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Theoretical restrictions that must be imposed on models of nucleon electromagnetic structure are derived.
The equality of electric and magnetic form factors at the threshold for nucleon-antinucleon annihilation
(qs= —434'2) is established from the proper momentum dependence of the s- and d-wave matrix elements of
the electromagnetic current density. The role of this equality in approximate theoretical treatments of Gz
and G~ is discussed. Certain general implications of recent elastic electron-proton scattering data are inter-
preted as additional constraints to be imposed on resonance models which have no "core contributions. "One
such proposed four-pole model involving the (co,p,p,Bj vector resonances is found to be inconsistent with cer-
tain of these restrictions.

I. INTRODUCTION

ESULTS of recent cross-section Ineasurements for
elastic electron-proton scattering at high momen-

turn transfer' have invited renewed speculation on
theoretical models for nucleon electromagnetic struc-
ture. '' These new data 'appear consistent with an
asymptotic decrease proportional to 1/q' for both the
electric and magnetic proton form factors. Such
behavior suggests the attractive possibility of unsub-
tracted dispersion relations with spectral functions that
are dominated by p-wave multimeson resonances of low
mass. 4 Our intent is to examine some restrictions that
must be imposed on these models of the nucleon electro-
magnetic form factors in addition to the well-known
boundary values at zero momentum transfer.

In Sec. II the Dirac and Pauli form factors are shown
to be free of kinematic singularities; this fact alone
implies the equality of the electric and magnetic form
factors at the threshold of the nucleon-antinucleon
annihilation channel. A sufhcient condition to derive
this threshold equality is the proper momentum
dependence of the s- and d-wave matrix elements of the
electromagnetic current density at the threshold for
Eg annihilation through a virtual photon.
Itt, In Sec. III we are primarily concerned with the
proposed resonance fits for the form factors. The
equality of Gz and G~ at q'= —4M' and certain other
general implications of the experimental data are
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interpreted as restrictions on the parameters for such
models,

G& (q2) —F (q2) (q2/4M2)F2 (q2)

G~(q') =Fr(q')+F2(q') . (2)

Once we can establish that Pj and Ii2 are nonsingular
at the threshold of the nucleon-antinucleon channel,
the equality

Gtt (—4M') = Ger (—4M')

follows at once from the de6ning equations, Eq. (2).
This threshold condition holds of course for both
proton and neutron (or, alternatively, for both vector
and scalar) form factors. '

The standard procedure for showing that the
invariant amplitudes are free of kinematic singular-
ities'" breaks down precisely at the point of interest,
q'= —4M'. To see this, we consider the quantity

I."„=(M i& P')fp—„F&(q2) o„,(q„/2—M)F2(q2)j
X (M iy. p), (4)—

'The F; are still operators in isospin space, F; =FP+r3F;
(j = 1,2) and so P'p F.s+F.v F.n F.8 F.v
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II. THRESHOLD BEHAVIOR IN THE NN
ANNIHILATION CHANNEL

The conventional decomposition of the matrix
element of the nucleon current into Dirac and Pauli
form factols 1s

(O'
I J.I p) = i(M'/ps'po)"'&(p')

xI 7„Ft(q')—o„,(q/2M)F2(q')jtt(P). (1)

The electric and magnetic form factors, which have
direct physical interpretation as the distribution of
charge and magnetization in the nucleon, "are related
to the Dirac and Pauli form factors by
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FIG. 1. Experimental data on the proton electric and magnetic
form factors for 4-momentum transfers ranging from 20 F ' to
Io I'~: (a) V'G~"(q'), (b) e'G~"(e').

which is analytic except for the usual dynamical cut.
Thus the traces over the spin indices

T, (q') =Tr(y„l'„),

T2 (q') = (q,/2M) Tr f 0„,I',.),
yield functions of q' with no more singularities than
those required by unitarity. Solving Eqs. (4) and (5)
for Fj and F2, we find

F& (q2)
—

q2L (q2/2 jlI2 —4)T&(q2)+ 6T2 (q2) jD—
1(q2)

F2 (q2) —L6q2T1 (q2) + 4(2~2 q2) T2 (q2) )D—1 (q2) (6)

where D(q') = —(2q2/M2)(q2+43P)2. The absence of
kinematic singularities in the T; implies the absence of
such singularities in the F; except possibly at q'=0 for
F2 and q'= —4M' for Fj or F2. Since each of these
points is at the boundary of a physical region, arguments
based on the known behavior of physi ca/ matrix
elements can be invoked to establish regularity. At
q'=0 the finiteness of the nucleon magnetic moments
implies the finiteness of F2 there. At q'= —4M' regular-
ity of the Fj and F2 follows from consideration of the
XE annihilation through a virtual photon: We examine

the matrix element of the current in the rest frame of
the nucleon-antinucleon pair. The annihilation occurs
only in the 'S& and 'D& pair states. For small nucleon
momenta

~ y ~, the matrix element has the form"

&Ol Jl pp)= —x„- L(F,+F,) +(I2'/m)
&&(F —F)(3 pp —)lx' (&)

In order that the individual partial waves of this matrix
element have the required

~ y ~" behavior near threshold,
both (Fr+F2) and (F~—F2) must be finite as

~ p ~

~ 0.
This eliminates the possibility of a kinematic singularity
in the F; at q'= —4M'. Of course in the absence of
experimental information we cannot actually say that
the

~
y~" threshold behavior is obeyed. We ignore the

unlikely occurrence of a dynamical pole at q'= —4M'
which would alter the normal threshold momentum
dependence. Such a dynamical singularity would corre-
spond to the presence of a stable vector meson of mass
2M and would lead to a greatly enhanced NN —+ ee

cross section near threshold.
The question naturally arises to what extent Eq. (3)

should be maintained in an approximate treatment of
the form factors; in particular, we have in mind struc-
tural models based on the dominance of resonant
p-wave intermediate states. For the following two
reasons we feel that this threshold equality must be
maintained in any approximate theoretical treatment
of the electric and magnetic form factors: First, failure
to impose this condition necessarily leads to a pole
term in F; of the form n, /(q2+4M2). In addition to
destroying the proper analytic structure of the form
factors, this extraneous pole vitiates the interpretation
of the residues of legitimate poles as coupling constants
and, in fact, may well obscure the theoretical signif-
icance of empirical fits to the experimental data.
Secondly, even in the more limited focus where nearby
singularities and thresholds are assumed predominant,
the NE threshold is not much higher than the masses of
resonances commonly assumed to be of importance in
the form factors. For example, the mass of the P meson
is 1020 MeV and the mass of the 8 meson, which may
also be a vector resonance, " is 1220 MeV as compared
with 1878 MeV for the NN threshoM. Thus, we conclude
that meaningful theoretical approximations to the
real nucleon electromagnetic structure should embody
the equality of Gz and G~ at q'= —4M' to a good
approximation.

III. RESONANCE MODELS

The experimental data on the proton electric and
magnetic form factors"' are plotted in Fig. 1 for 4-
momentum transfers ranging from 20 F—' to 100 F '.
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These data have been interpreted" to be consistent
with the assumption that

hm q G~~(q ) CM~
&

q~00

(ii) The form factors F& and F2 satisfy unsubtracted
dispersion relations (no kinematic singularities) and

lim q'F2(q') =0.
qm —+op

hm q'G g" (q') =Cg"
q 2~00

C~~)~ 0,
Cg~~) 0. (9)

(Note that noninterference of Gs and G~ in the
Rosenbluth formula makes direct determination of the
sign of either form factor impossible in electron-nucleon
scattering experiments. " However, interference does
occur in electron-deuteron scattering. ")

The physical interpretation of Eqs. (8) and (9) is that
the charge and current densities of the proton in
condguration space remain positive as the origin of the
distribution is approached. This interpretation follow.
from the relationship of the charge and current den-
sities to the Fourier transform of the form factors
evaluated in the Breit frame, ' i.e., q'= q'.

p(r)=e(2~) ' d'qG~(q')e '~'

where C~~ and C~& are constants. If we accept this
interpretation of the data at face value, then with equal
validity we infer from the apparent continuity of the
data that

Although the electric and magnetic form factors are
advantageous from the experimental point of view, "the
I's are more useful for some theoretical anaIyses.

The simplest possible resonance model without "core
contributions" consists of two isovector resonances

(V, V') and two isoscalar resonances (S, S'). In this
case the Dirac and Pauli form factors may be expressed
as

F '(q') = (1/2)Lfi'/(1+q'/i) —(f '—1)/(1+q'/i') j,
F2'(q') ="D2'/(1+q'/i) —(f2' —1)/(1+q'/i') j, (»)

i = S(scalar) or V(vector),

where the label i also denotes the (mass)' of the ith
resonance, e g , S=. .Me', S'=Ms' Th.e known F(0)
values have already been imposed. From the asymptotic
conditions q'F2'~ 0, we determine the residues of the
poles of Ii2',

f2' ——i'/(i' —i), i= S, V. (13)

On the basis of certain physical arguments concerning
the structure of the nucleon, Sachs has also suggested
the limit on the proton form factor

(10)
lim Ge" (q')/G~" (q') = 1
q~oo

(14)

J(r) =ie(27') ' d'q(o x q)G~(q2)e '~'

From Eqs. (8) and (10) we obtain the desired result
for resonance models:

p„(r) ~ e(4~r) 'C g', -
g~p

J,(r) ~ e(4~r')-'(o x r)C~&.
~0

Experimental information on asymptotic behavior.
exists only for the proton form factors. In the following
treatment we shall also employ the reasonable conjec-
ture that the same 1/q' asymptotic decrease obtains for
the neutron form factors, G".This is entirely consonant
with the spirit of recent resonance models for electro-
magnetic nucleon structure. ' At this point an examina-
tion of Eq. (2) and the inverse equations for the Dirac
and Pauli form factors, along with the information on
analytic properties of the form factors derived in Sec. II,
shows the complete equivalence of the fo11owing two
statements:

(i) The form factors Ge and G~ satisfy unsubtracted
dispersion relations (no kinematic singularities) and

Gg (—4M') = G~ (—4M'),

'4 D. J. Drickey and L. N. Hand, Phys. Rev. L'etters 9, 52I
(1962).

lim (q')'F2&(q') =0
q~oo

(15)

for noncore resonance models. In terms of the 4-pole
structure, we obtain from Eqs. (12), (13), and (15) a
condition on the masses of the contributing resonances,
namely, that

(S'/ V') (S/ V) = —~v/&8= 30 9 (16)

This relation is completely incompatible with reasonable
choices for the masses. If, for example, we choose the
phi and rho mesons for 5 and V, then we Qnd 3f8.
=4.1M& . This solution obviously violates the nearby
singularity concept. Such large mass splitting also
precludes the assignment of S' and V' to an octet
representation of SU3. Thus, it appears that the Sachs
limit, Eq. (14), can never be realized in the 4-pole
noncore resonance model. Therefore, we will not insist
on this limit further but will go on to the other restric-
tions inferred from experiment.

An examination of experimental conditions which

as well as the asymptotic limits q'Ii2' ~ 0.' Further-
more, the recent Cambridge experiment is consistent
with Gg&= G~& at large momentum transfers. ' We are
now in a position to investigate Eq. (14) within the
framework of the resonance model. From Eq. (2) we see
that the limit given in Eq. (14) can also be expressed as
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TmLE I. Experimental derivatives of the form factors
at zero momentum transfer.

(0) = —0.108&0.003 F+'
dg

a consistency requirement for the model (or, alterna-
tively, a restriction on the range of resonance masses
compatible with the experimental errors on the deriva-
tives). Combining Eqs. (18) and (20) gives

1/i'+1/i —1/4M'
n

(0) =0.021&0.001 F~ dG ' d6 '
(0)- (0) (p,—1/2)=0, (21)

(0) = —0.30+0.02 F+' i=5, V.

(0)=+0.20~0.08 F+'
fEg

f~' = (gg' ip,g»'/2M2)—/(1 i/4M'), —
fm'= (1/&')(P'g»' g&'/2)/(1 i/4M')

i=S, V.
(19)

In principle, the residues g' are directly determinable
from the experimental derivatives of the form factors
and the resonance masses by the equations:

dG~'
gs' ———2i' (0)+1 i/(i' —i),

(20)
dG~'

g»'= —i' (0)/p;+1 i/(i' i), —

i=S, V.

In practice, however, the g~l' are more accurately
obtained from Eq. (18) since the experimental values of
the electric derivatives are more precisely known than
the magnetic (see Table I). The residues are now
overdetermined by Eqs. (18) and (20) which results in

the 4-pole resonance model must satisfy is more con-
veniently accomplished in terms of electric and magnetic
form factors, as previously noted. The pole expansion
incorporating the known G(0) values may be written

Gs'(q') = (1/2)Lg '/s(1+q'/i) (gs—'—1)/(1+q2/i')$,

G»'(q') =~.r.g»'/(1+q'/i) —(g»' —1)l(1+q'/i')3, (17)

i=S, V.

In demanding that the threshold equality in Eq. (3)
hold for Eqs. (17), we are led to a relation between the
residues of the poles in the electric and magnetic form
factors:

g»'= (1/2p;) Lg~'+ (2p;—1)(1—i/4M2)/(1 —i/i') j,
i=S, V. (18)

We recall that this relation is essential to the reciprocity
of statements (i) and (ii). The connection between Eqs.
(12) and Eqs. (17) may now be expressed in terms of
the corresponding residues.

Finally, we examine the consequences of Eq. (9) for the
4-pole resonance model. A straightforward calculation
yields the following constraints on the masses of
contributing resonances:

dGE'
lim (q'Gg')= Q i' i (0)+1/2 +i/2 ~&0 (22)
Q~OO 8, v de

and

lim (q'G»') = P i' i (0)+1/2 +i/2 &&0. (23)
Q~OO 8 y dfq2

Through the use of the threshold condition at q'
4M2, as e—xpressed by Eq. (18), Eq. (23) can be

converted to the more useful form

dG~'
lim (q'G»&)= g i' i +1/2

dq'

+ (p,,—1/2)i/4M' +i/2 &~0. (24)

Since the magnitude of ps —1/2= —0.06 is quite small
compared to pr —1/2=1.85, the positivity condition
on lim, m „(q'Gs&) given in Eq. (22) is more stringent
than the positivity condition on lim, ~ „(q G»&) given
in Eq. (24) above. Equations (21), (22), and (24)
constitute basic conditions that must be satis6ed if a
4-pole resonance structure is a meaningful approxima-
tion to nucleon electromagnetic structure. We now turn
to numerical evaluation of these restrictions.

A 4-pole resonance model is interesting only if positive
identifications can be made with experimental res-
onances. In a recent letter, Balachandran, Freund, and
Schumacher' suggested that the isoscalar resonances
a&(1, 783), p(1, 1020) and the isovector resonances
p(1 +, 750), B(P, 1220) provide a satisfactory explana-
tion of the observed nucleon electromagnetic structure.
In our subsequent analysis, we apply the set of criteria
established in the previous paragraphs to their proposal.
The experimental derivatives of the form factors at
zero momentum transfer are tabulated in Table I."
Using these values, along with the associated experi-
mental uncertainties, the left-hand sides of Eqs. (21),
(22), and (24) have been calculated for the appropriate
masses: S=158F y' S 26 7 F—' V=145 F—' V'

=38.2F ', The xesults are recorded in Table II.
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Equation
number

(21)
Vector case

(21)
Scalar case

(22)
lim (q'Gz&)

Numerical
result

(—0.016&0.022) F2

(0.199+0.687) F'

(—6.36&1.46) F '

Theoretical
constraint

=0

&)p

TABLE II. Numerical evaluation of criteria on the validity of
the suggested l,~,y,p,BI resonance model for nucleon electro-
magnetic structure. The left-hand sides of Eqs. (21), (22), and
(24) are numerically tabulated for this model.

(24). However, the positivity restriction on lim, s „
(q'G&&), Eq. (22), is badly violated. It should be
noted that this latter condition is completely independ-
ent of the threshold condition. Although the effective
masses of the vector particles may be shifted slightly
due to their broad widths, " this effect (or the experi-
mental uncertainties in the masses) does not signif-

icantly modify the above results. Consequently, we

conclude that the (or,g,p,B) resonance model cannot
accommodate all of the most evident general features of
the experimental data on nucleon electromagnetic form
factors.

(24)
lim (q'Gsr&) (4.68+1.46) F '

Within the experimental errors, the model is not
inconsistent with the threshold condition, Eq. (21),
and the positivity condition on lim„~ (qGsr&), Eq.
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The Geld theory of neutral vector particles interacting with conserved currents is investigated as an
example of particle mixing. It is shown that a generalization of conventional renormalization is necessary
when mixing occurs, and that the observable masses and coupling constants are suKcient to determine
transition amplitudes, without recourse to mixing parameters. The universality of electric charge renormali-
zation is not changed when photon-vector-meson mixing is possible.

INTRODUCTION

HEORETICAL and experimental physicists are
currently investigating mixing between particles

of the same spin, parity, charge, and baryon number. ' '
It is the aim of this paper to show how a sound theo-
retical basis might be given, from which the conse-
quences of mixing could be predicted. In the belief that
it is the most interesting and physically relevant case,
we confine the discussion to the mixing of neutral vector
particles, such as the photon and y, p, co mesons, which is
caused by their interactions with conserved currents
(which we shall assume renormalizable).

In the main part of the paper we show how mixing
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in part by the Air Force 0%ce of ScientiGc Research OAR through
the European Once Aerospace Research United States Air Force.
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may be correctly taken into account by an extension
of conventional renormalization, and we then consider
photon-vector-meson mixing as a particular case.

VECTOR-PARTICLE FIELD THEORY

We can use covariant notation' to write the Lagran-
gian density' for neutral vector fields 2,', i =1, ~ ~ m,

interacting with conserved currents J„,a=1, . , E,
in a particular but arbitrary gauge specified by con-
stants 'A;. This method allows us to consider massive
and'massless particles together; for the latter, we shall
put in a mass M, and take the limit M —+0 at the
appropriate place.

L=Le[A', m;, X;]—Q g;„A„'J„
+terms not involving the A' s, (2.1)

' See G. Feldman and P. T. Matthews, Phys. Rev. 130, 1633
(1963).' We use the notation a„b„aobo ab and S„——(s/S—go, —8/Bx).
Repeated indices i, j, k are summed over, but the repeated index n
is only summed over when Z„precedes the expressio+ involved. ,


