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The symmetrization postulate (SP) that states of more than one identical particle are either symmetric or
antisymmetric under permutations is studied from the theoretical and experimental points of view. The
theoretical analysis is carried out within the framework of particle quantum mechanics; the field-theory ap-
proach to identical particles using Bose, Fermi, para-Bose and para-Fermi quantization is not considered in
this article. Particles not obeying SP can be accommodated in quantum mechanics, provided some modifica-
tions are made in the usual quantum-mechanical formalism. The main modification is to replace the usual
ray by a many-dimensional "generalized ray" as the representative of a physical state. The properties of one-
body measurements of systems having several identical particles are discussed, and the unobservability in
such measurements of interferences between states having diferent irreducible permutation symmetries is
pointed out. The condition of indistinguishability of identical particles is formulated precisely, and is
analyzed both for interactions which conserve particle number and for general interactions which do not. For
such general interactions, with the additional assumptions of time-reversal invariance and of coherence of the
states having given values of charge, baryon number, and lepton number, it is shown that there is an absolute
selection rule forbidding transitions between states P~ which contain any number of particles of species which

obey SP but at most one particle of a species not obeying SP, and states which violate SP. Since only states in
f~ are now avaiable as initial states of experiments, this selection rule forbids production of SP-violating
states in any experiment which is feasible at present. Because of this, presently proposed experimental tests
of SP are in fact tests of the quantum-mechanical description of identical particles together with time-
reversal invariance and coherence of states in a given superselecting sector. The inclusion of internal vari-
ables, such as isospin, for particles violating SP is discussed. A comprehensive discussion is given of direct ex-
perimental tests of the SP selection rules. Such tests are more dificult to perform than appears at first sight,
because in many cases the indistinguishability of identical particles or the conservation laws already imply
the consequences of SP. Criteria for valid tests of SP are given. Several diferent types of tests are described,
with illustrative examples of each. A survey is given of the direct experimental evidence for SP for the various
particles. The Fermi character of electrons and positrons and of nucleons is accepted, as is the Bose character
of photons. There is good evidence for the Bose nature of pions, especially from the absence of 2'- decay of
E2 . There is no direct evidence for the statistics of E, A, Z, , or p. Feasible tests are proposed for the
statistics of X and of those hyperons which have an asymmetric decay; but no such tests were found for the
other hyperons or for p.

INTRODUCTION AND RESULTS

w HEN dealing with identical particles in quantum
mechanics one usually assumes the symmetri-

zatiorz postulate (SP), i.e., states containing several
identical elementary particles are, according to the
species, either symmetric (bosons) or antisymmetric
(fermions). Such a postulate has very important ex-
perimental consequences, which can be expressed as a
selection rule (SP selection rule).

States which carzrtot be represelted by wane fztrzctiorzs of
the al/owed symmetry type are absolutely forbidderz

This is an extremely strong condition, very much
stronger than what is implied by the indistinguisha-
bility of identical particles. Consider, for illustration,
a system containing two x+ mesons. To postulate that
pions are bosons means that all the states with odd
angular momentum are absolutely forbidden, whereas
the indistinguishability of the two x+ only implies that

*Supported in part by the U. S. Air Force through the Air Force
Office of Scientific Research under contract AF 49(638)-24.

interferences between odd and even waves cannot be
observed.

It is widely believed that SP is necessary for treating
identical particles in a consistent way. It is also widely
believed that it is firmly supported by experiment. In
fact, the arguments usually given to insert SP in
quantum mechanics are of an ad hoc nature, and do
not proceed unavoidably from 6rst principles. ' Also,
many experimental facts, which at first sight look like
significant tests of the SP selection rule, simply follow
from the indistinguishability, e.g. , the lack of observable
interferences mentioned above.

Historically, SP has played a great role in the under-
standing of atomic phenomena, mainly as a consistent
way of inserting the Pauli principle in the formalism of

' The well-known rule that a tightly bound composite system of
a fixed number of bosons and fermions is Bose or Fermi according
to whether there are, respectively, an even or odd number of
fermions present LP. Ehrenfest and J. R. Oppenheimer, Phys.
Rev. 37, 333 (1931)j, requires modifications when a pair of the
composite particles are close together and interacting. We are
not concerned with this eA'ect in the present paper. The general
permutation symmetry of concern here is an intrinsic property
not derivable from bound states of bosons and fermions.
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quantum mechanics. Then, since it was undoubtedly
well established for electrons and photons, SP was
assumed to apply to all the other elementary particles.
This was assumed without too much question, and led
to a great simplification in the theory. Granted the
fact that it is an extremely good working hypothesis,
we believe that both its theoretical justi6cation and the
experimental evidences for the corresponding selection
rule deserve a careful investigation. Here is the subject
of the present paper.

The paper is divided into two parts, each of which is
essentially self-contained, the first one about the theo-
retical formalism, the second about the experimental
confirmation.

The 6rst part consists in a general discussion of the
problem of identical particles in quantum mechanics,
without assuming SP.

In the approach to this problem, one can use either
the framework of particle quantum mechanics (QM)
or that of field theory (FT). In QM, that is in the usual
quantum-mechanical formalism using Fock space, a
label is attached to each particle, and it is necessary to
introduce permutation operators in order to express the
identity of particles. In FT, identical particles are
generated by a single field; no such things as permu-
tation operators have to be introduced and the "sym-
metry properties" of the states are essentially contained
in the algebraic relations between Geld operators. Fields
obeying the symmetrization postulate are characterized
by bilinear algebraic relations, i.e., commutation rela-
tions for Bose fields and anticommutation relations for
Fermi fields. More complicated relations lead to Gelds
which are neither Bose nor Fermi. For instance, the
simple trilinear relations proposed by Green' lead to
the so-called parafields, which are in general neither
Bose nor Fermi. The QM and FT approaches are known
to be equivalent in the case of Bose and Fermi fields.
It is still open, however, whether or not the equivalence
hold in general. Here, we stick to the QM approach.
The results which are arrived at are valid only for
systems which can be consistently described in the
framework of QM. We will discuss the FT approach
(parastatistics) in a second paper.

We start (Sec. I.1) by formulating precisely the
requirement of indistinguishability of identical particles,
in terms of invariance of the physical properties of
states in the permutation operation. This is the basis
of the whole discussion. We first analyze its conse-
quences for systems which conserve the number of
identical particles, which is the only case considered in
previous treatments (Sec. I.2). Then, we make the same
analysis in the general case (Sec. I.3). To conclude this
first part (Sec. I.4), we discuss the question of inserting
internal variables like isospin and charge conjugation
in the definition of identical particles, and give a list
of the most relevant SP selection rules.

' H. S. Green, Phys. Rev. 90, 270 (1953).

It turns out that particles not obeying SP can be
accommodated in the QM framework without violating
any basic principle, pending some modification to the
current formulation of quantum mechanics, the main
one being to replace the usual ray by a many-dimen-
sional "generalized ray" as the representative of a
physical state. Thus, the requirement that identical
particles be indistinguishable does not, by itself, imply
SP. However, this requirement does impose severe
restrictions on the physical observables of the theory
and, because of this, also restricts the interactions which
the particles can undergo.

For interactions conserving the number of particles,
there is a superselection rule which absolutely prohibits
transitions between states transforming under in-
equivalent representations of the permutation group.
It follows from this superselection rule that SP can be
consistently inserted in the formalism, although it is
in no way implied by the axioms of the theory.

The study of the general case leads us to a much
stronger result. We find that, under quite broad as-
sumptions, the SP selection rule is verified in all states
produced from the initial states which are a,t present
available experimentally, i.e., states in which any
particles occurring more than once belong to a species
obeying SP. Call 5 the space of state vectors belonging
to this category. The precise statement of our result is
that transitions between vectors in S~ and vectors
which violate SP are absolutely forbidden, provided
that (a) the interactions are time-reversal invariant,
and (b) each of the subspaces of Px corresponding to
given values of the usual superselecting operators
(charge, baryon and lepton number) is fully coherent.
Condition (a), time-reversal invariance, seems firmly
established by experiment. As for condition (b), it is a
rather natural condition to insert in the theory, since
it simply means that the algebra of all physical ob-
servables is irreducible in each of the subspaces of S~
considered. Thus, if a violation of the SP selection rule
were found from states belonging to Sx, one could
seriously question the validity of the QM framework
itself.

The second part is devoted to a discussion of the
possible direct tests of the SP selection rule and to a
survey of the present experimental situation. The
validity of SP is well established for electrons, nucleons
and photons. We are concerned here with all the other

elementary particles. We 6rst give (Sec. II.1) the main
features of the tests. Then (Sec. II.2), we describe, with
numerous illustrative examples, the different types of
test which can be used. Finally (Sec. II.3), we make a
survey of the present situation for pions, hyperons,
kaons and muons.

It turns out that, contrary to expectation, significant
tests of the SP selection rules are very hard to obtain.
The main reason for this is that there is no observable
interference between SP obeying and SP violating
transitions. At present, we have a convincing evidence
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that pions are bosons. For all the other particles con-
sidered, the situation is still inconclusive, and the
possible tests at hand look quite dificult. The most
accessible tests that we find are concerned with the A.
We also propose a number of tests for kaons, which
look feasible. On the contrary in some cases like Z
and like muons, the possibility of testing SP looks
completely out of reach.

Note added irl, proof We .have assumed in this article
that weak interactions were rigorously PC invariant
and that the E&' —& 2x decay was rigorously forbidden,
Since this work was submitted, J. H. Christensen,
J. W. Cronin, V. L. Fitch, and R. Turlay (Phys. Rev.
Letters 13, 138 (1964)$, have reported that EP —& v-+sr

is observed with a branching ratio ~2)& 10 '. They con-
clude that PC is not rigorously conserved in weak inter-
actions, and that E~' is not pure PC= —but contains
a PC=+ admixture with amplitude 2.3)&10—~. An
alternative to this conclusion is that PC is rigorously
conserved, but pions are not bosons and the E20 under-
goes a SP-violating decay with a probability amplitude
which turns out to be 2)&10 ' times the probability
amplitude of the SP-obeying E&' —+ x+m decay.
Whether weak interactions are actually rigorously or
approximately PC invariant should be decided by
further experiments (e.g. , if E20 is a pure PC= —,
E20 —& 2m is rigorously forbidden whether pions are
bosons or not). Pending a clarification of the weak inter-
action situation, our statements about the Bose nature
of pions have to be qualified: a small violation of PC
invariance in weak interactions looks a priori quite
surprising, since it is hard to imagine an appealing
model of weak interactions with such an approximate
conservation law; however the alternative explanation
stated above looks even more surprizing because, if
pions are not bosons, it is even harder to understand
why the SP-violating decay is so strongly suppressed.
One should also modify slightly our discussion of the
K'E' system: if PC invariance is violated by the stated
amount the EiEi and E~m decay modes still corre-
spond to C=+, but the EiE2 decay mode corresponds
to a state which is mainly C= —with a small admix-
ture of C=+ amplitude (&1%); even then, the ob-
servation of the .K decays permits a sufficiently precise
determination of the quantum number C for use in
our tests of SP for kaons.

I. IDENTICAL PARTICLES IN QM AND THE
SYMMETRIZATION POSTULATE (SP)

1. The Indistinguishability of Identical Particles

The discussion of identical particles in QM is usually
given for systems with a fixed number of particles
under the assumption of SP. Here, we want to deal,
more generally, with systems with an arbitrary number
of particles, and we will not assume SP. State vectors
and observables are dedned in the Pock space P, which

is the direct sum of spaces 8(~), each of which is spanned
by vectors representing states with a fixed number E,
of particles in each species s:

p= P h(Ni
(&)

L(N) = (Ni, N2, N„.)],

2. QM with a Fixed Number of Particles

In this subsection, we restrict ourselves to one of the
subspaces 8(~) dined above. For simplicity, we con-
sider only systems containing one species of particles.
This will avoid inessential complications. Thus, 8(~)
is the space associated with systems of E particles of
the same species.

Permutation Imvariaece of Physical Observables

and of the Evolltion Operator

The result of a measurement in a QM system always
can be expressed as the expectation value of a suitably

' This group is the direct product of the permutation groups of
S&, S~, ~ ~ S&, ~ ~, objects, respectively.

8(~) is a direct product of spaces associated with the
QM description of single-particle systems. Call 8, the
space associated with a single particle of species s. We
have

8(+)= 8 (+&)13 82 (+2) g) ~ ~ ~ 13 8 (+e) 13 ~ ~ ~

Ne
8 (&a) —g 8

Inside each 8(~), one can define operators describing
the permutation of particles belonging to the same
species. These permutation operators form a group'
that we denote by S(~). Their definition is given in
standard text books and will not be repeated here.
Any one of these permutations is a mere reshu8ing of
the labels attached to the particles belonging to the
same species. Since these particles are identical, it must
not lead to any observable effects. Thus, our basic
requirement that identical particles cannot be dis-

tinguished is expressed by the following:

Dynamical states represented by vectors which dier oily
by a permmtatiori of identical particles calmot be dis
tinguished by any observatiom at any instant of tinge.

This requirement has consequences both on the
properties of physical observables and on the law of
evolution of states in the course of time. We first discuss
these in the case of systems with a fixed number of
particles and show that the standard arguments which
lead to the syironetrization postulate in this case imply
further assumptions of mere heuristic value and, con-
sequently, can be put to question. Then we discuss the
general case and show that, under very broad assump-
tions, transitions between states obeying the sym-
metrization postulate and states violating the postulate
are absolutely forbidden.
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dehned Hermitian operator, A say. The fact that
dynamical states represented by ~N) and by the per-
muted vector P ~zz) cannot be distinguished in a meas-
urement is thus expressed by the equality

(NiA izz)=(NiP-'APRON). (&)

This must hold for any ~zz). Applying it to the two
superpositions ~N)+n~v) and (zz)+icr~v) gives'

(~)A [v) =(~)P-tAP(~), N,.ex&»

or, equivalently,
[P,A j=0. (2)

This must hold for all the possible permutations of the
identical particles. Thus, ail physical observables

(i.e., all observables associated with an actual measure-
ment) nzzzsf be Permufotiozz izzvarian-4.

Furthermore, dynamical states represented by ~zz)

and P~zz) at time 0 should not exhibit any observable
difference at any later time t. The condition implied by
this requirement on the evolution operator U(t) is
readily obtained by replacing A by U~AU in the above
argument:

[P,Ut(f)AU(f)]=0. (3)

UtA U must be perzrzgtatiozz izzvariazzt, a-nd this must hold
for any physical observable A and for any value of t.
Now, since the Hamiltonian of the system is a physical
observable, it is permutation-invariant, and one deduces
easily from this that U(t) is permutation-invariant too.
Thus, the above condition is automatically fulfilled.

Maximal Observatioe and Generalized Ray

The permutation invariance found here is a rigorous
invariance property. It holds for the evolution operator
and for a/I physical observables. Contrary to what is
implicitly assumed in ordinary QM, the state-vector
space 8(~~ is not irreducible with respect to the algebra
of physical observables. This is precisely the situation
which leads to a superselection rule. The discussion
here will be slightly more complicated than the usual
one because the algebra of the superselecting operators
(i.e., the permutation operators) is not Abelian.

The 6rst point to be discussed is the preparation of a
dynamical state through physical observations and the
extent to which its representative vector can be de6ned
in a preparation. A preparation consists in the per-
formance of simultaneous compatible measurements on

4The proof given here has to be amended if ~&+) is split by
superselection rules. Strictly speaking, our argument proves Eq.
(2) if ~zz) and ~v) belong to the same superselecting sector (as-
sumed to be fully coherent), since it assumes that any linear
combination of these two vectors represents a dynamical state.
If ~N) and ~v) belong to different superselecting sectors, the two
matrix elements below vanish and Eq. (2) still holds: the left-
hand side vanishes because A is a physical observable, the right-
hand side because in addition the action of I', which does not
change the physical properties of states, e fortiori leaves the
superselecting sectors invariant. The same amendments apply as
well to the proofs of relation (3) and relation (14) below.

the system, with the result that the state vector belongs
to one of the common eigensubspaces of the corre-
sponding commuting physical observables. Since these
are permutation-invariant, the eigensubspace is also
permutation-invariant. In general, it is reducible.
Clearly, the most complete preparation is achieved
when the eigensubspace is irreducible: no additional
commuting physical observable can separate vectors
within this eigensubspace. In that case, the preparation
will be said to be maximal. s It gives the maximum
amount of information compatible with the indis-
tinguishability of identical particles.

The interesting point to note here is that the irre-
ducible eigensubspace may have dimension greater than
1, in which case the lack of knowledge of the state vector
is greater than in the ordinary QM, where the state
vector is determined up to a phase or, in more technical
language, the QM system is represented by a ray in
Hilbert space: it seems natural to call the set of nor-
malized vectors in such an r-dimensional irreducible
subspace a "generalized ray" and to say that when the
preparation is maximal, the state of a system of identical
particles corresponds to a generalized ray, in analogy
with the use of the word ray in ordinary QM.

The indeterminate phase factor associated with a
state vector in ordinary quantum mechanics does not
cause difFiculty in the interpretation of the theory
because observable results are expressed in terms of
absolute values squared of matrix elements from which
the indeterminate phase disappears. It is important to
realize that the larger indeterminacy with which we are
faced here does not cause any diKculty either.

To see this, we have to verify that measurable results
on a state associated with a generalized ray do not
depend on which state vector in the r-dimensional sub-
space is chosen to represent the state. Suppose that at
time t we perform the measurement associated with the
physical observable A on a quantum system which was
prepared at time 0 in the ray associated with the irre-
ducible subspace hr, (y labels the irreducible repre-
sentation and 7- stands for some additional quantum
numbers). The result is equal to the expectation value
of Ut(f)AU(f) for the initial state vector. Now, since
U AU is permutation-invariant and since b~, is irre-
ducible, Schur's lemma implies that the expectation
value is the same for all normalized vectors in 8~, :

(zzi Ut(&)AU(f) il)=(vi Ut(&)AU(&) iv);
(4)

Ore-Body Mecslrememts

One-body measurements deserve special attention.
By a one-body measurement, we mean a measurement
on each particle taken separately. Consider, for example,

5 In the same line of argument, we have to replace the usual
notion of complete set by the notion of maximal set of commuting
physical observables, by which we mean a set, whose eigenvalues
de6ne subspaces irreducible with respect to permutation,
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a two-electron system. The determination of their re-
spective momenta, or of their respective spins, or of
both momenta and spins, are typical one-body meas-
urements. On the contrary, such quantities as the total
spin or the relative angular momentum, which imply
some correlation between the two electrons, do not
correspond to one-body measurements.

Strictly speaking, all the experiments in elementary-
particle physics are collision experiments and always
consist of a set of one-body measurements, since the
observations are performed on individual, widely sepa-
rated, noninteracting particles. Thus, quantities which
imply a correlation between the particles cannot be
measured directly. Information about these quantities
can be obtained only through the study of correlations
between several sets of one-body measurements (e.g. ,
angular correlation experiments), and their determi-
nation through such studies always requires some
assumption about the dynamical properties of the
observed system. This will be illustrated in the examples
given in Sec. II. For the moment, we simply want to
stress the importance of one-body measurements.

In general, a set oj ozze body me-asuremezzts, rzo matter
bozo comp/ete, is zzot maximal

The most complete set of one-body measurements js
a set in which the dynamical state of each particle is
completely determined (energy-momentum 4-vector,
helicity, and possible internal quantum numbers such
as various charges). Since this gives the list of quantum
numbers of each particle separately, but does not give
any information about the permutation symmetry of
the many-particle states, such a measurement depends
only on the sins of projection operators into each of the
irreducible representations which may occur. Clearly,
the number of these is in general greater than one,
hence the measurement is not maximal.

To see this in more detail, we take first the simple
example of a system containing two identical particles.
The measurement will consist in taking the probability
that we find one particle in quantum state P & and the
other in quantum state X2. According to the standard
rules of quantum mechanics, it is given by the ex-
pectation value of the projector Ap ),'Az) onto the sub-
space corresponding to this set of quantum numbers.
In general, this subspace will be two-dimensional, and
a convenient orthonormal basis in it will be given by
the normalized symmetric and antisymmetric state
vectors. We denote these by ls) and

I a), respectively.
The projector can be written

~(~),~z) = ls&&sl+ I a)&a I

If we denote by IN) the state vector of the system, the
desired probability is

zo(X„Xz)= &+ IA(X),)(z) I
0 )

=
I «'I s& I'+

I &+
I a& I' (5)

We draw the reader's attention to two features of the

observed quantity m, which follow from the fact that
the particles are identical and that AP),Xz) is per-
mutation-invariant: (i) symmetry in X& and Xz, (ii)
absence of interference terms between symmetric and
antisymmetric states.

Consider now the general case, where there are i'V

identical particles in single-particle states Xi, X2,
X~. The observable to be associated with the measure-
ment is the Projector A()(),Xz, . ,X))() onto the subsPace
8~"' spanned by all vectors deduced by permutation
from the product vector IX))IXz) ~ IX))(). 8("' is, of
course, permutation-invariant. Except in the very
particular case when P ~

=X~= . =X~, it is reducible.
In general, all the X's are different and 8'"' is associated
with the regular representation of the permutation
group. As is well known, the decomposition of the
regular representation contains each irreducible repre-
sentation of the group a rzumber of times equal to its
degree. In particular, the representations which occur
only once are the one-dimensional representations, i.e. ,
the symmetrical and the antisymmetrical.

It is convenient to decompose 8'~' into irreducible
components 8~~,)&"'. y denotes the representation to
within an equivalence and w is an additional quantum
number for representations which occur more than once.
For a given representation (yr), we pick an orthonormal
basis

I pter) (z(= 1, 2, , r, where r is the degree of the
representation y). Using this basis we get

A (X), X)) ) =Q A („,) ("',

~(..)'"'=2 Ivz &(v)

The probability that a one-body measurement on a
system in state

I @) yields single-particle quantum
numbers ) ~, X~ is

zo(X), . ,XN) = &CIA. (X), ,X)) ) Ie&

=2 &+l~(")(")I+)

=Z I&+lvtzr&l'

&~)"2 I
2'~" I'. (10)

Again we note that this observed quantity has the
properties (i) symmetry in the X s (ii) absence of inter-
ference terms between vectors in inequivalent
representations.

For use in Sec. II, we state corresponding results for
the T matrix. We erst define T-matrix elements from
an initial state

I (p) to a final 1V-particle state
I ytzr& by

2'- =htrlq'I~).

Up to phase-space factors, the cross section is given by
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SI' ar)d Superselecti on Rule between Symmetry Types

Vectors which transform, to within an equivalence
according to a given irreducible representation of g~~&,

will be said to have a given symmetry type. We de6ne
the degree of a symmetry type as the degree of the
associated irreducible representation. We use the nota-
tion $~&~& to denote a symmetry type, and 8„(~) to
denote the subspace spanned by vectors of the same
symmetry type, p labeling here the relevant irreducible
representation. Particular subspaces of interest are
those associated with the types of degree 1, namely the
spaces Bz&~~ and 8&(~& spanned by the symmetric and
antisymmetric vectors, respectively. 8(~& is the direct
sum of all these subspaces:

h(&)=Q g (&)

Maximal observations, as defined above, lead to
state vectors of a definite symmetry type. Therefore,
it is quite natural to advance the postulate that only
one type occurs in nature, otherwise stated that all
representative vectors belong to one and the same
component 8~&~& of 8(~). SP is a somewhat restricted
form of this postulate, in that it is further assumed that
the allowed component has to be either 88&~) or 8~&N).

That the postulate can be consistently inserted in
the QM framework can be seen by proving that a
superselection rule operates betweer) t)ectors of digererlt
symmetry ty pes

The proof follows essentially the same line as the one
given in the paragraph on maximal observations.

Applying Schur's Lemma, we note erst that due to
the permutation invariance of U(t), vectors in an irre-
ducible representation remain in an equivalent repre-
sentation in the course of time. Therefore vectors of a
de6nite symmetry type keep this symmetry type in the
course of time. Secondly, since physical observables are
permutation invariant, they cannot have nonvanishing
matrix elements between subspaces of diGerent sym-
metry type.

Conditions under 8'hich Only Bose and
Fermi Particles Can Occur

The literature of physics contains a number of dis-
cussions which purport to show that only Bose and
Fermi particles can occur. We want to point out that
the arguments, when formulated correctly, always
imply an additional assumption.

Two rather independent arguments are usually given.
Expressed in its simplest way, the hrst argument is

based on the requirement that

(12)

i.e., that permuting the particles in a state vector
changes it only by a numerical phase factor. This
requirement is . precisely the requirement that the

representative vectors transform as a one-dimensional
representation of the permutation group, which in turn
is the same as requiring that the representation be
symmetric or antisymmetric.

Relation (12) complies with our basic requirement
of indistinguishability, but it is stronger. It cannot be
deduced from this requirement alone. One has to assume
in addition that dynamical states which cannot be
distinguished by any observation are represented by
the same vector to within a phase factor.

Proofs of the postulate have been produced recently'
which are based on essentially the same argument. It
is assumed as a starting point that there "must exist a
complete set of commuting observables, " which is,
expressed in a more learned way, the same assumption
about representative vectors as the one given above.

This assumption is usually inserted in QM for heu-
ristic purposes, and can be relaxed without contra-
dicting any basic principle of the theory. '

The second argument starts from the consideration
of one-body measurements. It is required that a com-
plete set of one-body measurements, like the one
described in the above paragraph, be maximal. Clearly,
the only way of achieving this result is to postulate
that state vectors must have a definite symmetry type
taken among those which occur no more than once in 8'~',
that is, the symmetrical and the antisymrnetrical.
Hence, the symmetrization postulate.

This requirement about one-body observations is
very reasonable. It means that a complete knowledge
of the respective dynamical states of the particles taken
separately entails a complete knowledge of the system
as a whole. However, one could get along without it.
Then, states prepared through one-body observations
would have to be described by a density matrix. Some
practical rule would be needed in order to define this
density matrix, but no principle is opposed to this
possibility.

In summary, for systems with a 6xed number of
particles, there is a superselection rule between sym-
metry types which permits one to insert SP in the
quantum theory in a consistent way. However the
postulate does not appear as a necessary feature of the
QM description of nature. Whether it is followed by
nature or not has to be decided by experiment.

3. QM with a Variable Number of Particles

We consider now the consequences of the basic
requirement of indistinguishability in the general case,
when the number of particles is no longer a Axed
quantity.

Some care has to be taken because the permutations
are not operations de6ned in the whole Pock space P
but in each component h&~) of 5, for which the number

' J.M. Jauch, Helv. Phys. Acta 33, 711 (1960);J.M. Jauch and
B. Misra, ibid 34, 699 (1961); A.. Galindo, A. Morales, and R.
Nunez-Lagos, J. Math. Phys. 3, 324 (1962); D. Pandres, iME. 3,
805 (1962).
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As a straightforward extension of relation (2), we

have the result that A™is invariant in any permu-
tation P™of identical particles in 8™.

(I&&»r& g &»r&) (13)

Similarly, the permutation invariance of UtAU is
generalized to the following permutation invariance
property:

PI'& &,A& &Ut(t)A&~&A& &A&~&U(t)A& &)=0. (14)

This should hold for all values of t, for all possible
subspaces h( ) b( ) for all permutations in 8( ' and
for all physical observables in 8(~).

Relation (14), of which relation (13) is a particular
case, expresses the indistinguishability of identical
particles. The discussion can be pursued along the same
line as before, with the added complication that U(t)
does not conserve the number of particles any longer,
i.e., it has nonvanishing matrix elements between the
components of Fock space. The permutation invariance
of U(t) is lost, it is even meaningless, and the results
which followed from this simplifying feature will have
to be amended accordingly.

All the previous comments and statements about
maximal observations and generalized rays remain
valid. The consistency of the notion of maximal ob™
servation lies directly on property (14), from which
the generalized version of (4) is easily deduced. All the
statements about one-body measurements also remain
valid. It is worth recalling, that, in the absence of a
postulate restricting the symmetry types, one-body
experiments, no matter how complete they are, can
never be maximal.

On the other hand, the proof of the superselection
rule between symmetry types, which was based on the
permutation invariance of U(t), breaks down. Clearly,
however, relation (14) imposes on U(t) very severe
limitations that we now proceed to investigate. The
principal aim of this investigation is to see whether the
SP selection rules are mere consequences of relations
(14).The answer to this question turns out to be in the
negative. But the additional assumptions which are
needed to derive the SP selection rules are not very
stringent.

of particles is fixed. In the same way, observations where
the indistinguishability comes into play are obser-
vations on a 6xed number of particles. Therefore, the
physical observables which we consider in the present
discussion are observables defined in a given subspace
g(&)

The superscripts (M), (1V), . will be used to denote
objects relating to the subspaces 8(~), 8(~), ~ ~, re-
spectively. We call A.(~) the projector on 8( ), A (~) a
physical observable in 8(~). Note that

A {M) P(M)A (M)g(3f)

First, we prove the following selection rule:

Transitions from a given symmetry type to symmetry

types of smatler degree are forbidden.

Consider the transition from a state in the irreducible
subspace 8~,(~) into a state in the irreducible subspace
Sp, (~). We call A~, (~), A p, (~) the projectors onto these
subspaces, and r„rp their respective dimensions. We
want to show that

Q=Ap. &~&U(t)A„&"&=0 if rp(r, . (15)

From relation (14) taken with Ap, &~& for the observable
A&~&, it follows that Qtg is invariant under all per-
mutations P'(~) within the irreducible subspace 8~, (~),
hence

gtg =ex„,&»,

where c is the transition probability under consideration.
Thus, if c/0, the range of Qtg has necessarily dimen-
sion r~. This cannot happen if rp &r~, since the dimen-
sion of the range of Qtg, like that of Q, is at most equal
to rp in this case. Then Qtg=0, hence the result (15).
Q.E.D.

In order to proceed further, we obviously have to
make specific assumptions about U(t) or about the
properties of Fock space.

We assume from now on that U(t) is time-reversal
invariant. Then the above selection rule also applies
to the time-reversed transitions, which means that
transitions to symmetry types of greater degree are
also forbidden. Combining the two results, we conclude
that:

If the evolution operator is time reversal inva-riant, the

degree of the symmetry types is conserved in atl transitions

In all present experiments, the initial states have at
most one particle of a species, whose permutation
character might be questioned (e.g. , 7r, E, A, Z, .),
and have more than one particle only for species known
to be Bose or Fermi, such as nucleons, electrons, or
photons. We call 5 the subspace of all such states.
Since only one-dimensional representations of the per-
mutation groups occur in F&, all its states have sym-
metry types of degree 1. Thus, if the above selection
rule applies, symmetry types of greater degree are not
accessible in present experiments, i.e., in each 8(~),

~ As can be seen easily, this absolute conservation law generates
a superselection rule. The assumption of time-reversal invariance
leads to the following even stronger result which we state here
without proof. Given a S(~)-irreducible subspace of G(~), G~ (~)
say, the only nonvanishing transitions from its vectors into 8, (~)
are those to vectors, which have nonvanishing components in a
certain S&~&-irreducible subspace of 8&~&, Sp, &~& say (we, of
course, have r~=rp). This result can be expressed by

X&~&U(t)a„,&»=sp.&~&U(t)a„,&~&.

One also has, from time-reversal invariance,
A&~&U(t)Ap, &tr& =A„,&~&U(t)Ap. &~&.

Applying this result to the case M=X, one easily concludes that
transitions between different symmetry types in G(~) are for-
bidden, even when U(t) does not conserve the number of particles.
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the symmetrical and antisymmetrical states are the
only ones, the production of which is not forbidden by
this rule.

Let us now investigate more closely the transitions
from S~. The interesting property of 5+ is that maximal
observations define a state vector in a unique way,
apart from the usual arbitrariness in phase. The con-
verse is certainly not true, i.e., to each vector in Sx
there does not necessarily correspond an observable
dynamical state of the system, since 5&& is decomposed
into incoherent sectors by the superselection rules
associated with the conservation of the charge Q, the
baryon number 8 and the lepton number I.. We denote
these sectors by 5 @».Each 5 @»may reasonably be
assumed to be "fully coherent. "By this, we mean that
each vector in Sxggg does correspond to an observable
dynamical state. If these conditions are met, deviations
from SP are impossible to put into evidence in practice,
as a consequence of the following theorem.

Theorem: If the laws of motion are time reversal in-vari

ant r' and if the superselecting sectors Fx@oz, of && are fully
coherent, transitions between states il 5 and states ie
which some of the identical particles have not the symmetry

ty pe required by SP, are absolutely forbidden.

To illustrate this, consider di —x+ states produced
in a reaction such that 7r+p —+nv+v. +. The theorem
states that, even if the v.+ are not bosons, these states
cannot be a superposition of symmetrical and anti-
symmetrical states; either all states produced in this
way are purely symmetrical, or they all are purely
antisymmetrical, as would be required by SP (the
latter possibility is ruled out by experimental evidence).
The same result obtains for di —x+ produced in the
reaction pp ~ nnv. +v.+, since protons are known to be
fermions.

The proof goes as follows. To start with, we suppose
that 5&& is fully coherent. The modi6cations required
by the occurrence of superselection rules will be given
at the end of the proof.

Ke focus on a particular species s, whose symmetrical
character is put to question, and consider 6rst the
transitions between states in F~ and states in a given
h(~& for which E,&1, The permutations considered all
along refer exclusively to species s.

Assume that there is a state lu)eh&a& which has a
nonvanishing transition probability m at time t to a
given state Ix)ePX, i.e.,

w=
I &~l V(t) lu) lmwo.

w can be rewritten as the expectation value over Iu)
of the operator I v)(v I, with the notation

lv)=—A' '~'(t) I», l»~h'~' (llvll&o).

I v)(v I
is a multiple of a projector on a one-dimensional

space, the space of vectors proportional to Iv). Ac-

~Note added in proof. This theorem remains valid if ICP in-
variance is substituted for time-reversal invariance.

cording to (14), it is permutation-invariant. Therefore

I v) must belong to one of the two possible one-dimen-
sional representations of the permutation group in 8&~).

Assume for concreteness that it is the symmetrical one.
Then, only vectors which have a nonvanishing com-
ponent in 88&~& may have a nonvanishing transition
probability to state

I x).
Next we prove that if transitions to IX) are from

h&&~& rather than 8&&N~, transitions to any other vectors
of F+ from 8~'~' are forbidden. Assume that transitions
from h~&~& to a given vector IX')eP are allowed; the
relating transition probabilities are given by the ex-
pectation values of

I
v')(v'I, with

Iv)=A(»gt(t) lx) I, ),g„(» II, II~O.

Now, since Px is fully coherent, there is a state associated
with the linear combination

le)=I I&~)+ul&t), (~„~0)
and the transition probability to this state is given by
the expectation value of ls)(sl, with

Is)—= & Iv)+t I").
Obviously ls)(sl is not permutation invariant, con-
trary to what is required by the indistinguishability of
identical particles.

In conclusion, only vectors which have components
in 8s& ' (or only those with components in 8&&~&) can
perform transitions to 6-'x. Because of the time-reversal
invariance, the selection rule also holds for the time-
reversed transitions, that is, transitions from F~ to 8& &

lead only to vectors in h8&~& (or in B~&~&).

Next, we show that the allowed symmetry type of a
given species s is the same for all values of the number
E, of particles in this species. Assume for concreteness
that it is symmetric for a given value of X,.Transitions
from a state in 5 to a state with E, particles in species
s lead necessarily to syrrnnetric states. Now, the tran-
sition probability must not change, if we add to the
initial and 6nal states one particle s sufBciently far
away so that it does not interact with any other particle
in the course of the reaction. This means that the sym-
metry of the new final state (X,+1 particles s) must
be such that it is completely symmetric in the per-
mutations of X, particles. This condition excludes the
antisymmetric type.

Finally, we have to extend the result to the case
when 8+ is no longer fully coherent but is split into
superselecting sectors F~qg~ which are fully coherent.
Then, the whole Fock space 5' is also split into super-
selecting sectors which we denote by F@».Clearly, the
demonstration above can be carried through within
each Pq» separately. Furthermore, the allowed sym-
metry type of a given species s is the same for all values
of Q, 8, and I., since these numbers can be changed in
an arbitrary way by adding to the initial and final
states of a reaction a suitable number of widely sepa-
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rated noninteracting ferrnions or bosons' without. chang-
ing the transition probability. Q.E.D.

We repeat that, in practice, ' all states in elementary-
particle physics are produced in collisions from initial
states belonging to F~. Consequently, these states
should have the symmetry type required by SP and
no deviations from the postulate should be observable
in present experiments if all the conditions on which
the above theorem is based are met. ' These conditions
are:

(i) validity of the QM description of identical
particles within a Pock space.

(ii) time-reversal invariance of the laws of motion.
(iii) full coherence of each superselecting sector
QBL.
We feel that experimental tests of such a drastic

selection rule as the SP selection rule are needed any-
way, but it is good to realize that these experiments in
fact test the set of conditions stated above.

4. Inclusion of Internal Variables and
Selection Rules

In the QM description, we have some leeway in the
definition of the species of identical particles. For
instance, neutrons and protons could be treated either
as two different species of particles, or as two different
states of the same species with an internal degree of
freedom. As is well-known, " the two treatments are
rigorously equivalent when the symmetrization postu-
late is made. However, this is no longer true when the
syrrUDetry types are not restricted to that extent.

Take, for example, the case of two pions of diBerent
charge, a s.+ and a srs say, with momenta k' and k",
respectively. If 7i.+ and m' are treated as different
particles, this defines just one state vector to within a
phase. If they are treated as identical particles with an
internal charge variable, this defines two linearly inde-
pendent state vectors, ~k'+, k"0) and ~k"0, k'+), or

8 We know that electrons and nucleons are fermions. Any change
in QBL can be achieved by adding a suitable number of these
particles. Thus, increasing Q by 1 without changing 8 and L is
obtained by adding np, a similar increase for B is obtained by
adding n, the same for L by adding enp.

90ne can, of course, imagine initial states outside f, for
example the one realized by two independently produced beams
of kaons, or of muons, etc. Thus a X+E+ scattering experiment
with clashing beams would fall outside the domain of application
of the general theorem above. Apparently, it also falls outside the
present experimental possibilities.' This conclusion and the point of view from which it was de-
rived are diferent from the conclusions and approach of the para-
field theory. In parafield theory, which is a particular type of
second quantized field theory, the requirement that Hamiltonian
density be a local observable (in the sense of spacelike commuta-
tivity) leads to certain absolute selection rules, the most important
of which is the rule that no para particle can decay entirely into
ordinary particles. This rule, together with a pP photoproduction
experiment, leads to the conclusion that no presently known
particle can be para. We will discuss the selection rules for para
particles in a forthcoming paper. The rules (called "conservation
of statistics" rules for para particles) stated by S. Kamefuchi and
J. Strathdee LNucl. Phys. 42, 166 (1963)j are incorrect.

"A. Messiah, QgoNSNm 3lechogics (North-Holland Publishing
Company, Amsterdam, 1962), English ed., Vol. II, Chap. 14.

any normalized linear combination of these; then,
assuming that pions are bosons means that only the
symmetrical combination is allowed, and we again find
just one state vector.

Quite generally, consider r similar species of identical
particles. By similar, we mean here two particles whose
dynamical variables and states are unitary equivalent
(e.g. , ss and p, e and ss, 7r+ and E, ; in practice, two
particles with the same spin). Two similar particles are
not necessarily identical, but their permutations can
be defined in a consistent way. We consider dynamical
states where we have )7, particles in species s (s=1,
2, , r) in the individual states Xtl'l, Xs&'&, , Xg,",
respectively. If we do not put any restriction on the
symmetry types, the number of thereby defined linearly
independent state vectors is in general g, ,"X, !.This
number goes up to (P, E,)!,when we treat all particles
as belonging to a single species with an internal degree
of freedom, which can take r distinct values. On the
other hand, if the symmetrization postulate is applied,
there is just one state vector thereby defined in both
treatments.

It is therefore quite important to decide what internal
variables should enter the definition of each species of
particle, if one wants to question the SP and submit it
to experimental tests. In practice, the inclusion of
internal variables is unavoidable when these variables
have to be used to express some invariance properties
of the interactions. Two invariance laws are of interest
to us here, the isospin invariance and the charge con-
jugation invariance.

I'sosPiss

Since the strong interactions conserve isospin, isospin
variables must enter the definition of all strongly
interacting particles. Thus, the x+, x, m must be
treated as the three charge states of a single species of
particle, the pion, and the corresponding charge vari-
ables must be permuted together with the space-time
variables when one performs a permutation on a
multipion state.

One can always write the state vectors as a sum of
terms, each of which corresponds to a definite value of
the total isospin. This decomposition proves quite
useful when, as is often the case, the charge wave
functions of given total isospin have a definite symmetry
type.

We illustrate this procedure in the simple case of a
two-pion system. Let k; and q; (i= 1, 2) be the momenta
and charges of the two pions. Then the irreducible
representations of the permutation E'&2,

(ktqt, ksqs) ~ (ksqs, ktqr),

are the symmetric states 0, which have the usual Bose
symmetry

P,s+, (k„q„ksqs) =N, (k,q„ksqs)
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+ Q y(1&v) (q q ))P (13r)(k k )

+ Z 0(2~)(qq)4 ™(kk) (16)

Here (t1('~) are the usual isospin wave functions. The
(unnormalized) momentum-space wave functions )P are
symmetric or antisymmetric as indicated by their sub-
script. If we assume that pions are bosons, only one of
these two possible symmetry types is allowed for the )P

according to the well-known rule

(BOSe

msgr)

(—) r = (—) ~, (17)

and the forbidden )p vanish identically. Here J is the
relative angular-momentum quantum number. To write
this we have used the fact that symmetric orbital wave
functions contain only even waves, and antisymmetric
ones only odd waves. Relation (17) is characteristic of
Bose pions and could be used for tests of SP for pions.

Charge Conjugation

Since strong and electromagnetic interactions are
invariant under charge conjugation (and very probably
all interactions are invariant under I'C) we are led to
treat a particle and its antiparticle as belonging to the
same species.

Systems of interest here are particle-antiparticle
systems, since they can be chosen to be eigenstates of
the charge conjugation operator C which, in this par-
ticular case, is nothing but the permutation operator
on the relevant internal variables. Typical systems of
this kind are pp, E+E , and E'E' systems. —Theinternal
variable is the quantum number distinguishing particle
from antiparticle, e.g., baryon number for pp and
strangeness for EE. We denote it by e, &=+1 corre-
sponding to the particle and e= —1 to the antiparticle.
The operation of C replaces e by its opposite.

For illustration, let us discuss in some detail the
E'E.' system. It appears here as a particular di-kaon
SyStem, WhOSe WaVe funCtiOn +(kle»k2e2) VaniSheS When

el+e2AO. Clearly, the C operation is equivalent to
exchanging e& and e2 in this particular case.

Now, exactly as we did with isospin on the 2m system,
we can separate in the wave function the terms corre-

and the antisymmetric states 0",

-P12+ (klql k2q2) — + (klql k2q2) ~

For this simple case, only one-dimensional represen-
tations occur. Each type of state can be separated into
states of given total isospin I and given value of its 2'

component M=ql+q2. Using the fact that for two
particles even I (odd I) isospin wave functions are
symmetric (antisymmetric), we obtain

(klql, k2q2) 4 (qlq2)f*, (klk2)

sponding to the two possible eigenvalues of C. Thus,
for a wave function of definite synunetry type we
obtain

+s,a(kl&»k2&2) X (&1&2)4s,s (k»k2)
+X(—) (ele2)))t', , ( ) (k»k2) . (18)

Here x&+' are the normalized internal eigenfunctions
corresponding to the values C= &1, respectively. They
represent the state vectors 2 '(2I I+—&& I

—+)j. All

the other notations are identical to those used in dis-

cussing the 2x system. If kaons are bosons, the sym-
metry types associated with the lower subscripts are
forbidden, and we find the well-known selection rule

(Bose EZ) C= (—) ~. (19)

This rule is characteristic of Bose kaons and could be
used for testing the SP for kaons.

Since we will discuss E'X decays in Sec. II in terms
of the CI' quantum number and the E& and E2 decays,
we include an explicit discussion of E'X' decays from
this point of view. The only change we make in the
discussion is to use the states

I El) and
I E2&, which are

related by a unitary transformation to the states
I
E'&

and IEO).
We use the convention

IE')=2 "'(IE1&+IE2&) IE')=2 "'(IE1&—IE2)).

Then x&+) are represented by the following state
vectors:

x'+'=-2 '"(I11&—
I 22&)

x( )=2-'t (I21)—I12)),

i.e., )((+) leads to E1E1and E2E2 decays with the same
probability, and x& ) leads to E&E& decays. Therefore,
the observation of the E decays, as is well-known,
constitutes a straight measurement of the quantum
number C, in spite of the fact that E& and E~ are
eigenstates of CI' rather than C. Note in passing that

as could be expected, since C and E are equivalent to
the permutation of the internal and orbital quantum
number respectively in this case. For Bose kaons, we
have CP=+.

SI' Selectiorr Rules

Quite generally, in systems of two identical particles,
we have definite relations between internal and orbital
quantum numbers, which follow from SP and can be
used for testing it. Relations (17) and (19) are particular
cases of such relations. We list here the whole set of
relations which follow from SI' with the 2tslal connection
between spin and statistics.

Call X a particle and X its charge conjugate; let L
denote the relative orbital angular momentum of the
two-particle system, 8 its total spin (if any), and C its
charge conjugation quantum number. We have
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(i) far XX SyStemS (e.g. , 2r+2r+, AA, PP):

(—)'=(—)'
(ii) for XX systems (e.g. , e+e—,2r+2r—,EsEs):

(20)

I=O, 3x system must be antisymrnetric if pions are
bosons.

II. EXPERIMENTAL EVIDENCE FOR SP
AND POSSIBLE TESTS

C—( )L+8 (21)

G —( )L+s+I (23)

Relation (23) still holds for self-G-conjugate particles
like pions, in which case G=+1. (Recall that G = —1.)

Relations (20)—(23) are nonrelativistic versions of
relations, which clearly hold even when the nonrela-
tivistic approximation is not valid. We have exhibited
them rather than the exact ones, because they make the
subsequent arguments look more transparent. However,
the reader should convince himself that relations ex-
pressing the fact that a two-particle system has a
dehnite symmetry character hold in general and not
only in the nonrelativistic limit. The exact relations
are conveniently written in the helicity formalism. "
They are obtained from the nonrelativistic ones by
replacing

(a) (—)' by (—)"&,
(b) (—)~ by P for XX and x)t systems, and by

(—)2'E for XX and y)t systems.

Here, s is the spin of each particle, P the parity of
the two-particle state, and H its "helicity permutation
operator, " i.e., the operator which permutes the two
he)icity quantum numbers and charges their si ge
(X', X"~ —)",—Y). The change in sign is due to the
particular convention of sign taken in the definition of
the helicity.

For example, relation (21) is the nonrelativistic
version of the following exact relation for XX systems
obeying SP:

(24)

With more than two identical particles, we do not
find as simple relations as those above any longer. The
only property worthy of note is that the I=O charge
wave function of three isospin 1 pai..ticles is antisym-
metric. Consequently, the orbital wave function of a

"L. Michel, Nuovo Cimento 10, 319 (1953). T. D. Lee and
C. N. Yang, ibid. 15, 749 (1956). Recall that for the zero charge
term of a xx multiplet, we have G= C(—)r.

ts M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

In the case of self-conjugate particles like p or x',
relation (21) still holds with C=+1. (Recall that
C„=—1, C ~=+1.)

Call x a strongly interacting particle with isospin t,
g its G-conjugate. "
With the same notations as above and I for the total
isospin, we have

(i) for XX systems (e.g. , 2r2r, 1VE, EE):
( )I ( ) S+I+2t ~ (22)

(ii) for )tx systems (e.g. , ZZ, EE, XJtr):

From now on, SP will denote the symmetrization
postulate taken with the usual connection between
spin and statistics.

In this section, we review the experimental evidence
in support of SP for the known species of particles, and
investigate the possibility of performing experimental
tests of it when they are needed.

There is no doubt that e(ectroes end mncleoes are
ferrlioes, and that photoes are boso22s The . evidence is
particularly overwhelming in the case of electrons in
view of the central role played by the Pauli principle
in the dynamics of many-electron systems, i.e., atoms,
molecules, and solids. For nucleons, the best evidence
of all is given by the forbidden lines in the rotational
spectra of homonuclear diatomic molecules, since they
do not depend on the details of nuclear forces. The
Bose nature of photons is revealed by the study of
blackbody radiation and by the fact that quantum
electrodynamics, in which the photon Geld is treated as
a Bose field, quantitatively explains a wide range of
electromagnetic phenomena. "

The situation with all the other known species of
particles (rr, strange particles, ir, neutrinos, etc. ~ ) is
completely diff erent. Large assemblies of identical
particles cannot be produced in these cases. Further-
more, the dynamics of their interactions is still very
poorly understood. In order to see whether SP holds
or not, one has to resort to direct tests of the SP
selection rules on systems containing two or, at most,
three such identical particles. Up to now, for all these
particles but pions, no such tests have been produced.
In the case of pions, we benefit already from a rather
large body of information about multipion systems.
Most of it turns out to be inconclusive, but not all.
From the results about the pionic decay modes of
kaons, we have definite evidence that the multipion
production obeys the SP selection rule. All this will
come out of our discussion. We will also show that
many significant tests of the SP selection rule can be
devised. None of the tests that we propose look easy
to realize in practice, but at least some of them in the
cases of E and A, are well within the scope of present
experimental technique.

This section is divided in three parts. The erst part
gives the principles and the general features of the tests.
In the second part, we study, with some illustrative
examples, the various types of tests that we may think
of. The third part is devoted to a brief survey of the
present experimental situation and of the possible tests
for each species of particle.

'4The Bose nature of photons is also expected from the fact
that the electromagnetic field is measurable, and thus must
commute with itself at space-like separation.
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l. General Features of the Tests

The tests that we are looking for must be performed
on systems containing very few identical particles of
the species considered. In practice, except for pions, it
is very hard to produce systems which contain more
than two identical particles. In this section, we shall
focus on two-particle systems. Much of what will be
stated applies with obvious changes to systems con-
taining more than two identical particles. The only
observations which can be made on such systems are
ore-body obserl, tioes, and are conveniently expressed,
as shown by Eq. (5), as a sum of two terms, each of
which correspond to a given symmetry type:

~( t,) s) = I(+I~)I'+ I(+ Io) I' (5)

The SP selection rule states that one of these terms
must vanish.

An important feature of such observations —which
was already noted about Eq. (5) is —the absence of
ieterfereeces betweers symmetry types, a consequence of
the indistinguishability of identical particles alone.
This point should be kept in mind, since many experi-
ments, which at first sight seem to provide acceptable
tests, must be rejected on this ground. "' To illustrate
this, consider a x+~+ scattering experiment. SP implies
that the x+m+ system does not contain any odd waves.
However, the forward-backward symmetry of the
angular distribution, which is the usual criterion that
waves of a given parity do not show up in a collision,
is no test of SP, since it is only evidence that inter-
ferences between odd and even waves are not observed.
In order to test SP, one could also think of exploiting
the short range of the xw force and the subsequent
barrier effects at low energy. Let us assume that the
energy is so low that only 5, I', and D waves are ex-
pected to come in, the D-wave amplitude being an order
of magnitude smaller than the I'. Since the D wave
interferes with the 5 wave, whereas the I' wave does
not, the I'-wave contribution to the cross section has
the same cos'0 dependence as the interference and the
same expected order of magnitude. Again, we do not
find any distinctive feature which permits to test the
absence of I' waves. In fact, without a detailed knowl-
edge of the dynamics of the mx interaction, there is
absolutely no way of testing the Bose nature of pions
in a m+m+ scattering experiment.

Another very crucial feature —which is also quite
obvious from Eq. (5)—is that a set of oee body measnr-e

ments by itself does Not give umy ieformatiors about sym
metry types. The determination of symmetry types
unavoidably requires additional information about the

'4' Pootnote added in proof. In particular, the "tests of normal
statistics for It mesons" by S. Barshay LPhys. Rev. 135, B152
(1964)g, which are based on the observation of interferences be-
tween dikaon states of opposite parity are in fact tests that the
two kaons can be treated as identical particles with a charge
degree oi freedom (and that isospin is conserved). We thank
Professor Sarshay for an interesting correspondence on this
subject.

observed two-particle system, which in turn requires a
sufFicient understanding of the dynamics of the pro-
duction process. Thus, all tests of SP selection rules
will necessarily imply some assumption about the
interactions among particles. In order to be acceptable,
a test must rely only on firmly established properties
of the interactions.

Such well-established properties as the hierarchy of
strength of the interactions (strong, electromagnetic
and weak) and their respective invariance laws can
always be safely assumed. " For strong interaction
production processes —which represent the majority
of the cases considered below —we may also safely
assume that the forces have a short range. This leads
to barrier e6ects, which set a limit on the complexity
of the angular dependence of the wave at each energy,
and suppress all partial waves but the 5 wave in the
low-energy limit. Apart from their well-known invari-
ance properties, the shortness of the range will be the
only feature of the strong interactions which we assume
in the tests discussed below. In the case of electromag-
netic production, the assumption about the range has
to be relaxed, but the weak coupling picture is valid
and its consequences should be carefully explored.
We shall also meet few but important cases involving
weak interactions. Then, such assumptions as the I'C
invariance or the IVIII

= —.', rule are needed; the 6rst of
these assumptions is quite safe; the second is more
questionable.

Going back to Eq. (5), we can see clearly now the
way of building significant tests of the SP selection
rule. Assume, for concreteness, that the two-particle
system under observation is produced by strong inter-
actions. As given by (5), the yield of the experiment is
a sum of two terms, one SP obeying and one SP vio-
lating. We must look for situations where:

(i) the SP-obeying term is either forbidden by con-
servation laws, depressed by barrier effects, or exactly
calculable,
(ii) the SP-violating term is neither forbidden by con-
servation laws nor suppressed by barrier effects.

Then, a nonvanishing yield for the SP violating term
proves that SP is violated, and a zero yield is evidence
that SP holds for this species. The two conditions above
are quite crucial for the test to be significant. They will
be referred to below as condition (i) and condition (ii).

2. Study of Various Types of Tests

To put some order in the discussion of possible tests,
we tentatively classify them according to the way in
which the set of identical particles can be produced. It
"In particular, we assume isospin conservation in strong inter-

action production processes. Some care must be taken in the tests
considered below, in which this assumption plays a role, since the
deviations from the isospin conservation law due to electromag-
netic efFects look exactly like a small violation of the symmetri-
zation postulate.



8 260 A. M ESSI AH AN 0 0. W. GREEN BERG

can be produced in a decay or in a collision. We further
distinguish between simple production processes, in
which the set is produced alone (e.g. , A ~XX,
AB-+ XX), and associate productions, in which it is
accompanied by one or several particles of a diferent
species (e.g. , A —&CXX, AB-+CXX). We consider
first simple decays, then simple collisions, and finally
associate production processes.

SP Forbidden Simpte Decays: Etiidertces of
the Bose 1Vatgre of Piorts

Multipion systems can be produced in the decay of
many unstable particles, i.e., E~ and E', excited
mesons (p, r), oi, etc.), and protonium. Dikaon systems
can also be produced in this way. %hen the quantum
numbers of the decaying particle are known, these may
lead to significant tests of SP, if both conditions (i)
and (ii) are met. This is best shown by treating specific
examples. We shall treat here the decay of the cv, t.hen
the decays of kaons into pions.

The co decay is a strong interaction process. The
selection rule to be tested is relation (17).

The or is an E=O object. Its other quantum numbers
are J~G=1 . Its 2x decav is forbidden by the SP
selection rule. However, this cannot be taken as evi-
dence for the rule, since it is also forbidden by G con-
servation and condition (ii) is not met. As for its 3ir
decay, there are two features which, at first sight, seem
to be relevant to the SP selection rule for pions: (1)
the sixfold sector symmetry of the density of events on
a Dalitz plot whose three energy axes make 120' angles
with each other, and (2) the regions of depletion of this
Dalitz plot where one of the pions has its maximum
possible energy. The first feature has nothing to do with
Bose symmetry; it follows from the absence of inter-
ference between symmetry types, together with the
I=0 property of co. The second feature is also not a test
of SP, because, contrary to conditions (i) and (ii) the
SP-violating contributions are more depressed bv
barrier effects than the SP-obeying ones. Thus we
conclude that, contrary to first appearance, no signifi-
cant test of SP can be expected from consideration of
the 3z decay of the co either. "

"A more detailed analysis of the co decay confirms this con-
clusion. Since the cd is 1, the Dalitz configuration (Lt) must have
I.+/ even, L=/&1 or L=l, and L+/NO. Thus, the only con-
figurations allowed by J, P selection rules are those for which
L=/&0 i.e., (11), (22), (33), (44), and so on. If pions are bosons,
the 37i- orbital wave function must be completely antisymmetrical,
and the "even" configurations, (22), (44), etc. , are forbidden. We
see that the (00), whose absence is particularly easy to observe,

'is forbidden anyway by J, P conservation; the dominant con-
tribution comes from the (11) term, whether pions are bosons or
not. Furthermore, since, as a consequence of the indistinguisha-
bility of pions (and of I conservation), there is no observable
interference between "odd" and "even" configurations, deviations
from a pure (11) Dalitz plot come, in first approximation from
the square of the (22) amplitudes and from the interferences
between (11) and (33). It turns out that these two corrections
have the same functional dependence in the Dalitz variables and
cannot be distinguished. Thus, no practical test of the selection
rule emerges from the study of the co.

On the contrary, the decays of kaons into pions
provide good evidences of the Bose nature of pions. "

Note first that for 2m systems, relation (21) leads to
PC= j.Since we believe that weak interactions are
PC-invariant and that the E&0 and E20 are, respectively,
+ and —,it follows that the decay of the Ess into 27r

is SP forbidden. Clearly, the decay is not forbidden by
the conservation laws governing weak interactions.
Condition (ii) is met, and the test is significant. Ex-
periment shows that the E20 does not decay into 2m.

This can be taken as a very good evidence that x is
a boson, together with a confirmation that weak inter-
actions are EC-invariant.

For 3m decays of E', the situation is reversed. The
lowest Dalitz configuration for a spin 0 (m.+w mrs) system
is (00) for odd PC and (11) for even PC, in the case of
Bose pions. This decay mode is therefore expected to
have a smaller partial width for E&, than for E2',
because of barrier effects (the ratio of partial widths
can be estimated to be at least 10 '). This, together
with the typical (11) Dalitz configuration for the Eis
decay, would provide a significant test of the Bose
nature of pions.

Another evidence of the Bose nature of pions is
found in the decays

E,o

(26b)

Here the selection rule to be tested is again relation
(17).It is found that the branching ratio of the charged
to neutral decays of the E& is in accord with a pure I=0
final state's (~2:1) and that the E+ decay rate is very
much slower than that of Ei". r= to(K+~—w+rr')/
ro (Ei —& 2z.) = 1.4X 10 '. This is currently explained by
the assumption that these weak decay processes are
dominated by ~AI~ =—, terms. Then, the transitions to
I=2 states are strongly depressed. From J conservation,
we know that the dipions are produced in S states.
Since the SP selection rule forbids I= 1 for 5 states, we
are left with a dominant I=O in agreement with the
experimental findings. Here again, the two conditions
for significant tests of SP are met. The SP-obeying
transitions are either forbidden (E+ decay) or exactly
calculable (Ei decay), whereas the violating transitions
are not forbidden by any further assumption. The
weakness of the argument, however, is that the

~

&I
~

= —',

'7They have been recently discussed by H. C. von Baeyer,
Phys. Rev. 135, B189 (1964)."This proves that pions are not fermions, regardless of whether
or not the nI~ =-,' rule holds. See 3. S. Thomas and W. G.
Holladay, Pays. Rev. 110, 981 (1958) for a similar argument
based on the v decay. See also the discussion of reaction (29)
below.

"M. Roos, Nucl. Phys. 52, 1 (1964).
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rule for weak interactions, which is anyway an approxi-
mate rule, is not yet very firmly established.

7iP —+ XA,

~AA.

(27)

(28)

In practice, apart from reaction (28), all of them are
reactions in which a charge-conjugate (or G-conjugate)
pair goes into another charge-conjugate (or G-con-
jugate) pair":

However, the possibility of building tests on reactions
of type (29) is very much restricted as a consequence
of the following lemma.

Lemma: Consider reaction (ZP) where on SP obeying
charge conjuga-te pair AA produces another charge con-

jugatee

Pair, which may not obey SP. Then, SP violating
transitions are absolutely forbidden by J, P, and C
conservation (a) if both A ond X have spin 0, (b) if one

of them is a Dirac spin —, particle -and the other has spin 0.
If both A and X are Dirac sPin r~ Particle-s, then SP
violating transitions are those in which the total spin" is
not conserved (AS&0); they are forbidden if one of the

pairs is in an S state

The same results hold as a consequence of J, P, C, and
I conservation for G conjugate -Pair to G coejuga-te Pair
reacti oeS.

The proof is straightforward. Here, we consider only
the case of two charge-conjugate spin--', pairs and leave
the other cases to the reader. Since they are assumed to
be Dirac particles, the parity of each pair is opposite
to that of its relative orbital angular momentum
$P= (—) +'j. Thus, conservation of P and C implies
conservation of C(—)z. Since the AA pair obeys the
SP selection rule (21), whereby C(—)z= (—)s, vio-
lation of SP in XX is equivalent to a change of sign of
(—)e in the transition, i.e., ASTRO. Because of J and
I' conservation, these singlet to triplet and triplet to
singlet transitions are allowed only if J=L in the initial
and the final state, and they are forbidden when one of
the L vanishes (S state), Q.E.D.

An obvious consequence of the lemma is that con-
dition (ii) has no chance to be met" unless both A and

' Here, we assume AQX. There are simple tests based on
scattering experiments, i.e., XX—+ XX or XX—&XX. Thus, in
the charge-exchange collision E+EC ~E /P, SP forbids the pro-
duction of E1Eg pairs at 90' c.m. angle. We do not go into this,
since these experiments are unfeasible with present techniques.

"For clarity we use all along the nonrelativistic language and.
speak of total spin, rather than the correct language with the IIt
operator.

"We assume here, as is always the case in practice, that one
of the particles, A say, is known to obey SP. If the nature of both
A and X is questioned, we may find significant tests that at least

Simple Two Bod-y Collisions: Tests That A Are Eermions

Next in simplicity for producing systems of identical
particles, we find the simple two-body collisions, e.g.,

(XA pairs)

3
a ~

——4o 1——(cosu)
2

(30)

These formulas hold whether the initial 7ip state is
polarized or not. 0. is the corresponding total production
cross-section along this direction, cr( —0.66) is the
asymmetric decay parameter of the A, and I is the angle
between the two decay-pion momenta taken, respec-

one of them obey the postulate. For example, the decay of the
S-state protonium into 2E1 (or 2~0) is forbidden if either p or E'
(or m-) obey the postulate. If this decay were observed, we would
have to conclude that both p and E (or ml violate SP providing
that we are sure that the protonium is in an S state. Since it is
not observed, we are sure that at least one of the two species of
particles obey SP and that the protonium is in an 5 state.

23 C. Cohen-Tannoudji and A. M. I . Messiah, Nuovo Cimento
23, 853 (1964). See in particular Note 7,

X have spin, . Thus, no valid test of the Bose nature
of vr can be based on the analysis of reactions of this
type; on the other hand, the fact that reactions of this
type are observed, e.g. , pp —+ v.+v. , insures that pions
are not fermions. In the same way, from the occurrence
in nature of the reaction 7ip —+ EeE', we conclude that
kaons are certainly not fermions, but no reaction of
this type may lead to any valid test of the Bose nature
of E.Better, if we assume that x are bosons, we cannot
find any test of the Bose nature of E in xE collisions
(e.g. , v p~ AE'E') . if the collisions are known to be
peripheral, since, in this case, the eGective EX pro-
ducing process is xm —+ EK.

We focus now on spin--', particles. The tests, if any,
should involve a measurement of the total spin S of
the two-particle system. Therefore, in practice, they
apply only to particles like A, p, , whose polarization
can be obtained from the angular correlation of their
decay products. We shall discuss first reaction (27),
as an illustrative example of reactions of type (29),
then reaction (28).

With reaction (27) our aim is to look for spin-non-
conserving transitions. The test will consist in preparing
the pp pair in a pure triplet state and looking whether
the production of singlet AA pairs is forbidden or not.

The pure triplet initial state is obtained by taking
the p beam and the p target completely polarized along
some direction Oy perpendicular to the incident mo-
mentum. In practice, it is possible to have only partially
polarized beam and target. With partial rather than
complete polarization, the situation is somewhat more
complicated, but the procedure remains essentially the
same. We shall not go here into these complications
and shall assume complete polarization.

Now, the cross sections 0-, and 0.
~ for the production

in a given direction of singlet and triplet ~ pairs
respectively, are given by"

9
o,=-,'o 1+—(cosu)

2Q
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TmLE I. Selection rule for the reaction p -+ hA at low energy.

SP forbidden SP allowed

Resulting
angular

correlation

'Sy ~ 'SI, 'DI

'Sg —+ 'DI

lSp ~ 1Sp

'SI ~ 3EI
ISp —& 'Ep

(cosl) = ——',&P

(cosl) =—,'n'

~ L. B. Okun', I. Ia. Pomeranchuk, and I. M. Shmushkevich,
Zh. Eirsperim. i Teor. Fiz. 34, 1246 (1958) (English transl. : Soviet
Phys. —JFTP 7, 862 (1958)g; S. 3.Treiinan, Phys. Rev. 113,355
(1959),

tively, in the rest frames of their parent particles. The
symbol ( ) denotes the average over the directions
of the two decay pions. Thus, the singlet and triplet
contributions can be separately measured by means of
a suitable angular correlation experiment.

With the pure triplet initial state taken above, o„
must vanish if the A is a fermion, i.e., the correlation
coeKcient (cosu) must be equal to its lowest bound
—crs/9.

Let us now discuss condition (ii). The only con-
servation law which might come into play is the one
associated with the reQection E around the production
plane, when the latter is normal to Oy. Then, the initial
state is an eigenstate of E (R= +) and the conservation
of R is equivalent to the conservation of the parity of
m8, component of the total spin along Oy. This requires
res +1 or ———1 for the XA pair, which excludes singlet
production. Besides this, barrier effects will suppress
all but S waves in the vicinity of the threshold, which
also excludes triplet to singlet transitions according to
the lemma. Thus, condition (ii) is met if the energy is

sufficiently far above threshold, so that higher waves
are produced in the final state, and if the normal to the
production plane is sufficiently far away from the initial
direction of polarization.

We turn now to reaction (28). It has already been
studied in the literature for information about the
( p) parity. '4 We consider here the absorption in Right.
The E-shell absorption of a p atom leads to similar
results.

Like for AA pair production, the singlet and triplet
contributions can be separated by angular correlation.
The expressions for o-, and a.

& are those given by Eqs.
(30) with —cr' instead of rzs everywhere. The reaction
is exoergic (Q 29 MeV) and conserve parity. There-
fore, ie the low-energy limit, all waves but the 5 wave are
suppressed by barrier effects in the initial state and the
parity of the AA. pair is equal to the intrinsic parity p
of the ( p) system. If the A is a fermion, (—) B=rt, that
is o,=p for rt=+ and o,=0 for rt= —.The operation
of the SP selection rule is summarized in Table I.
Clearly the forbidden transitions are forbidden by SP,
and not by any conservation law or barrier effects.
Thus, condition (ii) is met and the test is significant.

Associate Production: Application to Eaons

Ke now discuss possible tests in the more compli-
cated cases when the system of two identical particles
is produced in a reaction together with one or several
other particles, that is reactions of the type A —+ CXX
or AB —+ CXX.Here, X denotes a particle of the species
under study, without any restriction on the values of its
internal variables. Thus XX stands for what was de-
noted by XX, XX, px or px in the Sec. I.4. The tests,
which can be thought of in these more complicated
cases are very numerous and diverse. But they look
much more dificult than those using simple production
processes, because they always demand detailed in-
formation about a certain selection of events, the yield
of which is expected to be quite small. The tests, which
we give below and in the Appendix, for illustration,
may not be the easiest to perform in this wide collection.
But their description should give a clear enough picture
of the different types of test entering this category, and
of the way one can be convinced of their respective
significance.

The SP selection rule to be tested will be relation
(20), (21), (22), or (23), according to the case. One
common feature of these relations is that they relate
the orbital parity (—)~ to internal variable quantum
numbers. The tests will consist in producing the XX
system with well chosen values of the internal quantum
numbers, and then to find a way of checking that the
waves having the SP forbidden parity are actually
missing. For this purpose, we have to make use of some
observable effect characterizing states with no odd
waves, or states with no even waves. To be of any value
to us, this effect must be quite general; i.e., its occur-
rence should not depend on more detailed features of
the dynamics of the production process than those that
we are willing to admit and that were indicated in Sec.
II.1.

To our knowledge, three effects may be of use and
lead to three different types of test. The first two have
to do with the vanishing of orbital waves of given
parity at suitable angles. First, orbital waves with a
given value M of the magnetic quantum number
vanish at right angle to the quantization axis if their
parity is opposite to (—)~. Second, orbital waves with
a given value, + or —,of the quantum number R
associated with the reRection through a given plane,
vanish at right angle to this plane if their parity is
opposite to It.. The last useful effect (which works only
for strong interaction processes) is the suppression of
all but the S-wave contribution when the invariant
mass m» of the XX system approaches its threshold
value.

Let us discuss Grst the tests of SP using waves of
given M ("M test").

We recall that the spherical harmonic I'r, ~(e, io)
vanishes (like cos8) when 0 goes to -,'z. if (—) +~ is odd,
whereas it keeps a finite value if (—)~+~ is even. In
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E p —+AEE. (31)

As noted already, even- and odd-C contributions in
the EE state can be separated by observing the decay
mode of the kaons. According to the SP selection rule
(19), EiEt (and EsEs) pairs must not occur in odd
orbital states, E&E2 systems must not occur in even
orbital states. To test this, we must manage to separate
M=0 and

I
M

I
=1 dikaon waves. This can be done by

selecting events in which the dikaon is emitted along
the line of flight of the incident kaon (s direction). The
desired IMI =1 and M=-0 states correspond respec-
tively to events in which the s component of the baryon
spin does Qip and does not Qip. There is unfortunately
no way of separating these states with an unpolarized
target. "

Let us assume that the protons are fully polarized
along the s axis (3II„=+-',). Call, respectively, (8&+x)
and (8 op ) the spherical angular coordinates of the
direction of E emission in the rest system of the dikaon
and of the direction of the decay x in the rest system
of the A. Kith obvious notation, the forward production
amplitude of the dikaon, can be written:

A+ ——no spin flip+spin flip

=A+(EE) p+A (EE)i.
Squaring, then averaging over p angles and over the
polarization of the decay nucleon of A, we obtain the
following form for the forward cross section:

o„=(1+n cos8a) IFo(81') I'+(1—n cos8a) IFi(8x) I'.
'p For L+M even and )M (

=0 or 1, [ Fr M(-,'s.,y) (' is found to
be 1.25 times its average value r's. with a 5% accuracy. Thus
unless cancellations occur through interference of different values
of L, the contribution from (L+3d) even is o priori quite large
at 8=~/2."With an unpolarized target, one can separate the contribution
of the interference term between 3/5 =0 and M =1 states by meas-
uring the azimuthal correlation of the E'+ and of the decay pion
of the A.. As noted above, however, this is of no use for testing SP.

particular, we 6nd the following results" about the
emission at 0= ~x".

(a) In the absence of even-L waves, the contribution
of M =0 characteristically vanishes like cos'0.

(b) In the absence of odd-L waves, the contribution
of M =&1 characteristically vanishes like cos'0.

(c) No characteristic effect shows up in the inter-
ference terms between M =0 and M = &1 when either
even- or odd-1. waves are missing.

Consequently, in states for which ever-I- +aves ufe
SP forbidden, a possible test will consist in separating
the M =0 component along some quantization axis and
checking that its contribution in the emission at right
angle of this axis vanishes like cos'0. In states for which
odd L toaves are SP forbidderl, , the same treatment has
to be applied to the 3f=&1 component rather than
M=0. In proposing such tests, one must always make
sure that condition (ii) is actually met. We illustrate
this on the reaction

n is the asymmetry parameter of the A decay, I"0 and
F~ are, to within inessential factors, the transition
amplitudes corresponding to M =0 and M =1 waves,
respectively. More generally, the forward cross section
o ~ corresponding to target protons having polarization
P along the 8 axis, reads:

o'z =o'o(1+nPG cos6,)

with

G(8x) =
IFol'y IFil'

Thus, a measure of the ratio of the polarized to the
unpolarized cross sections, permits the determination
of the angular correlation function G(8x), which in
turn lead to the relative contribution of M=O and
M = 1 waves through the formulas

= s(1+G), = s(1—G).
IFpl'+ IFtl' IFoI'+ IFil'

If kaons are bosons, odd waves are forbidden for
EtE& pairs. Then, for AE&E& events,

I
Fil' will vanish

like cos'8x at 8x=isz, whereas IFpls will remain finite.
For AEtEs events, the converse result will apply, I

Fp I'
going to zero whereas I Filo remains finite. Hence the
test we are looking for. As is readily seen by inspection,
J and P conservation do not forbid the waves which
are forbidden by the SP rule, but 1.=1 and higher
waves are depressed by barrier eGects for events in
which the invariant mass m~~ is not far enough from
its minimum value 2mz. Thus, condition (ii) is always
expected to hold in the analysis of AE&E2 events. In
the analysis of A.E&E& events, however, one should
keep away from the low invariant mass limit, and
check that higher waves than I.=O are actually present,
by observing the deviation from spherical symmetry
in the angular distribution of the kaons in their center-
of-mass system.

We draw the reader's attention to the similarity of
the procedure followed in these tests with the analysis
of Adair or its generalized versions. "The choice of the
range of solid angle toward the forward direction in
which the dikaon is collected for this type of experiment
is made exactly like in the Adair analysis (8&K/R) and
for the same reason.

We turn now to the second type of tests ("R tests").
It is performed on waves with a given value of the

"plane reQection" quantum number E, and uses the
known property of spherical harmonics that waves,
which have a parity opposite to E, characteristically
vanish (like sing) at right angle to the plane of
symmetry.

A very simple illustration of the possible use of this

' R. K. Adair, Phys. Rev. 100, 1540 (1955};S. B. Treiman,
ibid 128, 1342 (1962.); C. Itzykson and M. Jacob, Phys. Letters
Si 153 (1963)



A. MESSiAH ANB O. N. GkEENBERG
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FIG. 1. Ratio of cross
sections for E1E~ and
E F1 events versus
mass squared of the EE
system near threshold
for Bose kaons.

select quantum numbers of the XX system associated
with odd waves by the SP selection rule, and make sure
)condition (ii)) that the S-wave production of XX is
not also forbidden by conservation laws. Then a sig-
nificant test that the SP selection rule holds, consists
in observing if the production cross section vanishes
like (zzzxx —2zzzx) times the appropriate phase factor
when m~~ —& 2mx.

To illustrate this, let us look again into reaction (31).
%e are led to compare the two channels

for testing SP is given by the reaction

E+ He4 II.,4E+E+. (32)

The plane of synUnetry to be considered here is the
plane of production of the dikaon, i.e., the plane parallel
to the incident direction and to the direction of emer-
gence of the center of mass of the E+E+ system. E is
the quantum number associated with the reQection
through this plane. It is known that E+ is a pseudo-
scalar, and that the hyperfragment H&4 is a scalar
particle like He4. Since R is conserved in this strong
interaction process, we And that the dikaon produced
in the final state has R=- —.If kaons are bosons, this
value is opposite to the allowed parity of the dikaon
wave and the emission of E+ at right angle of the
production plane is forbidden. To be significant, the
test should be performed with dikaons emitted sufB-
ciently far away from the forward (or backward)
direction and with an invariant mass mzz sufficiently
far above its threshold value 2m~, in order that odd
dikaon waves be not forbidden by conservation laws
or barrier effects Lcondition (ii)].

As a second illustration, let us go back to reaction
(31). Again E will be the quantum number associated
with the reQection through the production plane of the
EX system. To build a test of SP, polarization of the
target is still needed, but now it has to be perpendicular
to the production plane. For simplicity, we assume
complete polarization of the proton target in this
direction. From angular correlations of the decay
products of the A, it is easy to separate the Anal states
with spin flip (i.e., spin of the A opposite to that of the
proton) from those without spin flip. Since R is con-
served, dikaons produced with spin flip have R=+,
whereas those produced without spin Qip have A=- —.
For Bose kaons, E'&Ez (and EzE'z) pairs emitted at
right angle to the production plane are necessarily
associated with spin Qip transitions, whereas E&E2
emitted along the same direction are necessarily asso-
ciated with non-spin-Qip transitions. The discussion of
condition (ii) is similar and gives the same result as in
the "3f test" discussed above.

We turn finally to the third type of tests. It uses the
barrier eBect which, in strong interaction production
processes, suppresses all but 5-wave contributions in
the limit mx~ —+ 2m~. For this purpose, we have to

A.K F2. (31b)

The S-wave production is forbidden in the second
channel, if kaons are bosons, whereas the first channel
remains allowed. We do not see any conservation law
to forbid 5 waves in any channel. Better, the cross
section for reaction (31a) can be used to some extent
as a good measure of the order of magnitude to be
expected for reaction (31b), if the SP selection rule
does not operate. Thus, a significant test that kaons
are bosons is obtained by checking that:

(i) no relative 5 wave occurs in the EqEz pair, i.e.,
calling q the relative momentum, the square of the
matrix element vanishes at least as fast as q' when q

—+ 0,
or equivalently as mz, z,—2m+ when mz, z, ~ 2m+',

(ii) channel (31a) is much more copious than channel
(31b) in this limit.

Figure 1 illustrates the expected threshold behavior,
in the case of Bose kaons, of the ratio of the cross
section for E&E2 events to that of E~E~ events, as a
function of the square of the invariant mass of the
Eo~o system.

In practice, occurrence of EX resonances in both the
EzE2 (i.e., $0 production) and E~Ez channels close to
threshold may make this experiment more dificult than
could be expected at first sight.

3. Survey of the Experimental Situation

In the light of the above discussion, we now make a
survey of the experimental situation for species of
particles other than electrons, nucleons and photons.

I'i ops

The nonoccurrence of SP forbidden decays for kaons,
as mentioned above, can be taken as a conclusive
evidence of the Bose nature of pions, especially the
observed selection rule against the 2m decay of the E2'.

We have looked systematically for other evidence,
and have not found anything but rather complicated
tests. We 6rst have reviewed the decay modes of all
the known unstable particles. '9 As shown above,
nothing significant emerges from the decay of the co,'

we reach the same conclusion with the q and the p. For
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all other excited mesons, the situation is inconclusive
because of uncertainties in the spin assignment. "The
case of the protonium is discussed in the Appendix.
We 6nd a possibility of test there, but it looks quite
dificult. Possible tests using associate production are
also discussed in the Appendix.

FIG. 2. Dominant dia-
gram in e+e ~p+p .

Eaoes

For kaons, as well as for all species considered below,
we do not And any evidence of the SP selection rule on
the record.

In fact, there does not seem to be any easy test
available for kaons. We have seen that simple two-body
collisions cannot lead to any test. For the same reason,
the simple decay of the protonium cannot be, and is
found not to be, SP forbidden. For all other unstable
particles, e.g. , the p which decays into Ei'Es', the
situation is still inconclusive, pending a measurement
of the spin. Unless an example of SP-forbidden simple
decay is found, one will very probably have to resort
to associate production processes, in order to test
significantly the Bose nature of kaons.

The three types of tests in associate production can
be applied to reaction (31), as shown above. The M
and R tests can also be applied in a very similar fashion
to the reaction

(33)

The difficulty with M and Etests in reac. tions (31) and
(33) is that they require suitably polarized proton
targets. Tests of this type, which do not require this
rather dificult technique, may be worth noting, e.g. ,
the R test with reaction (32) described above, and the
Ã test with the protonium decay described in the
Appendix. Examples of tests using the low-mass limit
in other reactions than (31) are also listed. in the
Appendix.

HyPerons

Two remarks are in order with hyperons. First,
simple two-body collisions are no longer u priori ex-
cluded for tests, and they should provide the easiest
ones. Second, a test will always imply a measurement
about the spin state of the hyperon pair, and there is
no practical way of doing it, unless the hyperon has
an asymmetric decay. Thus, we restrict ourselves to
hyperons having an asymmetric decay (A, Z+, etc. ,
but not Z ), and look for tests of their Fermi nature in
simple two-body collisions.

The case of the A hyperon is the most favorable. We
6nd two reactions, which provide significant tests, i.e.,

"To be of use for this purpose, the spin assignment should not
be based on the symmetrization postulate. Thus the case of f, to
whom the spin 2 has been attributed on the ground that odd spins
are excluded by Bose statistics LL. Bondar et a/. , Phys. Letters 5,
153 (1963)g, should be discarded. The same remarks apply to the
@ LP. L. Connolly, E. L. Hart, K. W. Lai, G. London, G. C.
Moneti et a/. , Phys. Rev. Letters, 10, 371 (1963)g.

reactions (27) and (28). This has been studied in detail
above. The experiment with reaction (28) looks u priori
easier, since it does not require a polarized proton target.

We do not find in nature any reaction like (28) with
other hyperons. But reactions like (27) do exist for all
of them, and lead in the same way to practical tests of
the Fermi nature for all the hyperons having an
asymmetric decay.

%Noes

Since muons also have an asymmetric decay, we
meet at first sight the same favorable situation for
tests as for the A. In particular, one might expect the
study of the reaction

(3&)

to provide a very direct means of testing the Fermi
nature of muons, exactly in the same way as reaction
(27) provided a test for the A.

Here, however, the production process is due to
electromagnetic rather than strong interactions. There-
fore, the validity of condition (ii) has to be reinvesti-
gated.

The main point to make is that the coupling is weak,
and that the dominant contribution to the production
amplitude comes from the one-photon exchange dia-
gram (Fig. 2). The corresponding term leads to a p+li
state, which has the same transformation properties
under inhomogeneous I orentz transformation and
under charge conjugation as the virtual photon, i.e.,
J~~=1— . Remembering that the intrinsic parity of a
pair of charge conjugate Dirac particles is odd, we
conclude easily that this state is a triplet with even
orbital angular momentum (or, more correctly,
HI' = —); therefore, the SP selection rule (21) is
necessarily veri6ed, whether the p is a fermion or not.
Condition (ii) is not fulfilled.

In conclusion, to the lowest order in e'/Ac, reaction
(34) does not provide any significant test of the Fermi
nature of muons. Possible deviations from the SP
selection rule come from higher order terms and can be
displayed only by high precision measurements, which
are hardlv realizable in practice.

The same remark applies to all production processes
through the exchange of one virtual photon, whether
simple or associate. Thus, contrary to expectation, we
do not find any practically feasible test of the Fermi
nature of muons.
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APPENDIX: DISCUSSION OF SOME SP TESTS
FOR PIONS AND KAONS

g Decay

out to be

(pp) ~ a)E'ER,

(pp) -+ p'EgE2.

(A4)

(A5)

could be used for testing the SP selection rule EC=+
in the thereby produced x+m system. With the z axis
taken along the line of Right of the m or the y, one
selects (m+m ) pairs with given values of M. Unfor-

tunately, the M test cannot be applied, because the
selected values of M, i.e., M =0 for (A1) and

~

M
~

= 1

for (A2), are precisely not those which are useful for
the M test. In the decay (A2), where SP forbids even
waves, one could think of testing the absence of S wave
in the low-mass limit. But here again, condition (ii) is
not met, because the S-wave production is forbidden
anyway by the 0 —+ 0 selection rule in electromagnetic
processes.

Protonium Decay

Since the simple decay processes (pp) —+ 27r or

(pp) —+EE cannot provide any test as a consequence
of our lemma, we have to look into the decay modes
into three or more particles.

The decay of the protonium is known to occur from
the E—shell, i.e., from the two levels J~~=O + and

. The difhculty in building tests there is that most
often the respective contributions from these two levels
cannot be measured separately.

We have not found any test for Bose pions from the
analysis of the 3' decay modes, i.e., (pP) ~3~0 and

(pp) —& w+w —~'. More complicated decay modes provide
tests, which look hardly feasible. For example, consider
the 4x decay mode:

(pp) —+ m+x=vr+~— (A3)

and select the events, when the four emitted x are
coplanar. Call E. the operator of reQection through this
plane. Since E=+ for these events, 7=0 is excluded,
hence C= —.For Bose pions, the two (n+n. ) pairs
must have an opposite parity. They cannot be both in
an S state at the same time. This absence of S-wave
can be tested by observing the yield in the limit, when
the invariant masses of both pairs simultaneously go to
their threshold value.

Turning to kaons, we look for tests using decay modes
of the type (pp) —+ CEE. The interesting cases turn

No test of the SP selection rule for pions emerges
from the analysis of the decay of the p.

The g has J~~=O + and I=O. q —+2m is forbidden
by J and I' conservation, p —+3~ cannot be a strong
interaction process because of G conservation. Let us
see whether the C conserving electromagnetic proc-
esses

(A1)

(A2)

We discuss the mode (A4). The same arguments apply
to (A5), since the co and the p' have the same J c
quantum numbers, i.e., I . The conservation of C
implies J~~=O + for the initial state. Then, take the
direction of emission of the oo for the quantization axis
Oz. It is possible, from angular correlations of the decay
products of the co, to separate the contribution M„=0
from the contribution

~

M „~ = 1. Selecting M „=0, we
obtain a 35=0 state for the E&E2 system. Then, the
SP selection rule (19) forbids the kaon emission at right
angle to the quantization axis. Inspection shows that
the conservation laws forbid the S wave, but not the
D wave in this dikaon production, and that barrier
effects, although favoring E'-wave emission, should not
suppress very much the D wave. If kaons were not
bosons, the E~E2 system should thus exhibit a D-wave
contribution, especially at right angle to the z axis,
where it would be the dominant contribution. Thus,
we are in a case where condition (ii) is reasonably well

fulhlled. "

x+ He4 ~ He4m+m'. (A6)

The dipion is produced in an I=1 state, and even
dipion waves are SP forbidden. However, since the ~ is
pseudoscalar, the dipion is E= —,hence even dipion
states do not contribute to the emission of pions at
right angle of the plane of production, as a consequence
of J and P conservation alone; this excludes the E test.
A similar argument excludes the M' test. Signi6cant M
and R tests can be built only with reactions involving
spin-2 particles, like vr+p —+ rc~+7r+, and require polari-
zation measurements, which make them unpractical.

The only practical tests in sight are those based on
the low-mass limit. They consist in producing a dipion
in a I=—1 state, and testing the absence of S wave
through observations near threshold. This can be done,
for example, with the reactions

(A78)

p~+7ro. (A7b)

The amplitudes TB and T, for the symmetric and anti-

~ The decay into cd&E& is known to be copious. The same is
expected for the decay into cd&E&, it is unfortunately rather
dificult to observe.

Associate Production of Pions (AB —& Cm~)

We have not found any M or E test using a reaction
which involves only spinless particles. Consider, for
example the reaction
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symmetric iVxw 6nal states can be written

Ts..= (I/V'5) (2(N++) —(I/v2) L(p+o)+ (p0+) j}
XA ..."'(k' k")+ (I/~2) r(p+0) —(po+) 3

XA &»(k',k").

The coeScients of the A's are the normalized charge
wave functions, and correspond to the I=2 and I= 1
two-pion contributions, respectively. The momenta k',
k" are associated with the pion charges in the same
order. The subscripts on the A's refer to the symmetry
under exchange of the momenta. The A's also depend
on additional variables which are not relevant here.
The probability w(k'+, k"+) for observing reaction
(A7a) with momenta k', k" for the two ~+ is, up to
irrelevant factors,

w(k'+, k"+)=-;[)A,&'&(k',k") ~'+ (A.&'&(k',k") ~'j.

The corresponding probability for reaction (A7b) with
mOmenta k' fOr 4r+ and k" fOr m' iS

Note that reaction (A6) does not lead to any test
because dipion S states are forbidden by J and P
conservation alone.

Other cases of interest are those in which three pions
are produced in a pure I=0 state, e.g. ,

dd —& He4x+x xo. (A10)

Relative S wave, in each pair of pions, which should
dominate in their respective low-mass limit, are for-
bidden if pions are bosons.

Associate Production of Kaons

Tests of the absence of S wave in dikaon systems in
the low-mass limit may apply either to EX in the E&E2
channel, or to EE in the I=O channel. A typical
example of the first case is given by reaction (31).
Examples of the second case are given by the reactions

(A11a)

w(k'+, k"0) =—,'0[jA &'& —QSA &'& '
+ A &'& —QSA &'&('j

where the A's should be taken at the values k', k" of
their arguments. Here condition (ii) is obviously satis-
6ed, so we isolate the pure I= 1 contribution to reaction
(A7b), according to the formula

Z+E+E',

AANE+E+

(A11b)

(A12a)

wi(k'+, k"0) =w(k'+, k"0)+w(k"+, k'0)
—4iw (k'+, k"+)

= [A,&'& /'+ )As&'& f'.

If pions are bosons, wi must vanish like qm=
(k' —k")2

times the appropriate phase space factor when q
—+ 0.

En practice, this means that m& must become negligibly
small compared to ++0, m++ or m2 in that limit.

One can imagine many other reactions like (A7)
leading to tests based on the same property, namely
the absence of S wave in I=1 dipion states. Of par-
ticular interest are reactions of this type, where the
two pions are produced in a pure I= 1 state, e.g. ,

AhpE+E . (A12b)

Using notations analogous to those related to the dis-
cussion of reactions (A7), we find for the contributions
of the I=O and I=1 channels the following results in
the case of (A11):

wo ——w(k'+, k"0)+w(k"+, k'0) —w(k'+, k"+)
w, =2w(k'+, k"+);

and in the case of (A12):

wo ——w(k'+, k'0)+w(k"+, k'0) ——,'w(k'+, k"+)
wi=-', w(k'+, k"+).

x+d ~ dx+m',

p He' —+ He44r+7r'.

(AS)

(A9)
For Bose kaons, wo/wi should go to 0 like (4&4&r&r

—2m&r)

when the latter quantity goes to 0.


