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one side is twice the other; this is what is responsible
for our poor prediction of the kaon splitting.

Our estimate of the nontadpole contributions to the
baryon self-masses depends on the input experimental
form factors and on the method chosen to calculate the
strange baryon form factors. Judging by the differences
between Tables I and II, and also by several model
calculations we have done, we feel that the sensitivity
is such that our final results are not trustworthy to
within more than one MeV. Any accuracy greater than
this displayed by Table III is probably only coincidence.

We believe that the agreement we have obtained
between theory and experiment offers considerable

support both to the notion of tadpole dominance and
to our policy of neglecting the first two possible sources
of error cited in Sec. I, and that methods similar to
those used here should give results of similar accuracy
for other electromagnetic mass splittings (e.g. , those
within the Yt multiplet) and mass-like electromagnetic
transition matrix elements (e.g. , that for the two pion
decay of the co).
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It is shown, without any reference to potentials, that an infinite number of Regge poles approach / = —
& in

the limit of zero energy. Unitarity and the assumption of a Sommerfeld-Watson transform play the crucial
role. As a by-product an improved effective-range expansion is obtained.

' 'T is well known in potential theory that an infinite
~ - number of Regge poles arrive at l= —

~ as v ~ 0, v

being the square of the c.m. momentum. ' We shall show
below that even without any reference to potentials
this result will hold provided: (i) Partial wave ampli-
tudes for a fixed energy are analytic except for a finite
number of poles and branch cuts in the region to the
right of Rel = —

~
—e, where e is an arbitrarily small posi-

tive number. (ii) There exists a Sommerfield-Watson
transform in the same region. As a by-product we ob-
tain an improved effective-range expansion.

For simplicity we shall consider the Mandelstam rep-
resentation to hoM even though it is possible that our
results may be true also for a more complicated singu-
larity structure. ' The reduced partial wave amplitude
A(X,v) satisfies the generalized unitarity relation'

A —'(X v) —Aa 'P v) = —2iv"; X=l+-,', v&0. (1)
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s The information we really need is that R(X,v) in (2) can be
expanded in a power series in v, for Re) &—~.' For the relativistic case, where one considers the invariant
amplitude, the right-hand side should be multiplied by an appro-
priate energy-dependent factor. If the masses are equal (=m)
this factor would be (v+ta') &.

For all real P, A is real in the region between threshold
and the branch point of the left-hand cut. One can,
therefore, write'4

A '(X,v)=R(X, v) +( v"e ' "/sinsrX), (2)

where R(X,v) has the left-hand cut and also the right-
hand cuts beginning at the thresholds of inelastic
channels.

Now, in the absence of cancellation from the first
term, the second term in the right-hand side of (2)
would make A(),v) vanish at integral values of X

irtdepertderttly of the value of v. This would be a rather
extraordinary situation. In fact it follows from Carlson's
theorem' and the assumption (ii) above that A(X,v)
must then vanish identically. The only way to avoid this
is for R(),r ) to supply the necessary terms that cancel
the poles coming from sine). Separating out the pole
parts, we have for small v, '

(2)

p) ~
—i7rX

A—'P.,v) =B(X,v) —P +"-' sr(X —tt) sinsrh.

' See, for instance, A. O. Barut and D. E. Zwanziger, Phys. Rev.
127, 974 (1962).' See E. C. Titchmarsh, The Theory of FNnctjons (Oxford Univer-
sity Press, London, j.939), 2nd ed. , p. 186.

6 One actually requires all but a finite number of poles to be
canceled so that some of poles coming from sine) may remain.
Such cases, however, should be considered accidental.
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Since we have assumed the S-W transform to exist
only to the right of Rek= —e, the sum of the pole terms
above do not include negative integral values. However,
statements about the negative X region can be made if
the so called Mandelstam symmetry, i.e., the relation

S(—m, v)=$(m, v) or v A '(—m, v)=v A '(m, v) (5)

holds, m being an integer. This relation implies that
A '(—m, v) must also be finite. Therefore, one can
decompose B(X,v) further as

It must, of course, be kept in mind that for a fixed
X4 n,—as v —& 0, B(X,v) is well-behaved as a function
of v (this being the basis of effective-range expansions)
and, therefore, 8'(),v) must cancel the second term in
(6) in this limit. The second term will, however, domi-
nate as X ~ —m for a fixed v.~ We are, at present, in-

'To illustrate these points consider potential scattering where
(5) is known to be true for reasonably well-behaved potentials.
For simplicity we keep only the first power in the potential in the
Fredholm expansion of the numerator and the denominator
functions of A (X,v). We then obtain,

R(A, v) = —v" 1+ . — dr rV(r) Ji,(dr)J i,(kr)
2 sine% 0

dr r V(r)Jq'(br),
2 0

where v =0' and J~q are the Bessel functions LJ „(s)= (—1)"J„(s)
for integral nj. Consider a single Yukawa potential, for which the
S-W transform is known to exist. By expanding J+), in a power
series in (br) and carrying out the integrations we obtain

V 3V
R11, j=— 1+11 1—1,+2(1—,j+ )

P (1+2K)
2 2'"I"(I+X)

(1+2&)yv (2+X)(3+2K) (1+2K) +4(1+X)
where y is the strength of the potential and the range is taken to
be unity. It is now easy to check that ff(X,v) has poles at X=O
and at positive and negative integrals values of A,. Furthermore,
for negative integers, we have the canceling terms 8'(X,v). For
instance, near X= —1 and small v, (A) has terms of the form

'(1+bv)/1r()+1+c ') —v V1rP1+1),
where b and c are constants. The first term is 8 'p1, v) and as
expected it cancels the second term in the limit v —+ 0 and ~/ —t. .
For a 6xed v as X ~ —1, the second term, of course, dominates.
A similar situation will hold for other negative integers.

terested only in the region to the right of Reh= —e,
and, therefore, in what follows we shall use (3) instead
of (6).

In general, g will not have any poles at integral X

and can, therefore, be expanded near X=e as follows':

R(X,v) =P(v)+ (X—n) g(v)+

where p, q, etc., can be expanded in a power series in v.
Substituting (7) in (4), we observe that if X=n(WO) is
one of the zeroes of (4) at v=0, then its behavior for
small v is given by

X(v) =n+av+ +bv" ' (c/—vr) v"(lnv is-—) . (8)

The zeroes near P =0 for small v are given by

v"e 'v"=1+AX+BR' as v —+ 0.

This equation is the same as the one obtained by Desai
and Newton for the case of potential scattering and will
have, therefore, the same solutions X;&"&~2ns./ ~

lnv,
2''/~lnv~'as vv 0+ and X;l"i~2ns./~ln( —v),~—2(A' —28)n's/ ~ln( —v)

~

' as v —+ 0—,where
n&1, &2, with ~n~((~ln(~v~) ~/2s-. These solutions

show that in the limit of zero energy, /= —-,'is the end
point of an in6nitely many Regge trajectories. For a
Axed energy, of course, there are only a finite number of
these poles to the right of Rel= —-', —e, consistent with
the assumption (i).

We have, therefore, shown that the existence of
the threshold poles can be proved without any refer-
ence to potentials. Unitarity and the assumption of a
Sommerfeld-Watson transform play the crucial role.
We have also shown that because of the presence of the
term P I v"/7r(X n)], —(4) is a better expression for the
effective-range-type expansions than (2).' It correctly
reproduces the threshold poles and also the logarithmic
behavior in (8) for the zero-energy poles at integral X.

We have profited from our discussions with Professor
C. J. Goebel.

Again it could accidentally happen that cuts pass through some
of the integral values of X. In that case, of course, the expansion
will not hold.

'This fact has been known to Professor Mare Ross (private
communication) but his results have not been published.


