious from our previous discussion.

At this juncture it should be noted that there is an
alternative procedure which may yield a more accurate
bound than Eq. (64) (which involves matrix elements
of the square of the Hamiltonian. ). This is the method
of Bazley and Fox" who require that H be the sum of
a solvable Hamiltonian and a positive definite potential.
Then if the positive definite part is made separable, a
lower bound on the Green's function can be constructed.
This method can be carried through only in special
cases, however.

B. Bound States in the Inelastic Channels

Up to now it has been assumed that H22 does not
have any bound states, but this restriction can easily
be removed. Our minimum principle is actually valid
even if H22 does have bound states. "However, in order
to obtain a maximum principle, it is necessary to con-
sider the bound-state problem in detail. It is probably
also necessary to do so in order to obtain accurate lower
bounds. I et us first consider the case in which there is
a single bound state at energy Ep. The first problem is
to obtain an upper bound, Ep', and a lower bound, Ep",
on the binding energy. This problem has already been
discussed in Sec. II.B. For E(Ep" there is no change

s' R. Sugar, Ph.D. thesis, Princeton University (unpublished).
See also the last part of Sec. C.



VARIATlONAL UPPER AND LOWER BOUNDS

in the calculation of the lower bound on the phase
shift. The upper bound calculation also goes through if
E2 is replaced by Eo" everywhere that it occurs in
Eqs. (58)—(65). For E&Ep goo has a discreet eigen-
value, (E—Ep) '&0, and a continuum of negative
eigenvalues running from 0 to (E—Ep) '. In order to
obtain bounds on g22, it is desirable to separate off a
part that is negative definite. The procedure is the
same as in II.B.Let b be the normalized trial function
that yields the upper bound energy Eo',

Ep& (b l
Hop

l
b&:Eo' &—0 ~

Ke now imagine performing a two-dimensional Ray-
leigh-Ritz calculation for bounds on the two largest
eigenvalues of (—gpp). If one of the trial functions is
chosen to be

l
f)= (L~ Hpi)lb—), then the method of

II.B, see Eq. (23), yields

g 22=g22
l
f &(E—Eo') '(f

l
&0.

Defining the projection operator I'= 1 —
l f)(f l f) '(f l,

it is easy to see that

Since g'22 is negative definite for Eo'(E(E~, it is
possible to obtain a lower bound on the phase shift in
this energy region by making g'» separable.

In order to obtain an upper bound on the phase
shift, we note that if H~~ has no bound states between
Eo and F2, then the quantity J, defined by

22 ~ ~2 ~)

has one negative eigenvalue and a positive spectrum.
As before Lsee Eq. (23)] we may write

y= y~ygly&(E, ' E,) i(big= I'+g,—

where
J=H22 —E~g".

Both the upper and lower bound calculations now go
through as before.

C. Extensions Above the Inelastic Threshold

It is possible to extend the previous results to en-

ergies above the inelastic threshold. %e will consider
only two open two-particle channels, but. the extension
to any number of open channels is straightforward. "
The potential matrix will be written in the form

where V, VN, and V~~ are 2X2, 2)(ilr', and EXP
dimensional matrices, respectively. S is the number of
closed channels. The effective potential is

W= U+V~$E, H~ip] 'V—~= V+V~g~U~.

Standing wave boundary conditions will be used for
the free Green's function in the open channels G. Both
G and 5' are of course two-dimensional matrices. The
IC matrix is given by

E =(~'"IWL1 —GW] IN' &(~'~ )

or in matrix notation

E= —k 'IPWl 1—GW] 'k '"

If l4' depends on a parameter x, then

and J' is a positive definite operator. This allows the de(g)/d(~) = —&
—i&pL1 —WG]—iLdW(~)/d~]

Schwartz inequality to be applied, and our previous XL1—GW(*)]-'k—'~'. (65)
arguments Lsee Eq. (62)] lead to

gpp& [& Ep J. J',]—— —

which immediately yields an upper bound potential.
It should be noted that we still have variational

principles for both bounds. If the trial function that
makes g'pp separable is chosen to be Pp, then both the
upper and lower bound phase shifts will be exact even
if the trial wave function for the bound state is not
exact.

The generalization to the case of iV bound states is
obvious. Let b~, b2, ~,b~ be the orthonormal Rayleigh-
Ritz eigenfunctions that give the upper bound energies
E~', E2', „E~'~'. Then for E,'&E&E~~", where E;+i"
is the lower bound on the energy of the (~+1) bound
~t-~te we have

Taking the expectation value of both sides of (65) in

an arbitrary state P and integrating from 0 to 1, we find

dW(x)
Q ll~(1)—It(0) lP&= — d~(4(*) I le(~)&, (66) .

0 ds

where lg(x)&=L1 —GW(x)]—'k—'"lP).
Using the methods of Sec. IV

l
see Eqs. (52)—(63)],

it is possible to construct upper and lower bound po-
tentials, lV„and W~, such that for any state, @,

8 I l~'il&»(&llvl&)&(&lw-l&&.

The derivation of these inequalities is based on the
Schwartz inequality and therefore is not affected by
the fact that p is now a two-dimensional column vector.
Substituting the potentials

g22 =f22
&=i z—z, ' IV„,i(x) —=W„,i+@(W—W„,i) (67)
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into Eq. (66), we find

Q IE"
I +» 641E14» 64 IE'I +&

As a result, dW/dx is negative definite for E below the
6rst threshold of T'N~. Now

+&Ql g(*)
I Q) (Q I g(*),

W(1)=W,

W(0) = Wg,E";;&~E;;~&E';;.

k=—Eii+E22+ 2Ei2,
If we define and our result follows at once.

where E"and E' are the E matrices for the potentials
W and Wi. These inequalities are to be understood in
terms of the corresPonding Phase shifts, E;;=tan6, , so that the choice
That is, one must keep track of the branches of the
tangent.

If we choose a P which has only one open channel
component, P=N, , i=1, 2, then we find

then taking f= ei+Nu gives V. THREE-PARTICLE SYSTEMS

As a result

where
E"ii+6 &~Eig &~ E'i2

~=—2 Tr(E"—E')

The most difficult part of the three-particle problem,
besides actually solving it, is to develop a concise
notation for all the different functions that must be
introduced. The Hamiltonian for three particles with
labels 1, 2, and 3 will be written as

We therefore have derived variational upper and
lower bounds on all elements of the E matrix. In turn,
such relations lead to upper and lower bounds on the
cross sections for both elastic and inelastic processes.

Equation (67) represents only one method of em-
bedding S' in a one-parameter family of potentials. It
is sometimes convenient to proceed in a more general
fashion. For example, it was mentioned that our lower
bound variational principle really does not need to be
modified when HNN has bound states. To prove this it
is sufficient to construct a potential W(x) such that

W(1) = W,

w(o) = wi= v~
I g&&v I

&—&»
I q) '&v

I
v~+ v

dW(x)/dx&0, 0&x&1,

even if H~~ has bound states. We write W(x) in the
form

W(x) =W(0)+xV~B(x) 'V~,

then the derivative becomes

dW(x) — dB(x)-
=V~B(x) ' B(x) xB(x) 'V—~.

8$ 8$

If we choose

B(x) =8 T~~ xV v~+ I Q)—(—Q I

1—g

=g(x) '+ IQ)&QI,
X

where T~~ is the kinetic energy operator in the closed
channels, and

I Q) will be chosen later, then we fincl

d8 $2

IQ)&QI
Cx (1—x)'

JI= T+ V = T+ Vi+ V~+ V~,

where T is the sum of the kinetic energy operators. The
t/', are the pairwise potentials, and i labels the particle
which is not interacting, that is, Ui ——Vi(r23). An in-
trinsic three-particle interaction can be added without

difhculty if it vanishes when any one particle is removed
to infinity. If the three-particle potential does not
vanish, one can be introduced which does by subtracting
the three pairwise potentials which remain as each
particle is removed and adding them back into the V;.
In the following discussion we will assume for simplicity
that all three particles are distinguishable. If two of the
particles are identical, then one should imagine that all
of the following effective E-matrix operators are placed
between projection operators which guarantee the sym-
metry or antisymmetry of the states involved. "

In order to discuss the total problem with Hamil-
tonian B, three subsiduary and simpler problems are
introduced with Hamiltonians

H;= T+V;,
and Green's functions which satisfy

g;= G+GV;g;= G+v;g;,

where 6 is the three-particle free Green's function which
depends on the total energy E. Since the Green's func-
tions g; involve one free and two interacting particles,
they can be solved by the methods described in Sec. II.
Therefore, we are guaranteed that the resolvents

E,=(1—v;) ',

exist and can be constructed. Also, the associated T
matrices, which are defined by

T;= V;.E;,
exist, and can be constructed by the Fredholm method.



VARIATIONAL UPPER AND LOWER BO UNDS

It should be stressed that these resolvants are Fredholm
in the two-particle space of variables but not Fredholm
in the three-particle space. It is this fact which will
allow us to show that a Fredholm solution exists for
the complete three-particle problem.

The total Green's function satisfies the equation

g=G+GUg—=G+vg.

As before, we will write the solution in the form

g=L[M(1—v)Lj 'MG. (68)

This will make sense only if M ' and the determinant
D exists, where

D—=det[M (1—v)I j. (69)

If one tries to choose M= L= 1, then D will exist if

Trviv Yrv x+. . .

exists for E=1, 2, Since the trace involves an
integration over the coordinates of the ith particles,
which is not localized by the potential v;, this integral
is infinite for all values of E. These troublesome terms
arise from the disconnected graphs and must be elim-
inated from D if it is to exist. This is easily accomplished
by choosing L and M so that the determinant involves
at least two different v s, in each term. These terms give
rise to graphs with a connected structure and D wi11

at least have the possibility of existing.
Again, as in the single-channel case, there are an

infinite number of L and M's which give rise to a con-
nected and finite determinant. With

g g1+gP i1gl ) (71)

where i= 1, , 4, and g4—=G. For elastic scattering or' a
rearrangement collision, i=1, 2, 3, and for breakup,
i=4. In order to ensure that g has a factor of g» on the
right, we choose M=E», and then we find

This is a connected operator; however, it is not sym-
metric in the particle labels. This is easily remedied
by choosing 31 to be one-sixth the sum of the permuta-
tions of E», E2, and E3.

Another choice which is convenient in any discussion
involving an initially bound state, between particles 2

and 3 say, is
I.=[E,yE, 1j[1+—Cj,

3f=E»,

which leads to the connected operator

M(1—v)L

v3E2v2 v2E3v3 vlE1(v2+v3)LX1+C~

The point here is that the non-Fredholm part of e is
exactly canceled by the non-Fredholm parts of L and
M. The question as to which of the infinite choices for
L and 3I is the superior one depends on the details of
the potential, and therefore cannot be generally settled.

If one wants to discuss scattering in which the initial
state contains a bound state of two particles, say par-
ticles 2 and 3, then the choices open for L and M are
slightly restricted. The relevant T matrix is defined by

r,;=+(V—V,)L[E,(1—v)L)- (72)

L= (1+C)[E1+E2+E3—2j,
where C is a connected operator, we 6nd

L(1—v)M= (1+C)[1—v,E1(v,+v, )
—v2E2(v1+v3) —v3E3(v1+ v,)$ (70)

=—(1+C)[1—C,).
It is self-evident that this is a connected operator.
With C= 0, it is the same operator as used by Weinberg. '
The trace of Co does not in general exist for a local
potential, therefore, if one chooses C= Co, the deter-
minant will then involve the trace of Co' to lowest
order. Since this will involve four potentials, it will
exist if the pairwise potentials behave decently at the
origin and at infinity. ' This is only one particular choice
for I. and M, and it should be emphasized that there is
no unique way of proceeding.

There are other choices for I and M which have
useful properties as we shall see later. We can choose

3&I=E»EgE3,

where V4 —=0. This operator will exist if L is chosen
appropriately. As before, there are an infinite number
of choices of L which will ensure the existence of the
determinant

D= det[E, (1—v)I.j, (73)

and we will not have to make a speci6c choice.
Since we will be ultimately interested in getting

bounds on the scattering phase shift, some sort of
partial-wave decomposition must be made. We will

assume that E» has the lowest threshold, so that there
is an elastic region, and that E» has been expanded in
partial waves. It is not necessary, but the simplest and
most natural choice of a partial-wave basis for the pur-
pose at hand is to couple particles 2 and 3 together and
then to couple particle 1 to form a total J. The T-
matrix element for this situation is

T ~= —(1/k )(8,1
i (V +V )L~

X[E.'(1-")L'3-'I 1,», (74)

where ~1,8) is a direct product of a plane wave for
particle 1 and the bound-state wave function of 2 and 3.
The Fredholm determinant of interest is

D~= det[E1~(1—v~)L~j. (75)

M (1—v)L=- [1—E3v2E2v3 —E3E2v1E1(v2+v3) j[1+Cj. It is possible to choose I. so that it only involves E2
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and E&~ since these are the only disconnected graphs
left. Therefore L~ is real in the elastic region. From the
form of T»», it is clear that the phase shift is the nega-
tive of the phase of D~, just as in the multichannel case.

In order to get bounds on this phase shift, the phase
of the determinant must be studied, and to that end it
will prove convenient to rewrite D~ so that it takes the
same form as in the multichannel case studied in Sec.
IV. To that end, let us extract from g» the part that
contains the lowest bound state wave function of 2 and
3 and call it

I B).We will do this by introducing projec-
tion operators in the 2—3 coordinates, ""

(76)

8=1—P.

one must inclose lV between projection operators which
guarantee the correct symmetry and ensure that the
inverse operator in the second term of Eq. (78) is taken
in the space of such functions.

Our next step is to find upper and lower improvable
bounds on this effective potential, since we are assured
from the previous discussion that these will lead to
bounds on the phase shift in the elastic region. The only
formal difference between the three-particle case and
the multichannel case discussed earlier is the presence
of the operator L which is necessary to yield connected
kernels. Our object is to show that it doesn't make any
difference in the final formulas. We want to derive

upper and lower bounds on the Green's function

This means that

g~'B=Bg~'=
I
B&G~'(B

I

«=RI.[(1 G,RUR—)I. I 'G,R, -
=RL[R(C~+i e FI)RLj—'R. (80)

where

D= DaDzDaz, (77)

Da =det[1 —g,BUB],
Dg ——det[(1 —ggR UR) L],

Dag det[1 —g~R UB—(——1 g~B UB) 'g~B—URL-
X�(1—g~RUR)L} 'J

=det[1 —(1 g&BUB) 'g&BU—RL
X ((1—gtRUR)I )

—'gtBUB],

because EB=O. Since E= 1—8, it is directly seen that
Dg is a connected determinant since 8U is a connected
operator. Also, Dg is real in the elastic region, therefore
the elastic phase shift comes from the determinant

where
D,=DaDaa det[1 —g~BI'VB]——, —

W= U+ URL[(1 ggRUR)L] 'ggRU. —

Since 8 is a projection operator in the relative co-

ordinates of particles 2 and 3, D, can be reduced to an
effective one-particle determinant in the space of the
relative coordinate ot particle 1 and the bound state.
That ls)

D, === det~[1 —G~(8 I

Ii''I I~&], (79)

where (B I
1'V IB) is the effective potential acting in. this

one-particle system. If two of the particles are identical,

where G»~ is a free-particle outgoing wave Green's
function describing the relative motion of particle 1 ancl

the center of mass of the bound state B. This means
that. g»~R is real in the elastic region, and has a branch
cut starting at the inelastic threshold J:~.

H the determinant is written as (I labels will be
omitted from now on)

D= det[(1 —g, (B+R)U(B+R))L],
where U= V2+ V~, then it may be separated in a form

highly reminiscent of our previous discussion of the
multichannel problem;

This Green's function can be written in spectral form

by introducing outgoing wave eigenstates I1V) of the
Hamiltonian RBR:

g, =P R
I
W)(I:—Z,v+ i.)-~(~VIR. (81)

We are assured that a complete enough set of states for
RHR exist because it can be written as a sum of H and
a separable operator. Therefore one can construct the
set using the eigenstates of H which we have demon-

strated to be a Fredholm-type operator. The projection
operator R will kill any contribution to the sum from
the state B. Therefore, the continuous spectrum of E~
starts at E~. It is now clear that gg is a negative dehnite
operator in the elastic regionif RFIR does not have any
point eigenvalues below E2. If it does, then we would

proceed as in the multichannel case. In any case, if A'

is below the lowest point in the spectrum of RHE,
we have

g &g Is)(slg Is)-(slg

and introducing Is) = (8 P)RI q), the bou—nd becomes

g &Rl v)(AIR% —FI)RI v) '(vlR (»)
This yields an upper limit on the effective potential

which yields, in turn, a lover limit on the phase shiA:

w, =(BIUIB)
+(BI

UR
I v)(AIR% —FI)R

I v) '(v IRUIB) (83)

This bound is, of course, still true if (ql is a column

vector made up of trial functions. It is also evidently
true that if the set (q I

contains the exact wave function
for the Hamiltonian REIR, 8'~, will yield the exact
phase shift.

The potential lVt.„which yields an upper limit on the

phase shift is easily constructed by writir~~~

R(t' II) R&R(F: I:,)R ==R(FI j:.,)R—
l

p)---
X (p I.R(FI—L,)R I p)

—'(p
I
R (II—L,)R,

where B~ is below the lowest value in the spectrum of
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and
~-'==(E-E.)(pl(E-E.)~-~

I p)

h=R(FI —Es)E.

Since the last term in Eq. (84) involving the trial func-
tions is positive definite, we can get a crude bound on
the phase shift by neglecting it completely and calcu-
lating with the first two terms in H/' .

The physics of the problem has now been reduced to
making reasonable choices for the trial (vector) func-
tions

I p) and Iq). If there are nearly overlapping
resonances, or cuts on the second sheet, "then the choice
is clear. For example, in positron-hydrogen scattering,
one may want to choose one element of the vector. to
represent positronium and a free proton and another
to contain excited and continuum states of the hydrogen
atom and a free positron. One does not have to choose
the weights associated with these states, since our
variational formulas for the effective potentials are in-
dependent of the normalization of the components of
the vectors

I p) and
I q).

These bounds will be applied to electron-hydrogen
scattering in a later section. However, before leaving
the general discussion, it is amusing to note the effect
of a discreet eigenvalue of RIIR in the elastic region.
From Eq. (81), the contribution to gg from such an
eigenstate

I r) with energy E„would be

gg—Rl r)(E—E„)—'(rl R. (85)

The potential then has a simple pole in the energy of
the form

W = Wg+ UR
I r) (E L" ) '(r

I
RU, —

where 8 ~ is regular in the neighborhood of E, The
resulting phase shift is of the form

tan5(W) —tanB(W~) = Q I
UR

I
r)'LE —E] ', (86)

where
E=E„+(rIRUg(W~) URI r).

EBE. The effective potential is easily evaluated by
inverting this separable operator. :

w„=(&l UI»+t(~l URUI~)/% E—,)3
+(Ill U~I p»(pI~UI», (84)

Temkin. " We have not carried this calculation far
enough to make this connection precise, nor to remove
the apparent discrepancies between the results of these
calculations.

Sufhce it to say, the preceding discussion can be
carried through in the lV-particle case. One only has to
choose I. and M to contain the disconnected graphs in
such a way as to cancel the non-Fredholm parts of
(1—v). The construction of bounds on the potentials
proceeds just as before. For details, the reader is
referred to Ref. 31.

2 2 2
H= —V' 2—V' '——~ (87)

where the coordinates of the incident particle are de-
noted by x and those of the bound electron by y. The
upper sign is for electron scattering and the lower sign
for positron scattering. In these units the ground-state
wave function of the hydrogen atom is

I
a)=~-~&s&-v.

The potential seen by the incident particle is

(88)

and we find

2 2)U=~
lx —

yl xi

V)(x) =(Bl UIB)=w(2+2/x)e —" (89)

The potential Vg will of course give a crude lower bound
on the phase shift because all the attractive polarization
effects have been omitted. A crude upper bound can be
obtained from the potential

VI. ELECTRON-HYDROGEN SCATTERING

As an example of the three-body problem. , we will
consider the scattering of electrons and positrons by
hydrogen atoms. For simplicity, exchange eRects will
be neglected in the case of electron-hydrogen scattering.
It should be emphasized that these effects can be in-
cluded in our variational principles. The only difference
would be that one would have to ask the computer to
solve an integro-differential equation, rather than a
differential equation. We will work in atomic units so
the Hamiltonian is

(el URUla)
V„(E,x) =(a

I
U

I
a)+

jv

+8x dt e "' ln
0

The state P is a standing wave solution in the potential
W~, and g(W~) is the associated standing wave Green's
function. We see that there is a resonance associated
with this bound state and inevitable level shift. where

We have made a rough Rayleigh-Ritz calculation for
the ground state of RIIR for electron-hydrogen scatter- (& I

URU
I
~~) = 4/x'+ (8/x) (1+1/x) &

"'
ing. There is at least one bound state in the elastic i / & / 4 z

region slightly below the first inelastic threshold. The
resonance associated with this state seems to be showing
up in the calculations of Burke and Schey" and

(9o)

(91)

"R.Blankenbecler, M. L. Goldberger, S. MacDowell, and S. B.
Treiman, Phys. Rev. 123, 692 (1961). 8 is the kinetic energy of the incident particle. I'~
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0.5 l.0 I.5 2.0 2.5 ~5 0 and the electron energy by

F = —1+X'Lip+- (94)

-2-
A simple calculation" yields for the p-wave part

qp=X(sy/2) (1+-',y)e
—&. (95)

For the s-wave part, one finds

E.= —9/8

FrG. 3. Upper and lower bound potentials for electron-hydrogen
scattering at zero energy. For comparison, the Coulomb potential
due to the proton is drawn as the dashed curve.

=- —0.25 for electron-hydrogen scattering and —0.5 for
positron-hydrogen scattering. The potentials V (O,x)
and V~(x) are shown in I'ig. 3.

The only real physics problem left is the choice of
trial functions. In order to perform an accurate calcula-
tion it is probably necessary to take into account both
the polarization of the hydrogen atom and, in the case
of positron-hydrogen scattering, the virtual formation
of positronium. As has been pointed out above, each
of these effects can be taken into account by a different
trial function. The formalism will automatically deter-
mine the optimum relative weights of the various trial
functions.

qs = $1+C+ P 'y'/48) (9+3y+-,'y') je—
&,

where the d-wave part of q~ has been dropped. The
constant C is determined by the requirement that the
trial functions be orthogonal to ~B). This gives C
=- —1—81K'/64. These results suggest that the electron
part of the trial function be of the form E(y) exp( —ay),
where a is a variational parameter and P(y) is a poly-
nomial whose coefficients are also variational pa-
rameters. Of course, P must be chosen to ensure the
proper behavior of the trial function at the origin and
to be orthogonal to the bound state. Below the inelastic
threshold the trial function must also fall off exponen-
tially for large x, so it is convenient to take the wave
function of the scattered particle to be of the form

Q(x) exp( —bx), where Q is also a polynomial in x.
In passing we may note that the second-order cor-

rection to the energy, namely,

E,+1=X'E2———(9/2)x 4

is just the long-range polarization potential seen by the
incident particle. "

A. Polarization Effects

II = —V '—2/y. (92)

I.et us first consider the polarization effects. The
average potential seen by the incident particle when
the hydrogen atom is in its ground state, V~ is purely
attractive for e —H scattering and purely repulsive
for e+—H scattering. However, as the incident particle
approaches, it induces a dipole moment in the atom
which in turn leads to an attraction. For' large x, the
polarization potential seen by the electron is approxi-
mately Xsy where s=x y/xy and X=&2/x'. We will

neglect the higher multipoles. This potential will excite
the hydrogen atom to P states and from there to states
of angular momentum zero and two. We will only
consider s and p states although states of higher / can
easily be taken into account. In order to find an ap-
proximate form for the hydrogen wave function, we
will treat the polarization potential as a perturbation
to the electron Hamiltonian

B. Positronium Formation

In the case of positron-hydrogen scattering, when the
energy is sufficiently high, namely, at the first inelastic
threshold, it is also possible to produce a final state of
positronium in its ground state and a free proton. This
is an overlapping resonance situation in which the
electron has its choice of being bound on the proton
or on the positron. Since these states are degenerate in
energy, it is essential in any accurate calculation to
include both possibilities. One would be led to try a
trial function of the form

q, =expL —
c~ x+y~ —d

~

x—
y~ j.

The variational constant c controls the position of the
center of mass of the positronium atom and d controls
the relative distance between the electron and the
positron. One can improve this trial function by con-
sidering the polarization effects in the relative co-
ordinate dependence due to the presence of the nearby
proton.

The electron part of the trial wave function is then
given by

q=e "+Xq&+'A'q2+.

"The first-order perturbation calculation was carried out by
A. Dalgarno and A. Stewart, Proc. Roy. Soc. (London) A238,

(93) 269, 276 (1956l.
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C. Trial Functions and Numerical Results

In order to simplify the calculation, we have chosen
the trial functions to be

6e

pe=e "j1 L(ii+1)~/12jy~)e —ay

q~ ——axe—'*ye—'&.

Positronium formation was neglected. Since the upper
bound potentials contain very attractive central cores,
we expect the s-wave trial functions to be very im-
portant and to differ from the s wave produced by the
long-range polarization potential. Therefore, we have
chosen the above functions to represent these eRects.

The static potential for electron-hydrogen scattering
V~ is purely attractive, but not strong enough to
produce a bound state. However, if either the s- or
p-state trial function is added, then Wi, does become
attractive enough to create a bound state. The upper
bound potential V„also has a single bound state, so
both the upper and lower bound phase shifts will start
out at zero energy from the same point by virtue of
I evinson's theorem. Upper and lower bounds on the S
wave phase shift for e —B scattering obtained from
our two trial functions are shown in Fig. 4. The phase
shifts for the potentials V~ and V„are included for
comparison. For the scattering length we hnd

5.54& A & 1.44.

The variational parameters were determined by trial
and error. No systematic attempt was made to 6nd the
best bounds. It should be recalled that exchange effects
have been neglected. The lower bound on the phase
shift compares favorably with the results of the strong
coupling approximation in which the 1s, 2s, and 2p
states of the hydrogen atom have been taken into
account exactly. ' The result here is A =5.04. However,
in the close coupling calculation, it was necessary to
solve a three-channel problem exactly whereas we have
only solved a single-channel problem.

Calculations have also been performed with the s-

and p-state trial functions separately. It turns out that
virtual excitation of the hydrogen atom to s states is
more important than excitation to p states; that is, the
long-range polarization potential is less important than
short-range effects. The reason is that the attractive
static potential tends to pull the incident electron close
to the hydrogen atom where it can induce direct transi-
tions to s states. In view of the simplicity of our trial
functions, the results are quite encouraging. With
slightly more sophisticated trial functions, it should be
possible to obtain quite accurate bounds.

Bounds on the s-wave phase shift for positron-hydro-

gen scattering have been obtained from the same trial
functions that were used for electron-hydrogen scatter-
ing. The static potential VL, is purely repulsive, but the
addition of the p-state trial function is suKcient to

I L
~ Q

Ot ~ I I I I I I I I a

R 5 h S 6 T 8 9 tO

ECev)

FIG. 4. The s-wave phase-shift bounds for electron-hydrogen
scattering neglecting exchange. The exact phase shift must lie
between the W and 5'~ lines. The arrow indicates a possible reso-
nance, which must occur above an energy of 8.3 eV. A reasonable
extrapolation of the lower limit would predict such a resonance in
the vicinity of the inelastic threshold. Also, the s-wave cross
section must pass through a zero between 5.4 and 10.2 eV.

make the upper bound on the scattering length negative
(attractive). We find

—0.554& A .

Excitation of the hydrogen atom to 5 states is not
important here.

Our lower bounds on the phase shift are again com-
parable to the results of the closing coupling approxima-
tion in which the 1s, 2s, and 2p states of hydrogen are
treated exactly. "However, the scattering length here
was repulsive. Using 6fty trial functions, Schwartz has
obtained the essentially exact answer: A = —2.10.'4 The
main reason for the discrepancy between our result and
Schwartz's is undoubtedly our neglect of positronium
formation. The positronium channel has the lowest
inelastic threshold and therefore should have a large
eRect on the elastic scattering. In this regard we should
note that Spruch has obtained the bound —1.397&A,"
using a simple trial function that takes positronium
formation into account.

The upper bound potential U is attractive enough
to produce a bound state which our simple trial func-
tions can not remove. It is probably necessary to in-
clude a trial function which allows for positronium
formation in order to obtain a nontrivial upper bound
on the scattering length.

VII. CONCLUSIONS AND EXTENSIONS

The most important defect in all approximation
schemes hitherto proposed for' multiparticle scattering
is that one cannot get a reliable estimate of the errors.

The knowledge that an approximation scheme will
eventually converge is no comfort when one can only
carry out the erst few iterations. This is especially true
in coupled channel situations. One can produce bound
states and/or resonances at very low energies which are
due to the forces which act in a channel with a high
threshold; Such a channel would tend to be omitted in
any 6rst look at the problem. Therefore, the upper and
lower bounds on the elastic phase shifts and eigenphasc
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shifts (which our formalism yields) is crucial in attaining
any reasonable accuracy with any reasonable confidence
in such cases.

The major results of this paper are the upper and
lower variational bounds on the E matrix in multi-
channel scattering situations. To reiterate, our main
theorem rests on the fact that it is possible to imbed the
effective potential TV» into a one-parameter effective
potential W(x), such that W(1)=Wr and W(0) = We,
and dW/dx has a fixed sign. Furthermore, we have
explicitly constructed solvable Ws's which make dW/Cx
positive and negative definite. Since the E matrix was
proven to be monotonic in W(x), the Ws's provide
lower and upper bound phase shifts and E-matrix
elements.

It is not necessary to know the two-particle wave
functions or scattering amplitudes exactly in order to
calculate in the three-particle sector. We have explicitly
seen this in the electron-hydrogen case. Furthermore, if
the energy is such that various two-particle resonances
overlap, it is not necessary to form a three-particle wave
function by superposing these resonances in an arbi-
trarily chosen mixture. The variational principles given
here automatically choose the optimum combination.
Also, by following the variational parameters of the
upper and lower bounds from the elastic to the inelastic
region, one can be sure of choosing the correct solution
of the stationary condition. The difference between the
upper and lower bounds then yield a quite reliable esti-
mate of the errors in the inelastic region.

The inelastic effects in pion-pion scattering are
known to be very important in determining the position,
width, and even existence of the p.'4 The attraction
caused by the x-co state evidently allows a meson with
the correct mass to bootstrap itseIf even when the
left-hand attraction due to the exchange of a p with the
physical mass is not strong enough to produce a p on
the right. " We plan to retuIn to this problem with
our variational bounds and to examine it further.
However, it could turn out that the p owes its existence
to higher mass states, namely to a bound state in the
/S channel with the 2m state projected out. This
bound state would lead to a (shifted) resonance when

the x-x channel is coupled in, as we have demonstrated.
This argument can be true in spite of any (erroneous)
argument about distant singularities being unimportant.
Of course, a global bootstrapping approach is still

applicable here because the forces which cause the EE
binding are presumably due to the exchange of vr's, p's,
co's, etc. , all of which will eventually be in the output
of such a calculation. This extended I'ermi-Vang type
model could explain in a reasonable way the nonexist-
ence of low-mass scalar mesons, "' which seem to be an

~ R. Blankenbecler, Phys. Rev. 125, 755 (1962)."F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).
36 We thank M. Goldberger for bringing up this important ques-

tion and for illuminating discussions.
"Preliminary estimates based on this model seem to lead to

octets of positive parity scalar, vector, and tensor mesons. Their

awkward point with the standard bootstrap calcula-
tions."This model is now being explored.

In any case, we have proven that the e6ect of adding
more and more inelastic channels to a nonrelativistic
problem is to monotonically increase the phase shift
in the elastic region. We have further demonstrated
that our methods can be actually applied in practice
by considering the nontrivial example of electron-
hydrogen and positron-hydrogen scattering. We con-
sider' this example to be a typical high-energy calcula-
tion. The numerical bounds on the s-wave phase shifts
were quite good considering the simplicity of our trial
functions. More work on this problem, especially in the
energy region just below the inelastic threshold and
including exchange effects, seems to be called for.

It has been clear for some time that the unitarity
corrections to the peripheral model are large, and tend
to narrow the diffraction width by absorbing the low
partial waves. ' These corrections have the same effect
as the "form factors" which are added to the peripheral
model to get agreement with experiment. These factors
are interpreted as off-mass-shell effects, but are usually
much too rapidly varying to be reasonably interpreted
in such a manner. We hope to return to this interesting
point after our approach has been extended to the
relativistic problem.

We would like to make a remark concerning the
general approach to existence proofs for the scattering
equation. The first point is that the Hilbert-Schmidt
approach seems to have little to do with the type of
kernel occurring in the scattering equation. The main
point here is the fact that even with the optimum local
similarity transformation, the Hilbert-Schmidt norm is
independent of the energy along the positive real axis.
However, we know that as the energy increases, the
Fredholm determinant approaches unity and eventu-
ally, for suKciently high energy, the Born series
converges. The H-S norm gives no hint of such a be-
havior. Therefore, it cannot be the best bound, nor the
best way to approach the problem.

Progress in this direction has been made by Rubin4'
who has been able to avoid the diSculties with real
energies by continuing the inner product integral paths.
This approach avoids the introduction of a Banach
space as was used by Hunziker. 4' This latter procedure
does not seem to clarify the physics of the problem.
Also, Rubin's method seems to be extendable to the
three-body problem4' and to the relativistic Bethe-
Salpeter case.~

masses are in the neighborhood of 1000W450 MeV, with the scalar
particles tending toward the higher figure. It should be possible
to see these vector and tensor mesons at such an energy, but the
scalars will be more diKcult.

38 See, for example, the bootstrap-unitary symmetry calculation
of C. Hong-Mo, P. DeCelles, and J. K. Paton, Nuovo Cimento
(to be published).

39 M. Baker and R. Blankenbecler, Phys. Rev. 128, 415 (1962).' M. Rubin (to be published).
4'%. Hunziker, Helv. Phys. Acta B4, 593 (1961).
4~%'. Hunziker and M. Rubin (private communication)."G. Tiktopoulos (to be published).



VARIATIONAL UPPER AN D LOKER HOUNDS

To return to the upper and lower variational bounds
on the E matrix elements, we feel that our approach will
have applications in many unsolvable problems —that
is, those problems which cannot be solved on a 6nite
computer. Among these applications are atomic and
molecular collisions, models for nuclear reactions, many-
body problems, the relativistic Bethe-Salpeter equation,
and to dispersion relations. We plan to pursue some of
these problems later.

Finally, we would like to stress the importance of the
pioneering work of Spruch and his collaborators on
variational principles. Even though our upper and

lower bounds are quite distinct and independent, and
bear little relation to the lower bound principle of
Spruch, his work suggested several points which were
included in our discussion.
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A general formulation is given of the process by means of which one eliminates certain redundant degrees
of freedom occurring in interacting quantum-mechanical systems. This may be considered a generalization of
the transformation to center of mass in problems having translational invariance. When applied to the pion-
nucleon system, the static-source approximation arises as the 6rst term in a series, the higher terms of which
are easily calculable using an algorithm developed in the Appendix. Thes system is not an expansion in the
inverse mass of the nucleon, and it-is shown that the static source approximation need not bc considered as a
nonrelativistic approximation,

INTRODUCTION

''N energy eigenvalue problems involving interacting
~ ~ systems and possessing translational invariance,

one usually transforms to center-of-mass coordinates,
eliminates redundant degrees of freedom, and conse-

quently obtains an equivalent problem in a reduced

Hilbert space. It is not surprising that such a reduci-

bility exists whenever interacting systems possess an

Abelian invariance group. A general procedure by which

such reductions may be effected is discussed in Sec. II.
Section III contains a heuristic example.

Of some interest may be the simple Geld-theoretic

examples in Sec. IV and V. It is demonstrated, using a
hypothetical heavy boson-light boson interacting

system and the nucleon-pion system, how such inter-

acting-field theories lead straightforwardly to an ap-

proximation expansion the first term of which is a
"static source" theory. No statements about "non-

relativistic approximations" are made. Succeeding

terms in the series are easily obtained using an algorithm

developed in the Appendix.

II. ELIMINATION OF DEGREES OF FREEDOM
ASSOCIATED WITH CONSERVED ADDITIVE

QUANTUM NUMBERS

Consider an energy eigenvalue probIem in a Hilbert
space which can be decomposed into the form

3'.=BC,3C.

Let H be the Harniltonian of the system and let

J= j+j; J= f1), A,

be a set of operators such that

LJI,yj=0
and such that the j are a complete commuting set for
3'.;. Let some appropriate complete commuting set for
BC be denoted by k. One can then use the following
notation':

Let IP) be the simultaneous eigenstate in 3C of H and
the J,

~ This research was supported by the U. S. Air Force Once of
Scientific Research under grant AFOSR 153-63.

' Primed symbols will always denote eigenvalues of correspond-
ing operators.


