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Under many conditions, short-range interparticle forces may be simulated by hard cores. The excluded-
volume condition which this implies is equivalent to a single restriction upon the microscopic pair distribu-
tion. A short-range nonsingular equivalent potential plays a dominant role in this formulation, and its precise
value depends upon the approximation used for the remaining long-range forces. A few of these approxima-
tions are examined; they yield simpli6cations of well-known integral equations in the theory of Quids. Possible
perturbation solutions are investigated. For example, the corrections to plasma distributions due to short-
range cores can be found in this fashion. The method is generalized by using a single condition on the mean
radial distribution, permitting application to quantum mechanics, to mixtures, and to external forces.
The special case of the Bose hard-sphere Quid is considered.

I. INTRODUCTION

ALARGE number of perturbation-type methods are
availabl' for analyzing the properties of many-

body systems in thermal equilibrium when the inter-
action forces are sufficiently weak. However, effective
criteria for sufficient weakness are lacking, and one
6nds very often that a comparatively naive approach
based self-consistently upon some model yields em-
pirically far better results. The types of forces which one
meets with in practice, weak long range together with
strong short range, would in fact appear to possess a
built-in unsuitability with respect to formal and un-
motivated expansion procedures. Fortunately, tech-
niques do exist for taking advantage of approximations
specifically designed for weak long-range forces to in-
clude short-range repulsion as well, when the repulsion
is of the hard-core variety. It is the purpose of this
paper to indicate how this insertion of hard-core in-
teractions may be carried out.

In Sec. II, we discuss the extent to which simulation
of strong short-range forces by hard cores is reasonable.
This is followed in Sec. III by development of the princi-
pal technique for replacing hard cores by approximation-
dependent classical equivalent potentials. Section IV
applies these results in principle to a few approximation
methods, for which practical expansions are presented
in Sec. VI which allows extension to quantum me-
chanics, mixtures, etc. This is then applied in Sec. VII
to the special case of the hard-core Bose ground state.

U. APPEARAKGE OF HARD CORE

Let us consider a system in thermal equilibrium at a
sufFiciently high temperature that explicit quantum
many-body effects can be neglected. Nonetheless, the

interaction between any two particles is basically
quantum mechanical and can only be interpreted as an
equivalent classical potential. Of course, the tempera-
ture must be low enough at the given density that the
coordinates used to describe each particle are sufficient,
i.e., that no further internal degrees of freedom are
excited. Consider now a pair of particles with no bound
state, as is often the case in atom-atom interactions.
Suppose further that each is sufficiently massive that
the uncertainty principle effectively does not apply to
its center of mass [the thermal de Broglie wavelength
X= (l't/2rrtkT)'t' is very small]. The classical potential
is then the energy with respect to in6nite separation,
of the pair ground state with centers of mass 6xed. This
generally results' in a short-range highly repulsive
(Coulomb plus exchange) potential together with long-

range Van der Kaals-type forces. For light particles,
such as free electrons, interacting via long-range forces
alone, ) should be small in comparison with mean
separation: p'"X(1 for density p. Then the true poten-
tial attains classical signihcance.

In the presence of pair bound states, as in ion-

electron interaction, one can proceed by insisting that
the equivalent potential reproduce the radial distribu-
tion which the true quantized pair exhibits at tempera-
ture T. In other words, switching to relative coordinates,
we require

(1/V)e e"&'&=+~/„(r) ~'e exn/Ze en

for volume V and temperature T=i/kP, P denoting
both summation and integration. The qualitative char-
acter of v(r) is a function principally of the magnitude
of r. YVe first note that the %KB contribution to the
continuum part of (2.1) coincides with the classical
evaluation [thus, for example p(x) ~ 1/p(x; E) in one
dimension for both microcanonical and WEB]; both

~ Supported in part by the U. S. Atomic Energy Commission
Contract No. AT(30-1)-2582.' See, e.g., E. Meeron, J. Math. Phys. 1, 192 (1960).

' See, e.g. , J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,
3Iolecnlar Theory of Gases and Liquids (John Wiley 8r Sons, Inc. ,
New York, 1954), p. 1065.
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yield, for a basic interaction vp(r),

ro pp
e rrr +rr(r) Z)—dEdp

0 2m

e ei~+&—'""&6$n (r) Ej—dEdp

III. FUNDAMENTAL RELATION

Suppose then that a classical Quid, which at this time
will be taken as a single component comprised of point
particles, is interacting via a long-range nonsingular
potential p(r) augmented by a hard-core repulsion

ph, (r) of range a:

p /2m

—g
—P&p(1') ~

—Py2/2mdp

4 .(r)=
yg, (r) =0, r) a.

(3.1)

/2m& —vp(r)

=—e e"*i'(h/) )', (2.2)

where g(r) is the radial distribution function. Hence a
tail plus repulsive short-range e is replaceable by a hard
core plus tail 8 provided that

g(r) expLP8(r) j(exp[—Pv(r) j—1)«

where vp*(r) = vp(r) when vp(r) )0.but is quenched when
mo tries to descend below zero. Hence, simplifying to a
single bound state, (2.1) becomes

(1/V)e &"i'=(Pp(r)'e e~P+) 'e e"P*'&)/(V) ')
ol

Pv(r) = —ln(e e" *P'&+NP p'&&'e ~ '). (2.3)

If vp(r) has an inner repulsive (Coulomb plus exchange)
region, then gp is exponentially small there and v=lPp.
When vp becomes negative, vp* 0, and v(r)=Ep —P '

Xin(X'happ), an effective trapping potential, but generally
)'

~
Ep

~

. Finally, at long range, if 1l' is of range l, one
has 11(r)' l 'expL —(2/k)(2m~Ep~)'rj, so that again
the regime v=no takes over for

r) (PEo) '*) +3)i in/(X/1)/(PEo) lj.
In general, then, classical potentials of interest will

have long-range attractive or repulsive tails. Except for
the case of electron-proton interaction, an attractive
tail is always accompanied by a strong (temperature-
dependent) short-range repulsion. It is convenient to
provide still another equivalence, more in the nature of
an idealization, and this is to replace the repulsive core
by a rigid core of infinite amplitude but finite range a.
The nature of the equivalence is determined by the pro-
jected use, but matters are particularly simple if we are
interested in thermodynamics, e.g., equation of state of
a field. Here we need only recall' that under a change of
internal potential R the Helmholtz free energy is
changed by

8E= —pP g(r)e~'&'&8(e e"t'i 1)dr, —

pp(x, y) = (P 8(x;—x) 5(x,—y))

=0 if ~x—y( &a.
(3.3)

Conversely, if we define the microscopic pair distribu-
tion function

" (x,y) =—P b(x;—x)5(x,—y),i' (3 4)

then the hard-core factor exp[ —PP~» Ph, (x;—x;)j in

p~ can be dropped if we adopt the restriction on con-
figuration space that

pip=0 unless pr(x, y) =0
whenever ~x—y~ &a. (3,5)

A brief way of imposing the excluded volume condition
(3.5) is to introduce a test function W(x) which satisfies

W(x))0 for x(a,
=0 for x& a.

Then clearly, (3.5) is equivalent to

(3.6)

Uniformity is to be invoked by placing the system in a
periodic box of volume V. We desire to compute the
thermodynamic properties and distribution functions
in thermal equilibrium for the combined potential. As is
well known, the two-body distribution function de-
scribes all of equilibrium statistical mechanics. Our
problem now becomes that of taking into account the
very strong hard-core potential, but doing it in such a
way that methods appropriate for weak long-range po-
tentials can be used.

For the hard-core potential of (3.1) in an E-particle
system, the normalized E-body Gibbs distribution4
vanishes whenever cores penetrate:

If p~(x„x~)
= exp( —PP;»L@(x;—x,)+Ch, (x;—x,)))/Z,

p,v=0 when any (x;—x;)&a, (3.2)

and, consequently, the lower order distributions vanish
as well. In particular, if ( ) denotes expectation,

g(r) exp[Pv(r)$(expL —Pv(r) j—1)dr, (2.5)
pv=0 unless P&(x,y)W(x —y)dxdy=0. (3.7)

a self-consistent determination of the core radius.
4 See, e.g., K. Huang, Statistical Mechanics (John Wiley k Sons,' J. L. Lebowitz and J. K. Percus, Phys. Rev. 122, 1675 (1961). Inc. , New York, 1963), p. 297.
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p, (r)~,~ y'(r) dr=a (3.14)

8

hx, (s) = lim—

and observe that

giPszds

3.14)ore and p2)0 always, Kq.') 0 inside the core an p2

is not a single c d
p'
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(3.15)Ps(x, y) 1F(x—y) dxdy = W(x,—x;),

so that

) x s (x,y)«(x —y)dxdy)p))y(xry' ' 'x~)e s s ps x,yexp~ p

where
) -' — ~~ (31o)—2isW~~rIP —2is 8~ P ) ~pw x1) iv (t)—is g()=o, @'()&o,
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r& a: y'(r) =0.
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ho)
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the more transparent form(3.8) also achieves the more

8

ds(Q)s) 2xsWy- —@ 2xsW~ —(Q)e+v..= 'm

Zq s;,wds. (3.11)
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Combining (4.1) and (4.2) leads to the desired

g(» —y; 0)=It fexpl: —P4(» —y)3)

origin, such as the Coulomb, the linearized Debye-
Huckel equation (4.4) has the unfortunate trait of pro-
ducing a large negative g at the origin. However, an
infinite potential is not as potent as this linearization
indicates, and it may be shown that a suitable ad-
justment is to replace —Pp by the Mayer f factor
f(r; P) =e se&' —1. Thus, (4.7) is replaced by

X exp Pp—g(z y; @)f—(x—z)dz (4.3)

c(r)=e se&'& —1 for r&a

g(r) =0 for r&a,
(4.10)

a result which indeed coincides with the PY equation
(4.8) when g is approximated by the pair Boltzmann
factor e t'&.

The linearized Debye-Huckel equation can be se-
quentially corrected in a number of ways to approach
the exact pair distribution. Consistent with the tech-
nique we have here developed, an asymptotic expansion
in the range of force would be called for, with the inser-
tion method correcting for the intense short-range forces.
For this purpose, one may use the standard diagram-
matic expansion" of c in potential bonds. (—Pp) and
vertex contributions p, allowing only connected dia-
grams which do not decompose on excision of a vertex.
For very long-range forces, a suitable ordering param-
eter'3 is the number of links minus number of vertices,
starting with the lowest possible value of —1, and ex-
plicitly summing each order of diagrams. This yields
the series, in condensed notation,

g(x—y; 4)-1=-P4(x-y)

pP Lg(z —y 4') —1)4 (x—z)dz (4 4)

the linearized Debye-Huckel approximation. A con-
siderably more convenient representation is in terms of
the direct correlation function c of Ornstein and
Zernike, ' which is defined by the integral relation

g(x) =1+c(x)+p c(x—y) (g(y) —1)dy, (4.5)

equivalent to an algebraic relation between Fourier
coefficients, .,=(g-1).!(1-.(g-1).) (4.5')

&;(12,$) = —Pg(12)+ Lshe(12, $)'
Equation (4.4) then reduces simply to

with normalization constant E=expD)p j'p(z)dz], so
that g~ 1 asymptotically. Interestingly, (4.3) cannot
be used with (3.16) because it will never create a g
vanishing inside the hard core for any effective p+@'.

Suppose, however, that g
—1 is small. Then taking the

logarithm of (4.3) and linearizing,

~(r; 4)= —Pt(r) (4.6) + slgs(12&g) +p(hs(1.2,$) hs(13 Q) ko(32 $)d3

Consequently, on inserting a hard core, our approxi-
mation (3.16) becomes c(r) = Pp(r) —Pp'(r)—where
p'(r) =0 for r) &r, which we may write as ),(13,y)a, (14,y)a, (23,y)

&;(r) =Pp(r) for r&a,
g(r) =0 for r&a.

(4.7) Xhs(24, $)hs(34, $)d3d4 + . , (4.11)

c(r) = (1—es4'&'&)g(r) for r) a,
g(r) =0 for r&a

and the Broyles-Sahlin equation"

(4 8)

For no tail at all, &=0, (4.7) simplifies to c(r) =0 for
r&a, g(r)=0 for r&a, and is thus identical with
the hard sphere Percus-Yevick (PY) equation, whose

accuracy has been well attested to.' More generally,
(4.7) bears a close similarity both to the PY equation. 's

where ha=go —1 is the solution of (4.4):

&.(~)= f)~.l(1+pf)~.)-
Alternatively, (4.11) can be inverted to read

pg(12) = —c(12,$)+Lrs h(12,$)'j
+ ah(12,$)'+ph(12, &) h(13,$)'h(32)g)d3

(4.12)

&(r) = &),.(r) P4 (r) . — (4.9) h(13,y)h(14,y)h(23, y)

For potentials which become weakly infinite at the Xh(24,@)h(34,&)d3d4 + . . . (4.13)

8 L. S. Ornstein and F. Z. Zernike, Proc. Acad. Sci. Amsterdam
17, 1'93 (1914).' A. A. Broyles, J. Chem. Phys. 35, 493 (1961) and seq."J.K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

"A. A. Broyles and H. Sahlin, and D. D. Carley, Phys. Rev.
Letters 10, 319 (1963).

Choosing the direct relation (4.11), the next order cor-

"See, e.g. , J. E. Mayer and M. G. Mayer, Statistical 3fechaeics
(John Wiley & Sons, Inc. , New York, 1940), Chap. 13.

"D.L. Bowers and E.E. Salpeter, Phys. Rev. 119,1180 (1960).
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from which it follows that

()= P—~() P-e'()+who(;~+&')', (414)

where r&a: p'(r) =0, r(a: g(r) =0, and one may con-
tinue in this fashion.

It is to be noted that whereas (4.7) states that c(r) =0
outside the range of force, (4.14) suggests [and its
analog using (4.13) demandsj that

(fi+pP4)*[~+p(go 1—)]= b

Here we have used the convolution notation

(a~b) (r) —= a(r r'—)b(r') dr'

(5.6)

(5.7)

c(r) = —,
' [g(r) —1j', (4 15) Thus, applying [8+p(go —1)j~ to (5.4) yields

which can lead to quite different results in transition
regions. The result (4.15) also happens to be false in the
solvable case of one-dimensional hard spheres where
there is of course no transition.

V. HARD-CORE PERTURBATION EXPANSIONS

I.et us examine the Debye-Hukel based set (4.7) in
further detail. To do so most eIIfectively, it is best
written as a single equation. From (4.5) it is clear that
the difference g=c remains continuous and even dif-
ferentiable in the face of discontinuities in g and c.
Therefore we consider the combination

r =go+ p(f )*[go—1+ —1+p( —1)'(go—1)3

+p(f )*[f+p(f )*(go—1)3; (5g)

and so, on iteration,

r =go+ p(fgo)*[2(go- 1)

+p(go —1)*(go—1)3+ (5 9)

We can now asl~ for the modified equation of state due
to the hard-core inliuence, regarding f as a perturba-
tion. A particularly effective method for obtaining this
from any approximation to g is by the Ornstein-
Zernike compressibility relation"

r(r) —=g(r) —c(r) —8 (r), (5 1)

f(r) —e
—8'ho(r) 1 1 r (a

=0, r&a,

it is seen that, again from (4.7),

(5.2)

which, from (4.7), coincides with g outside the core a,nd
extends it inside. If we further introduce the Mayer f
function for the core

p (g—1)(r)dr= Bp/BPp —1. (5.10)

Multiplying (5.9) by p(1+f) and retaining first order
in f,

p(g —1)= p(go
—1)+p(fgo)*(~+ p(go —1)*

&&(~+.(g.-1))+, (5»)
or integrating over all space,

(5.3)
g(r) =[1+f(r)] (r),
()=f()()—P () Bp Bp 8p

~PP ~PPo — ~PPo r&aSubstituting (5.3) into (4.5) and separating powers of f,
go(r) dr+ . (5.12)

(r 1)(r)+p P4 (r——r') (7 —1)(r')dr'

= —Pg(r)+ p f(r r') r(r r') (r 1—)(r')—dr'—

The reciprocal of (5.12),

~PP ~PPo
+ go(r) dr+ (5.13)

—
p f(r r')r(r r—')Py(r')—dr'

+p f(r r') r(r r') f(r') r(—r')ar', —(5.4)

the desired single equation.
With the aim of iterating (5.4) in an f series, we must

solve for v —1 on its left-hand side. This is done by
observing again from (4.5) and (4.6) that the coreless
distribution is given by

then integrates at once to the modified equation

( 1 8

Pp=ppo+i — fk lii(1+Pppg)dk+ ' ' ' . (5.14)
I 2~

Of course, it is clear that the replacement of —Pp by
f& ee~ —1, as ——in (4.10), results in precisely the same
replacement throughout the preceding.

For BPp/Bp not far from unity, an additional order of
accuracy in this difference is obtainable with no addi-
tional effort. We first observe, from (4.5), that (5.10)

(g.—1)k= N~/(1+P pe.), — (5.5) 14 See Ref. 8.
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VI. GENERALIZATION

Bpp—p c(r)dr= —1.

Hence, r of (5,1) satisfies

One is not compelled to use the microscopic restric-
tion (3.7) to simulate hard-core interactions. Indeed,
since p2&0, the vanishing of the mean pair distribution
(3.3) is clearly sufhcient to ensure that two particles
never penetrate into a prohibited region. Thus, it is
suflicient to reduce the equivalence of (3.4) and (3.7)
to that of (3.3) and

( Bp BPP& Bp BPPo&—2+ —
I

— —2+
~

. (5.16)
(Bpp Bp I Bppo Bp l

p, (x,y)W(x —y)dxdy=(g W(x —x))=0 (6.1)

But then from (5.9) we have immediately

(»Pl' ' ('~ ' (»P)
' 'iBpp k Bp ) (Bppo ( Bp

( Bp)'
go(r)dr

~ ~

—1 +, (5.17)
&SPpoi

which indeed determines Bpp/Bp to one higher (mixed)
order.

Proceeding to the opposite extreme, that in which
only hard cores are present, one may test the adequacy
of the present approach by making an expansion of g
or c, and consequently of p, in powers of density. To this
end, the various truncations based upon (4.11)or (4.13)
may be employed, or their modifications with f(r; p)
instead of P entering. The common zero-order trunca-
tion (4.7) leads, as we know, to the hard-core PY equa-
tion, with exact first three virial coeKcients and very
accurate fourth and fifth. For the next stage, the 6rst-
order f expansion corresponding to (4.11) and (4.13)
becomes

for W defined. as in (3.6). Condition (6.1), interpreted
as a supplementary condition or distribution, wave
function, on density matrix, is universally applicable to
representing the hard-core restriction.

Consider, for example, quantum statistical mechanics.
This may be described by the minimum principle of
free energy"

P=U —T5
= Minz, (Trl"H+(1/P) Trl' 1nl'], (6 2)

I'= e e~/T—re ~~, X=F 1/P-
F= —(1/P) lnTre e~

(6.3)

Suppose now that we further append the restriction
(6.1) in the form

Trre =0,
W=-,' g;~; W(x,—x;),

(6.4)

with TrI'= 1 and I' the S-body density matrix, since ap-
pending TrI'= 1 by a Lagrange parameter: X(Trl' —1),
leads directly to

c(12;P) = f(12; @)+2 [go(12; &f ) 1—f(12—; @)]'
by means of a Lagrange parameter E Trl'W. Equation
(6.2) instead becomes

(5.18)
f(12;$)=c(12;4) 2[g(12~ 0—1—c(12;@)]'

—c(12;$)[g(12; y) —1—c(12;y)]+
where go requires f to replace —Pp in (4.11).Thus, for
hard cores, instead of (4.14),

r&a: g(r)=0,

r) a: c(x)—-,'[g(r) —1—c(r)]'
c(r)[g(r) 1 c(r)]=0 (5 19)

which may be coupled, using the hard-core f, to read

F=Minr[Trl'(EX+I')+(1/P) TrI' lnI']

with TrI'=1, TrI'W=O, where C'=-', g;g, g'(x; —x;;),
P (x)= sW(x). If an approximate minimization is carried
out, resulting in approximate reduced density matrices
so designated again by bars, one wiB again be unable to
satisfy Trl'5'=0 merely by suitable choice of s unless
W has a specific and generally unique form determined
by the approximation. Hence (3.16) for an internal po-
tential 4 generalizes immediately to

(1—r)c= f+-', (1—f)7', (5.20)
(xixo~ I 2( xixo)eely, = (xixo~ I 2~ xix2)y+e, (6.6)

"See, e.g. , Ref. 6, p. 105.

where r=—g
—c—1 or r=pc*(r+c). A virial expansion

where (xix2( I', ~xix,)=0 for (xi—X2~ &a and Q'(x))0
or x a, ' x =0 or x)a. Here I'2 is the two- o yof r can now be carried out; it appears that, e.g. , the

fourth virial coeKcient is not correctly reproduced until
one order above the truncation (5.18) is employed.
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reduced density matrix:

(p f(i,j))= Trl, sf(1,2) I'2(1,2) . (6.7)

Special cases of (6.6) abound. It applies to quantum
mechanical ground states, and for that matter extends
to excited states as well, and even (suitably modified) to
dynamics. It reduces in the classical equilibrium limit
to (3.16), and shows that with external forces, the only
required modi6cation is that one should not reduce

g(xl, xs) =ps(xl, xs)/p(xl) p(xs) to its translationally in-

variant relative coordinate form. The manner of deriva-
tion of (6.6) also suggests further generalization, for
example, to mixtures. In this case, particles of type p
and type v cannot penetrate more closely than some a„„
which if classical hard cores were involved. , would
necessarily have the form a„,=s(a„+(s„).Clearly, (6.6)
now requires

x»»~ll'sl»»»)=0 «r I»—xsl&~" (68)

and p'„„(x))0 for x&a„„, p'„„(x)=0 for x)a„„.For
instance, using the classical linearized Debye-Huckel
approximation,

Cgp(xlxs) =. —Pgp„(xlxs),
where

gyp(xlxs) —
8pp =Cp„(xlxs)

+pl c» (xixs) p&, (xs) (g1„(xsxs)—(11.)dxs (6.9)

and g„„(xlxs)—=ps„„(x,xs)/p„(xl) p„(xs), Eq. (4.7) be-
comes, for mixtures,

c (xlx2) = P4p (xlx2) ««12) (sp
(6.10)

g„„(xlxs)=0 for rls&(s„„.

Hamiltonian takes the form

H = (52/2m) V'lJ *(x) VP(x) dx

y(x —y)(J'*(x)P*(y)(//(x) dxdy (7.1)

a= p(x)V~(x) V ~(x)2'
1

+-52 v'p(x) vp(x) dx+—
P(x) 2

e(x—y)

)& Lp(x) p(y) —p(x) 6(x—y) )dxdy+ const, . (7.3)

For weak long-range forces, we neglect the Ructua-
tions of the density and thus write p(x) =p, the mean
density, in the kinetic energy coefficients. The Fourier
transformation

p(x) = (1/l')Z p2C'"'*,
l ~2,pl]= ~st

sr(x) = gsrl, e-"'*,

then diagonalizes the Hamiltonian, and we find

(7.4)

iran =P priss/2m)sr] sr / k' (/PE 2/gm/) ]pp l

+p(1/2V)&2P2p 1,+const, (7.5)

a set of uncoupled harmonic oscillators.
Since the radial distribution Fourier coe%cients are

readily shown to be

with only Lf(x)pf*(y)j= ii(x —y) nonvanishing. We can
then transform to new variables, at least formally,

P(x) —cia(x)/spl/2(x) it 4(x) pl/2(x)c —iv(xi//i (7 2)

where only l sr(x),p(y))= (l(x—y) 40, in terms of which
(7.1) becomes

For pure hard cores, this reduces to the PY equation
for mixtures, and has recently been solved. " g.=(1/p&)(p~p —& 1), (7.6)

VII. BOSON GROUND STATE

As an application of (6.6) to the quantum mechanical
domain, let us examine the case of a Bose system at zero
temperatur" the ground state —interacting via both
weak long-range and hard-core forces. We must first
devise a suitable long-range approximation, and for this
will choose what is electively an extended linearized
Debye-Huckel approximation. As one of numerous ways
of deriving this approximation, '~ let us choose an ap-
proach used by Zilsel. "

In second quantization, the standard many-boson

's J. L. Lebowitz, Phys. Rev. 133, A895 (1964).' See, e.g. , J. K. Percus, editor, JtVuny-Body Problem (John
Vhley 8z Sons, Inc. , New York, 1963), Chap. XIII.

'8 P, R. Zilsel in Ref. 17, Chap. XXVI.

a direct evaluation in the ground state of (7.5) yields

2P4l
g~(e) =- 1+

p Asks/2m
(7.7)

Thus, taking advantage of (6.6) and. the fact that the
coordinate diagonal elements of I'& precisely constitute
the pair distribution p2=p'g, we can add a hard core to
p and obtain the approximation for the Bose ground.
state.

1+pg»=L&+(4 p/&'Js')(4~+0'2) j '" (78)
where P'(r)=0 for r)a In the absen. ce of a long-range
force at all, this generalizes the classical PY equation,
and is strongly suggested by Ref. 19. However, the fuH
consequences of (7.8) remain to be delineated.

'9 J. K. Percus and G. J. Yevick in Ref. 17, Chap. XVIII.


