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The absorption of high-intensity radiation, by the inverse bremsstrahlung process, has been studied. The
results are significantly modified, compared to the results of perturbation theory, when the parameter
e'E'/miso' becomes comparable to or greater than unity. Here E is the strength of the radiation electric Geld
of frequency co. It is found that the absorption cross section changes from an inverse seven-halves-power de-
pendence on frequency for small values of the parameter, to direct proportionality for large values. Further-
more, for large radiation fiuxes, the cross section varies inversely as the three-halves power of the Qux.

I. INTRODUCTION

NVERSE bremsstrahlung refers to the process in
~ ~ which an electron absorbs radiation as it scatters
in the Coulomb Geld of an ion. Theoretical studies of
the bremsstrahlung process have included the assump-
tion that the interaction of the electron with the radia-
tion field may be treated by lowest order perturbation
theory. ' In the very early treatments it was also as-
sumed that the electron is sufficiently energetic, both
before and after absorption of radiation, that the
electron-ion scatter may also be described by lowest-
order perturbation theory. Subsequent efforts have
permitted this latter condition to be relaxed by includ-
ing the use of more exact Coulomb wave functions. ' '

The introduction of lasers4 into current technology
has produced an interest in the nonlinear interaction of
radiation with electrons. A considerable effort has been
expended in predicting corrections to the Thompson
formula for the scattering of radiation from a free
electron, by including multiple photon transfer proc-
esses. ' " The corrections to previous results have been
found to be extremely small, even for the most intense
radiation Gelds available; the expansion parameter for
the free-electron scattering process may be written in
the form' —~

(eE/rrtooc)',

where E is the electric field intensity for the radiation
Geld of frequency co, e, and nz are the electron charge and
mass, and c is the velocity of light. It is clear that the
strong Geld correction is essentially a relativistic effect.

Recently, von Roos and others' " have been quite
successful in extending to atomic systems, techniques
used in plasma studies. In these works, the statistical
nature of the atom is emphasized, so that the starting
point has been the Thomas-Fermi model, and use is
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made of a quantum-mechanical analog of the Vlasov
equation. " Quantum correction to the Thomas-Fermi
model, due to both exchange effects and strong potential
gradients, are obtained in this manner. In our work, we
will extend certain techniques used in plasma studies to
the problem of a single electron which interacts with
radiation.

It is of interest to consider the strong-Geld parameter
associated with the inverse bremsstrahlung process, in
order to determine the magnitude of the correction
which we will consider in this work. This may be done

by observing, from a classical point of view, how the
nonlinearity arises. In the presence of the radiation field,
an electron undergoes oscillation, with peak velocity

tto= e~o/mcu,

where Ep is the peak value of the electric Geld strength.
If mp is comparable to the initial electron velocity vp,

then this initial velocity loses its previous signiGcance.
Of greater interest is what happens when —,'mup' exceeds
Ace. Then regardless of the initial electron velocity, the
electron acquires sufhcient energy, by interaction with
the radiation field, such that it may emit photons. This
is clearly a nonlinear effect, since the field has given the
electron the energy which allows it to modify the field.
The parameter which we seek, therefore, is

trttt p'/2Itoo =e'Ep'/rrthto'

From the quantum-mechanical point of view, a non-

negligible magnitude of this parameter assures the im-
portance of multiple photon transfer. For a 10"W/cm'
laser beam of infrared, with an angular frequency of
co=10" sec ', the magnitude of the parameter is of the
order of unity. In this work, we consider how the
absorption process is modiGed with these strong Gelds.

It will be assumed that relativistic effects are un-
important, that is, the initial electron energy —', mop', the
photon energy ken, and the energy acquired by inter-
action with the Geld, ~~mup', are all assumed to be small
compared to the electron rest energy. Furthermore,
classical theory will be used whenever it is applicable.
For example, since electron recoil velocities are non-
relativistic, the radiation Geld may be treated classically
without introducing a further approximation. Further-

"A. Ulasov, J. Phys. (USSR) 9, 25 (1945).
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more, the ion, which provides the background Geld in
which absorption may occur, is much heavier than the
electron. Therefore, ion recoil may be neglected, and
the ion motion may therefore be treated classically; the
resulting error is of the order of the electron-ion mass
ratio. The electron motion is of course treated quantum
mechanically. Finally, the electron-ion scatter will be
described by the Born approximation. The use of free-
state wave functions in lieu of Coulomb wave functions
renders the mathematics considerably more tractable.
Thus the electron velocity is, at all times, required to
exceed greatly the quantity eg/5, where e and g are the
electron and ion charges, respectively.

We now describe the method of solution. In the
center-of-mass coordinate system, the ion is e6ectively
stationary, whereas the electron motion is extremely
complicated. For example, the electron velocity is com.-
posed of three parts: the initial velocity; the increment
attained by scattering in the ion field; and the oscillating
component which results from interaction with the
radiation Geld. In order to reduce the complexity of the
electron motion, we transform to an oscillating coordi-
nate system, so that it appears as if the ion is oscillating
while the electron is unaftected by the radiation 6eld.
Now the ion produces a time-dependent field in which
the electron scatters; in that sense, the simplification is
somewhat illusory. We will refer to this latter coordinate
system as the oscillating system, to distinguish it from
the center of mass system.

In the oscillating system, the electron wave function,
in the presence of the ion Geld, is time-dependent. Since
the ion motion is classical, we may use the classical
concept of force when referring to the ion. We conjec-
ture that, the electron wave function being time-
dependent, it transmits a reaction force to the ion. From
the usual point of view, this force on the ion is merely
due to an electron-ion scatter. But we can also consider
this force from a somewhat different point of view.

Let us interpret the electron wave function P, such
that eP*P represents an extended distribution of charge,
which can support the propagation of longitudinal
waves. The ion, oscillating in this medium, is a source
of such waves. Since longitudinal waves carry energy;
there is a reaction force associated with the emission
of these waves by the ion. It is asserted that the force
on an ion, calculated in this manner, is identical with
the force associated with a particle-particle scatter.

We will denote the reaction force on the ion by F. In
the oscillating coordinate system, the time rate of
energy which the ion absorbs from the radiation Geld is
F u, where u is the ion velocity. We are really interested
in the time-rate of energy absorption by the electron in
the center-of-mass system. If the electron were a classical
particle, then since Coulomb forces obey the law of
action and reaction, the force which the ion exerts on
the electron must be identical with the force which the
electron exerts on the ion F. The semiquantum state-

ment of Newton's third law is that the time rate of
momentum transfer from the ion to the electron is equal
to F. Similarly, the quantity F u is the time rate of

energy transfer from the ion to the electron.
Now the only reason that the ion transfers energy to

the electron is that the ion is caused to oscill.ate by the
radiation Geld. A static Coulomb field can result in no

energy transfer. We conclude, therefore, that F u is the

energy which the radiation field transmits to the
electron, by using the ion as an intermediary. But this

quantity is what we seek; dividing it by the incident
radiation Qux per unit area yieMs the absorption cross
section.

By using the technique described above, it is possible
to treat the interaction of radiation with the electron
to all orders in the field strength. In the next section, a
general expression is obtained for the energy transfer. In
the third section, this expression is reduced in the limits
of weak and strong fields, respectively. It is shown that
the extreme weak field limit is identical with the results
of perturbation theory.

II. ENERGY TRANSFER

i7ig= Hog epP; Ho ———p'/2m, (2)

where the potential p of Eq. (2) is the solution of Eq.
(1).Note that the electron contributes to the potential
field which acts back. on the electron. Aside from result-
ing in self-energy effects, for an extended electron dis-
tribution, this procedure insures the collective effects
needed for the propagation of longitudinal waves.

In order to solve Eq. (2), q (t,r) is treated as a per-
turbation. We have already agreed to treat the static
Coulomb field by perturbation theory. But y represents
a time-dependent Coulomb field, which is modified by
the presence of an electron distribution. Comparing p
with the static Coulomb Geld, it is clear that the
presence of the electron can only weaken the perturba-
tion, since the sign of its charge is opposite to that of
the ion. Furthermore, the time dependence, produced
solely by the ion motion, cannot induce a sizeab1. e
perturbation, except during those rare periods when the
ion velocity is very nearly equal to the electron velocity.

The solution of Eq. (2) may be obtained in the Born
approximation, in terms of the held y, without
specifying the field. The perturbation in the electron

Let g (t,r) be the electron wave function, so that e/r*P

represents its charge distribution. Similarly, let qS(t, r)
be the ion charge distribution. The potential field,

p(t, r), produced by both particles, is obtained from
Poisson's equation,

P p=4xei/i*/ 4m.qS(t, r) . —

We now consider the quantities to be substituted into
the right-hand side of this equation.

The electron wave function is obtained from the
Schrodinger equation,
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distribution,
t '(t,r) =A*—4'+44'* (3)

p'(Q, k) =— p'(t, r) exp(iQt ik r)d—td'r

is the transform of the perturbation in the electron
distribution, po(Q, k) is the corresponding transform of
the field po(t, r), I.' is the normalization volume for the
electron of initial momentum yp, and

E(pp) = pp'/2m

is the electron energy. When expression (4) is sub-
stituted into the time-space Fourier transform of
Poisson's equation (1), we obtain as the solution for the
field,

q (Qk) , 4=orq[S (Qk)/, D (Qk) j, ,

where

D(Q, k) —= tt'+(47re'/I. ')([E'(pp+«k) L':(p ) o«Q—] '—
+[~(Po—«k) —&-'o(Po)+ «flh '}

and S(V,k) is the transform of the ion source term,
S(t,r). We now consider this term.

The ion wave function 0 must satisfy its own
Schrodinger equation. To lowest order in the electron-
ion interaction, we may neglect electron reaction effects.
The corresponding Schrodinger equation for an ion in
the radiation field is

iN= y —— (9)

may then be calculated. The unperturbed part of the
distribution, pp =—Pp Pp, is independent of time, and is
therefore unrelated to our problem.

When the solution of Eq. (2) is substituted into the
time-space Fourier transform of Eq. (3), we obtain

p'(n, k) =(ep(Q, k)/I')([E(pp+«k) —E(po) —«0] '

+[8(pp —«k) —I'(po)+ «Q] '}, (4)
where

in accordance with our assumption that electrons are
not accelerated to relativistic velocities by the radiation
field. Corrections of order Np/c are much smaller than
the corrections to the Born approximation which are
obtained in this work. It shouM be pointed out that
multipole transitions are important in determining
the corrections to Thomson scattering since all correc-
tions to that process are relativistic, of the order (Np/c)'.
In our approximation, however, the vector potential
depends only on time, and is given by

A= (Mere/e)rp slnoot. (10)

The solution of Eqs. (9) and (10), for the wave function
corresponding to an ion with initial momentum p&, is

pi +a(pi) pi'ro
O1——I. 't" exp i—.r—i t—i cosset

MMf p

[pot ——,
' sin (2oot)), (11)4'

where I.' is the normalization volume and

~.(pi) =pi'/2~ (12)

is the ion energy. The quantity which corresponds to the
classical density function, for a particle in quantum
state 4'&, is given by

S(t,r) =g e„*e,=
m (2or«)o

@ *+id'p, (13)

where the summation is replaced by an integration over
all momentum eigenstates of the system. By substitut-
ing expression (11) into (13) we find that the Fourier
transform of Eq. (13) may be written

the charge from its equilibrium position, the condition is

co 8Ep Np
Erp= — =—&&1,

C mes' C

where 3f is the ion inass, and A is the radiation vector
potential. Since electrons (in the center-of-mass system)
are not accelerated to relativistic velocities, we may
treat the radiation field in the electric dipole limit. For
example, the radiation vector potential may be written,
quite generally, in the form

A = (Mc&u/e) rp sin (p&t —K x),

where rp is defined, for convenience, such that (&coo/e) rp

is the amplitude of the vector potential, and K is the
radiation wave number (to be distinguished from the
longitudinal field wave number k, to be introduced
later). The dipole approximation in the radiation field is
valid if Ex((1,where x describes the region of the charge
distribution. Since rp is the maximum displacement of

i
exp [+ (pi «k) —&.(pi)+«&jt —ik rp(t) dt

«k'
exp i~ 0—k V+ t—ik rp(t) dt,

235
(14)

where V is the initial velocity of the ion and rp(t)
= fp COROT. This last expression will often be written as
rp(t), since many of the results are valid when the radia-
tion field has a distribution of frequency components.

In order to obtain the classical distribution, we drop
the term («k'/23')t from Eq. (14). Then spreading of
the ion wave packet is ignored. When typical wave
numbers k, corresponding to emitted longitudinal waves
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are obtained, it may be shown that the resulting error is
of the order of the electron-ion mass ratio. Furthermore,
we will assume that the ion is initially at rest, and set
V=O. Then Eq. (14) is reduced to

S(Q,k) = exp{iQt —ik. rp(t) }dt

which is to be combined with Eq. (7).
The electric potential po(Q, k) describes the amplitude

of longitudinal waves emitted by the ion. According to
Eq. (15), rp(t) defines the position of the classical ion
at all times. Therefore, the reaction force on the ion, due
to the emission of these waves, is given by

is the ion velocity, and the brackets indicate that we
take a time average over a period of the wave. By
combining Eqs. (18) and (20) with (19), we get

g 4)
U= — Imgn

7r2 n=l

J '(k rp)D(zoo, k)
d'k. (21)

iD(mo, k) i'

Since the electron is distributed over a large volume, the
term k' in Eq. (8) for D(Q, k) is by far the largest term.
Therefore, to lowest order, we may replace D(eo),k), in
the denominator of Eq. (21), by O'. The result is

M d'k
Im P n J„'(k rp)D(no), k) . (22)

n=l

F(t) = —qv p(t, rp(t)) =—
(2') 4

k(p(Q, k)

&(exp{—iQt+ik i'p(t) }dQd k. (16)

By substituting Eqs. (7) and (15) into (16), we obtain

By inspection of Eq. (8), we find that IrnD(Q, k) is
still not completely defined. Since Im(1/x) = +7r()(x), it
is still necessary to prescribe the contour around the
poles in order to obtain the proper signs. From causality
arguments, we assert that the poles are dehned such that

F(t) = i-
4m'

dt' dQ

4z2e2
ImD(Q, k) = {t)(E(yp+kk) —L~(yo) —AQ)

I.3

—8(E (yp
—Ak) —E (yp)+ AQ) }. (23)

k exp{iQ(t' —t) —ik Lrp(t') —rp(t) $}
d'k, (17)

D(Q, k)

where D(Q, k) is given by Eq. (8). To obtain the force,
the real part of Kq. (17) must be taken.

For a sinusoidal radiation field, we have rp(t)
= rp cosset. Thus factors of Eq. (17), of the form
exp{ik ro cos(ot}, may be expanded in terms of Bessel
functions, J„(k ro). We then find

The quantity ReD(Q, k) plays a part in phase shift
studies, but is not involved in the absorption process.

ln order to simp/ify the mathematics, we will assume
that the radiation propagates in the -direction of the
initial electron momentum, pp= mvp. Then by symmetry
the result must be independent of the direction of
polarization, r p. For this problem we dnd by substituting
expression (23) into (22), and performing one angular
integral over the 6 functions,

Oo

F(t) = i P—(—1)"i"+
4~2 ns, n=—co

kl„(k rp) J (k ro)
. {Dn (ri(d k)r((m n)ng—

[D(mo&, k) ('

8e2q2(v ~ dk
P n — J„'(kro)i)

I. gap n=l

mu )ok y'
X p

~&o 2'&o

( 1)n+mD (rip) k)v i(tn—) t—
}ndnk o(18)

u(t) =drp(t)/dt= —o)rp sin(ot (20)

where the real part of the function has been taken. A
complete knowledge of the force, along with its time
dependence, would enable us to obtain the radiation
phase shift on scattering, as well as the absorption. An
inspection of Kq. (18),however, indicates serious mathe-
matical diKculties. We will, therefore, limit our study
to absorption. Furthermore, for radiation frequencies of
interest to this work, no measurements can be made in
less time than a period of the wave. We need, therefore,
consider only the quantity

U=(F u),
where

l'mo& Ak )o
+

( kv, 2mv, i

——1/2

dp, (24)

kk )'
Ekvo 2mvo&

The corresponding limits are

mv, ( 2ek )"'
11+

a & mv, ') (25)

where the limits of integrations include all regions where
the integrand is de6ned. For example, when integrating
over the 6rst term in the curly brackets, the integration
limits on k include values of k such that
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The limi. ts for the second term in the curly brackets are section

PMp' 2'fly
k2= 1~ 1—

tMp
(26)

8~'e'q'p; / x f'(1+x) 'is+1)

hem'co'os k 2 k (1+x) 'i' —1)

For terms in the sum, such that eke) —,'mvp', the second
term of Eq. (24) does not appear. The limits on the p
integrations are

(27)

where

x (1+(1—x) "I'
1——

ln~ —(1—x) '~'

2 k1 —(1—x) "'

x=—2A(o/moss.

(31)

(32)

The first term in the curly brackets of Eq. (24) is
interpreted as describing, for a given m, the net absorp-
tion over induced emission, of m photons from the radia-
tion field. The second term corresponds to the net
induced emission over absorption of e photons.

The absorption cross section for inverse brems-
strahlung is related to U, as given by Eq. (24), by

8x . See'pL' .
I.'p, U= —— U,

cFo est M 'fo

where cps'/8x. is the incident energy Qux. The factor
L'p; must be included in order to undo the arbitrariness
of having normalized the electron wave function in the
volume L'. The ion density is used rather than the
electron density because, in the center-of-mass coordi-
nate system, the electron is the source particle for
longitudinal waves, rather than the ion. For the same
reason, we have written the ion displacement in the
radiation Geld as

For x) 1, the second term of Eq. (31) is discarded. In
this extreme limit, since only a single photon is involved,
the processes of absorption and induced emission are
separable. For any higher order terms, this is no longer
the case. Equation (31) is identical with the result
obtained from the perturbation treatment of the non-
relativistic inverse bremsstrahlung process, when the
radhation propagates in the same direction as the
electron velocity. " lt is not dificult to show that, for
krs((1, Eqs. (22) and (23) agree with previously quoted
results for arbitrary directions of propagation.

If we include one higher order in rp, so that two
quantum processes are possible, we obtain as the correc-
tion to expression (31)

o = o.p+o-,
where

87r'e'q'p, mvsro ' 3 x (1+x)'~'+1)
|T = —x' 1+— ln

ficm to tIo k 32 — 2 (1+x)'~ —1l

—x'(1+x)"'——(1+x)"'+—
3 3

re ———eEs/moi',

where m is the electron mass.

(29) 3 (1y2x) its+ 1——x'(1+x) ln
16 (1+2x) 'ls —1

krp&$1. (30)

Then we need retain only the e= 1 term in the series of
Eq. (24). Furthermore, the Bessel function may be
reduced to its limiting value

J,(kr pp) = ,'krsp-

III. LIMITING CASES

By observing the limits of integration of Eq. (24), as
given by Eqs. (25) and (26), we see that there is a
distribution of wave numbers associated with the
longitudinal waves. We will Grst assume that for all
such values of k, we have

1 1—x'(1+2x) 'is ——(1+2x)'i'+—,(3]')
3 3

krp))1. (33)

Rather than attempt to evaluate expression (24), which
may involve many terms in the sum, we return to
Eq. (17). According to Eq. (33), we see that the
integrand of Eq. (17) is rapidly oscillating, except over

for x%1. For —,'&x&1, a term identical with the Grst
term in the brackets, but with x replaced by —x, is sub-
tracted from this expression. For x&-,', both brackets,
with x replaced by —x, are subtracted.

We now consider the alternate to condition (30),
that is,

In the weak Geld limit described here& the integrations "VV Heftier, The Qaanlaro Theory of Radhateom (Oxford
of Fq (24) may be performed immediately. By combin- University Press, London, 1954), see Chap. V, p. 242. (ln order

to obtain precise agreement, Heitler s study must be modi6ed
ing the result with Eq. (28), we have for the cross slightly to include theinverse process. )
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in angles oma '. .' ' '
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'

g
neglected, and except m. e

perfolm a Tay 2gMLlol e nslon)

«(t )—«(t) = u(t) (t —t)

—)'+ (34)+-—(t' —t)'+-
2dt 6dt'

'n t is expansIon1 the first two terms In t '
pWe need retain only t e rs

if
k (d'u/dt2) (t' —t)'«1

when
k (du/dt)(t' —t)'=1.

ran e in angles, referred to above,Excep o

)terms Dl ethe expansion o Eq. (34 are sn

fore, Eq. (17) is reduced to

g
2 00

F(t) = —i
4m 3

where

me; —u vo32~ ~4g p' I —~' vo

cps co 'f Q —vp

ko ——(2m/5) I
u —vo

I
.

39) is, accordingof IntegratIon of Eq.
; =0. Of course, by con ipp

example, we a 37 wIt vp

in the same direction as u,

(40)
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F(t) = i — (2mi) u

PiL3u

k2

RA&D

Comb Ulingthe integrations an
u.lt

Aft p rformlQg

) h e the resuresult wIth Fqs. 19

ex
' — )(t' —t) —-', ik (du/dt)(t' —t)')kexp{i(Q—k u t' t ,i —.——

D(Q, k)
(35)

aX2

leel"') &e, 8&)—~ u+- +
2m' ku'

2

F (t) = —i (2~i) "t'
4+3

e i~2/2g~

over t', and changing'n the integration overAfter performing e
'

the variable of in gte ration rom

0=k u+(k du/dt)'"x,

we have

the direction

t =+1, t ll h
h I f hk =2mN . evfrom the value o-

integrals of Eq. (41 is, in ImI s,

Ak/2mu,
for

k'»max'/2k u

(kk/mu) (Auk'/2max'),

k'((max'/2ku.

(36)
DLk u+(k (du/dt))'i'x, k

for

2

P(t) =i (2~i)'~'
4m'

ei x2/2dg

@=1,may be taken as k;„'in the
39 . When vo&, eUI e

n lt from modificatIonn which resu s'thmic correctIonogari

9 forIn order to allow a comparIson
kro&&1 an d (31) for kro«1, we se u, '

e
approxImate reesult

k — (37)
1/2 —d 3k

kD k'u+I k —
I

x
dt

a ne lect the accelera-T lowesto d ,k ro)
—', wemayneg ec

en wedt, '", th g
n

' ' E . (23) into Eq. (37), that6nd by substituting Eq. in

it'k')
16 'e'q'e; e' lteeee'))

cmI'. ,' (u'+v, ') &' tta
(42)

F(t) =—
L'

8, k' is theat according to Eq.

fairl sharp cutoff at, Eq. (36) may be replacedominant contribution to D, Eq.

k= ma/2ku)U2x,
by

k'k'~ d'k
—SI kk (u —v,)+.

2m

ce to be averaged over,er occursThe time dependence, to e
'I through the velocity,primarI y ro t

u= (ego/mes) sinMt.
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16sre'q'pro eEp 64mep'eEp) e'Ep2
ln ln ~, ))1. (44)

c (eEp) ' mco pp ft co' ) mAcd

A particularly interesting situation occurs for For —,'mN'))trio, we have by Eq. (42)
~nsv0'&&Ace. Then we hand that if ~ml'&&fuu, the cross
section is given by the expression (31) and (31'), with
x&&i. The result is

32m'e4q2 p 9 1 )e'Ep'
0= (m/2hpo)'t' 1—1——

I
+'

35cfs 32 v2) mha)'

e2+ 2

(43)

It is predicted therefore, that with suKciently strong
radiation Quxes, and with the condition ~mv0'&&Lr, the
absorption cross section will decrease roughly as the
three-halves power of the Qux. As the intensity is
increased, the frequency dependence goes from inverse
seven-ha/ves power to direct proportionality.
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Experiments on the Average Characteristics of Cascade Showers
Produced in Lead by 500- and 1000-MeV Electrons*

ERxc E. BEGKLrNt AND JAMES A. EARL

School of Physics, Ursipersity of 3finnesota, Mirtrseapolis, illianesota
(Received 28 February 1964)

The average number and the energy spectrum of shower electrons present under various thicknesses of
lead were obtained with the aid of multiplate and magnetic cloud chambers. The relation between observed
track length and incident electron energy was found to be

incident energy (MeV) = (23.6+1.6) Xtrack length (radiation lengths).

The observed number of shower electrons with energy greater than 10 MeV is in good agreement with that
predicted by recent Monte Carlo calculations; however, low-energy electrons (not included in the calcula-
tions} were found to be a large fraction of those present at large depths. Measured probabilities p„ that
exactly n electrons emerge from the lower surface of a 0.75-radiation-length lead plate when one electron is
incident from above are given as a function of incident electron energy.

I. INTRODUCTION

'HE present experiment was originally undertaken
to take advantage of the availability of arti-

ficially produced beams of energetic electrons for the
limited purpose of "calibrating" balloon-borne cloud
chambers that had been used to study cosmic-ray
electrons. Hovrever, it soon became apparent that some
of the results obtained vrere of suflicient general interest
to warrant their presentation in this report.

Although existing experimental and theoretical
studies have led to a clear understanding of the nature
and major characteristics of cascade showers, detailed
knovrledge of showers developing in materials of high
atomic number is needed because such showers provide
a useful tool for determining the identity and energy
of the initiating electron or photon. It is general1y con-
ceded that analytic shower theories' yieM a useful and
essentially correct representation of shower develop-
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~ Summaries of the results of shower theory appear in: B.Rossi,
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and K. Greisen, The Extensive Air Showers, in Progressin Cosmic
Ray Physics (North-Holland Publishing Company, Amsterdam,
1956), Vol. III, pp. 1—141.

ment in materials of low atomic number, but the
analysis of showers in high-Z materials is complicated
by the intractability of mathematical expressions for
the low-energy cross sections of elementary shower
processes and by uncertainties arising from the pro-
nounced effects of multiple scattering on low-energy
shower particles. These difhculties have been cir-
cumvented to a certain extent by Monte Carlo calcula-
tions based on exact expressions for the cross sections, ' '
but even these calculations yield no information on the
number of particles present with energy below an
arbitrary low-energy cuto6 which must be introduced
to limit the extent of the computation. Unfortunately,
published experimental data on showers in high-Z
materials, ' " while extensive, are so disjointed that
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