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which resembles a treatment in the old strong-coupling
theory.

Another possibility of extension is to search for a
larger group which includes the SU6 group and the
Iorentz group as subgroups. One possible group of this
kind is the SLs group (unimodula linear-transformation.
group in a six- dimensional complex-vector space),
which contains SL2SL3 as a subgroup. However, it

seems to be impossible to have a wave equation com-
patible with this group without extending the four-
dimensional Minkowsky space to a higher dimensional.

space (36-dimensional space!) ."
"After this paper was written, the author became aware of a

paper by F. Giirsey and L. A. Radicati /Phys. Rev. Letters 13,
173 (1964)j, in which they claim that the relativistic extension
of the theory is possible.
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A self-consistent calculation is performed for the low-energy P&&2, T=—',, pion-nucleon scattering amplitude,
using the E/D method. The distant part of the left-hand cut ior the partial-wave amplitude is dealt with in
the manner of Balazs. The mass of the nucleon bound state is found to be =880 MeV, the coupling constant
=12.The low-energy phase shifts and the scattering length are also in good qualitative agreement with the
observed ones.

I. INTRODUCTION
' Q URGING the past few years, the low-energy pion-

nucleon system has been subjected to extensive
investigations within the framework of dispersion
theory. The main feature of such investigations has
been to calculate the pion-nucleon scattering amplitude
(to be precise, the various low angular-momentum
partial-wave amplitudes) given by forces that arise
from the low-mass intermediate states in the crossed
x —N and xw —+.0& "E channels. ' ' These low-mass states
are the familiar nucleon and the I'3/2 T 2 x N reso-
nance, N* for the crossed x —N channel and the T= j.,J= i, sr~ resonance, i.e., the p meson, for the channel
vrvr —& NX. For a more accurate determination of the
z —N scattering amplitude, one must of course incorpo-
rate in the problem the forces that arise from the higher
mass intermediate states in the crossed channels. In the
language of the Ã/D method, that provides the ap-
propriate technique for such calculations, this amounts
to taking into account the contributions that arise from
the distant part of the left-hand cut of the various
partial-wave amplitudes in the s plane. This, however,
is a difficult problem. A method to tackle it has been

t Present address: Tata Institute of Fundamental Research,
Bombay, India.

'S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960). We follow the notation of this paper; note that our units
are A=c=m =1.' J. S. Ball and D. Wong, Phys. Rev. 133, B179 (1964).

suggested by Balazs, 3 wherein. these far left-hand cut
contributions can be approximated by a set of pole
terms; the locations of these poles are known but the
residues are, as such, unknown constants. However, if
one knows the amplitude correctly at any point in the
low-energy region, these residues can be determined by
matching, at this point, the expression for the ampli-
tude involving these residues with the known ampli-
tude. 4 The latter quantity can be obtained from the ab-
sorptive parts of the crossed channels through a
fixed-energy dispersion relation.

The above method, if reliable, would certainly lead
to a more accurate determination of any scattering
amplitude than if the far left-hand cut contributions
were just ignored, but one would still have to treat the
crossed channels as known. For instance, if the various
low-energy, low angular-momentum partial-wave am-
plitudes for m —N scattering were calculated and one
thus found a bound state (nucleon) and a resonan. ce
(1V*), it would be only after on.e inserted them before-
hand in the crossed x —N channel. At this stage, how-
ever, if the criterion of self-consistency' is invoked,

' L. A. P. Balazs, Phys. Rev. 128, 1939 (1962}.
4 One will have to match the amplitude and the 6rst n —1 de-

rivatives, if the number of Balazs residues to be determined is n.
~ G. F. Chew, Proceed&sgs of the International Conference on

IIigh-energy Euclear Physics, Geneva, 196Z, edited by J. Prentki
(CERN, Geneva, 1962), p. 525.' G. F. Chew, Phys. Rev. Letters 9, 233 (1962).
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and found compatible with the results of the calcula-
tion—by which we mean if the crossed channel x—N
forces arising from N and N~ can be described in terms
of certain parameters, the numerical values of which
coincide with those of N and N* obtained in our calcu-
lation —we will have explained these objects without
having to really assume them. It is of course believed
that the amplitude that the calculation yields is unique.

In the present calculation, we have tried to study the
nucleon in the above spirit. Actually, it would have
been more desirable to calculate both N and N*, at one
stroke, as one knows that the nucleon provides the main
force to create N*, and N* provides the main force to
bind the nucleon. ' However, we shall see that in the
present approach, given the N*, the calculation of N
itself becomes a self-consistency problem. This is what
happens in the case of N* also, which has been dealt
with by Singh and Udgaonkar. ' The present calculation
can be takeo to be complementary to theirs.

Before going into the details of the nucleon problem,
we would, however, like to make a comment on the
possible pitfalls that are associated with the matching
criterion that one needs to invoke in the calculations of
the present type. It seems that the final results would
depend crucially on the choice of the point at which one
matches the E/D amplitude with the one obtained
from the fixed-energy dispersion relation. This certainly
seems to happen for the m —x problem. ' In the present
calculation, although the region where one could
"match" has to be chosen quite carefully, as discussed
at the end of this paper, yet one has a finite region from
which one could choose the matching point. We find
that there certainly is variation in our results as we vary
the matching point in this region. However, it is grati-
fying to note that the particular matching point corre-
sponding to which we have done detailed calculations
for the nucleon problem, i.e., for the P~~/2, T=-,'partial-
wave amplitude, leads to fairly satisfactory results for
this as well as for several other low angular-momentum
partial waves. " This makes the present approach
quite worthwhile, in the sense that although one
probably has the above "preferred" matching point as
a parameter, it sufFices to enable one to calculate all low
angular-momentum partial waves. Of course it is true
that the meaning of the parameter is at the moment
obscure. "

It should be mentioned that since, in the present cal-
culation, the nucleon mass turns out to be lower than
the actual one, the calculated m —N threshold is lower
than the physical one. The physical threshold of course

7 V. Singh and B.M. Udgaonkar, Phys. Rev. 130, 1177 (1963).
8 M. L. Mehta and P. K. Srivastava, University of Delhi, 1964

(to be published).' S. K. Bose and S. N. Biswas, 184, B635 (1964).' P. Narayanaswamy and L. K. Pande, Nuovo Cimento 33, 468
(1964)."Note that this parameter has certainly nothing to do with the
cuto6 parameter that one needs in calculations of bound states
and resonances in other approaches, e.g., Ref. 2 and 12.

II. DETAILS

The kinematical details of the problem are well
known. Using the notation of Ref. 1, we choose our
amplitude as

gtt(s) =—g & 'I'(s) = (W'/qs) e+» sin8». (1)
We have

grr(s) = (1/32s q')([(W+m)' —1j[At+ (W—rN)Br]

+[(W rN)
s 1l—[—A—o+ (W—m) Bp)), (2)

where A~, 8&, and Ao, Bo are the /= 1 and l =0 partial-
wave projections of the T=-', combinations of the in-
variant amplitudes A+(s, t,N) and B+(s,t,m).

We can express g&r(s) as JV/D, with D having the
unitarity cut and X incorporating in it all other singu-
larities of the amplitude gr~(s) (Fig. 1):

g (s) =&(s)/D(~) .
D(s), after one subtraction, can be expressed as

(s' —~ ) " (P/~')&(s')
D(s) = 1— ds'. (4)

&~n' (&'—s) (s' —»)

(3)

s W~ is, as usual, the square of the center-of-mass
energy for the "direct" m.—N channel. We shall work in

n E. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963).

means the point s= (m+1)s with m=6.8—the experi-
mental nucleon mass; the calculated threshold corre-
sponds to m=6.3, which is the mass we obtain for the
nucleon. Hence, there is some ambiguity as to whether
the scattering length obtained at the calculated thresh-
old should be a more valid quantity for comparison with
the experimental scattering length. We have calculated
the scattering length at both thresholds, but have laid
emphasis only on a qualitative comparison.

The self-consistent value of the coupling constant
obtained by us is in fair agreement with the observed
one, but it is smaller than the latter. In the light of a
calculation by Abers and Zemach, " who get g'=19,
this at first sight seems a little curious. However, this
difference is not quite unexpected, as the above authors
ignore the forces other than those arising from N, N*,
and p exchange (i.e., the forces coming from the distant
part of the left-hand cut), whereas we do not. Another
point that should be kept in mind is that if one obtains
a bound state arising principally from the force due to
the exchange of this bound state itself, the coupling
constant one calculates is the same as the one that
occurs in the force term. In that case, if one 6nds that
the calculated bound state is more tightly bound than
is observed, the force responsible for this binding should
also exceed the actual force. Consequently, the calcu-
lated coupling constant should turn out to be larger
than the observed one. The situation we encounter is,
however, not the same, as the main force for the binding
of the nucleon comes, not from the exchange of the
nucleon itself, but from the exchange of N*.
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E(s)=P b;/(s s;), — (7)

(s—so)
D(s) =1— (q"/s')

[$$$+y) ($ —$) ($ —sp)

x~ . (8)
$=1 (s —$$)

the s plane throughout. "The relevant (approximate)
analytic structure of E(s) is displayed by the relation

b) bp 1 ' D(s') Imgg) (s')
E(s)= + +— ds', (5)

$ Sy S $2 7l s —s

where the 6rst two terms are the approximate expres-
sions for the shortcuts arising from the crossed channel
E~ and E respectively. The residues b& and b2 are of
course known" '4

b) (32/——9)sg@'yppD(s)) $

b2 p2 f——'m'D(m') .
The remaining part of the Ã function is approxi-

mated, following the method of Balazs, by a two-pole
expression:

bp/(s —sp)+ b4/(s —s4), (6)
where~ sa= —m, s4= —16m' and bs and b4 are two un-
known residues. Thus we have"

The amplitude g, ~(s) is now known to the extent of the
Balazs residues b3 and b4. These residues, however, can
be determined by matching the amplitude g»(s), as
given by Eqs. (3), (7), and (8), with that calculated
from the fixed-energy dispersion relations:

1 " A „'(I',s) 1 " A $'(t', s)
A'(s, t,l) = — du' +— dt'

(m+y)' I'—u m 4 t' —t

A'=A+ 22=2 A'=8+ 24=8 .
7 7 (9)

C~($) =g»'"'($)+g»'"*'($)+g»'"($), (1O)

where

There is a crossed-channel nucleon pole term in
8+(s,t,u), and a direct-channel one, which in the spirit
of Singh and Udgaonkar, ~ can be taken as coming from
the high I' and high t' regions in the above integrals.
The lower regions of these integrals are presumably
exhausted once we take into account E* in the
I-channel absorptive parts and the p meson in the
t-channel absorptive parts. Projecting out the relevant
partial waves from A+(s, t,n) and 8+(s,t,N) and sub-

stituting the results in Eq. (2), we obtain

g»'"'($) =— 2g2$2

3g's'(s' '+m)
(11)

L (s»P+ m)' —1]($—m')

2s (2+m' —s)
1+

[[$'&'+$$)'—1][($'~'—$$)' —$] [[s'"—$$)' —1] [[$"'+$$)'—$][($'&'—$$)' —1])
(s'"+m) 2s(2+ nz' s)—

Qo 1+
P($'"+en)' 1] P(—$')'+no)' 1)P($')' —tn)' 1]— —

32W R2qR2y33$2

g»' *'($)=
3$(s [ +yz)P —1)L($»P—m)P —1]

Q, (x~) (W~ s»+2—m)3x* (Wg+s»' 2m)i—
+

P($'I' —ns)' —1) (W +no)' —1 (Wg —m)' —1 )
Q [$$) ([W$+$' '+2m)3$' [$V$—s'"—2$$))

+ I (12)
L(s»'+n$)' —1] (W~+~)P —1 (Ws yg)& 1 j

12$2 2$tR

XE(""—~) (v~+2vp) —(vp/~) (s+p4 —~'—1)]
1

Qo 1+
[[$"'+$o'—$] [[$"'+$$)'—1][($'"—m)' —$])

2$tR

xL(""+~)h ~+2vp)+ (vp/~) ($+p4 —~'—1)), (13)

1
g '"()=- Ql 1+

[[""+~)'—$][[""—~)'—$] [[$ —~) —$] [[""+~)'—$][[""—~)'—$])

The kinematical singularities that the amplitude now has can, in principle, be incorporated in the E function; we shall, however,
ignore them, as the discontinuities arising from them are not needed in our calculation.

'4 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
5 Since the nucleon bound state pole in the calculated 1V/D amplitude occurs at s=s2=m~, some caution is needed in handling the

term in the E-function that arises from the crossed nucleon "pseudopole. "One way out is to replace s& by s2 —~, while doing the
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with the abbreviations, coupling constant in terms of it, we have

2s (2+2m' —s—Wg')
xg 1+

[(s'~'+m)' —1][(s'~'—m) —1]

(4s~—1) /t/(sr)
(15)

and.

2Wgs (2m'+2 —s—W„')

W~' —2Wg'(m'+1)+ (m' —1)'

Ig=m, =30, y33
——0.12, y&

———4.91 and y2= —11.7.

D(s=sr) =0. (14)

The residue of the pole in gii(s), corresponding to this
bound state, is essentially the zr —S coupling constant.
This residue can be calculated, and expressing the

)We have chosen these numerical values to be the same
as in Ref. 7.]

The amplitude and its derivative as given by Eqs. (3),
(7), and (8) can now be matched with that given by
Eqs. (10)—(13) and it corresponding derivative. The two
Balazs residues can thus be determined. Consequent]y,
the /t//D amplitude is now completely known. This
amplitude yields a bound state at s=s&, i.e., we have

The requirement that the calculated nucleon mass
Qs& and the coupling constant g', as given by Eq. (15),
equal the nucleon mass and the m —E coupling constant
which we fed in through Eqs. (10)-(13),' is the self-
consistency aspect of the problem.

With the matching point at s=33.64, '~ we achieve
self-consistency for a mass esp=6.3 and g'=12. The
situation is depicted in Figs. 2 and 3. We have also
obtained the low-energy phase shifts (Fig. 4) and the
quantity q' cot8» (Fig. 5) from our self-consistently
calculated amplitude. The scattering length that we
obtain for our calculated threshold is a~~= —0.16, and
that for the physical threshold is a»= —0.086. In
either case, the calculated scattering length is in good
qualitative agreement with the experimentally known
value ass= 0 104~0 006

It is worth noting that if one is not interested in cal-
culating the nucleon pole parameters but only the
I'&~~, T=-,', ~—S phase shifts, the Balazs residues can
themselves be calculated by demanding that the X/D
amplitude have the nucleon pole with the correct

5:—'PLANE

Fro. 1. Approximate
singularity structure
of the partial-wave
pion-nucleon scattering
amplitude.

CR,GEEJ N- CUT

(o.spy~ (e1smt".

Cao5SEg N-«~

calculation (as is done in Ref. 6) and finally let e-+ 0. We found it more convenient to use the form D(s) =1—(r—sp)/(ss —so) near
&=ss=ra', so that b2/(s —s&) =-,'f'm'D(m')/(s —s2) could be written as —,'f'm'/(so —su) and, in this form, this term did not cause any
trouble. Near s=sm, the above ansatz for D(s) was always found to be a very good approximation for the calculated D(s).

Actually, in the present problem these quantities enter also through the crossed-channel nucleon contribution to the N function.
Further, as the nucleon is one of the incoming (and outgoing) particles, its mass appears at a few more places, namely, in the S ex-
change contribution to the X function, in the Balazs pole terms, and in de6ning the threshold itself.

"We have chosen the subtraction point to be the same as the matching point.' W. S. Woolcock, Proceedings of Aix-en-Provence International Conference on Elementary Particles (Centre d'0tudes Nucleaires de
Saclay, Seine et Oise, 1961), p. 459.
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—+L "-6,5 FIG. 2. Variation of
the output coupling con-
stant with input value,
for various values of
input nucleon mass m; .
The dashed line corre-
sponds to gin gong ~

)0 j6

parameters. This determines the amplitude completely include the shortcut due to the crossed-channel E* in
and one now also has the correct threshold. Such an his E function. A recalculation of the I'&~~, T=—', phase
approach was tried by Balazs. He, however, did not shifts with his method, but with this additional cut in

6.$"

l 4.g " Fzo. 3. Graph showing m; versus
mput, For any given m;» m«& was cal-
culated by using the coupling constant
g;n'=gpu~'=g', obtained from Fig. 2.
Note that m; =m, ~=6.3, for which
FIg. 2 gIves g;n'=gout, =12.

6.5-

' L. A. P. Salazs, Phys. Rev. 128, 1935 (1962).
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FIG. 4. I j/s T=, pion-nucleon phase shifts plotted against the c.m. energy squared, s (expressed in pion mass units).
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e ll,O
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FIG. 5. f cot8$1(s) versus s. The dashed line corresponds to the actual threshold, (7.8)'.

the S function, would presumably give a better
result '0 m

In the present calculation, we tried to see whether the
"B. M. Udgaonkar (private communication).
"Q. Khuri and B.M. Vdgaonkar /Phys. Rev. Letters 10, 172

D function (to be precise, the real part ot D) shows any
other zero in the region above threshold, which could
be identified with a possible P~~~2, T=-,', m —S reso-

(1963)g have calculated these phase shifts in a difFerent approach,
in which the nucleon is assumed to be a Regge pole.
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and

W ~s y ~[(su~s m) s —1]—
g &~&~(s)=

[(Wp —m)' —1](W~—W)
(17)

g»""(s)=— S'g'q'g yg

6q'[(W~ —m)' —1]
&( {[(s'~'+ m)' —1](W~+s'" —2m) Qr (xQ)

+[(s'"—m)' —1](s'"+2m —Wz) Qo(x~) ),
(18)

where yp is the reduced half-width of the resonance, and

2s (2+2m' —s—W~')
xg ——1+

[(s'"ym)' —1][(s'"—m)' —1]
If there really is a resonance present, it would be

dificult to produce it in the present approach, as one
does not know how one could manage a D function with
th e required behavior.

III. VARIATION OF MATCHING POINT

In this section, we would like to comment brieQy on
the situation with regard to the change in the matching
point. It should be noted that the presence of the short
N* cut and the short nucleon cut, both of which lie
between the left-hand cut and the physical cut," re-
stricts the region of the real s accessible for matching
purposes considerably, as the matching point should be
as far away from a/l singularities as is possible. Another
point to be noted is that the end points of both the short
cuts and the threshold (the branch point for the physi-
cal cut) are all functions of the nucleon mass. The posi-

~ L. D. Roper, Phys. Rev. Letters 12, 340 (1964).
'3 Although in the X function these cuts are approximated by

pole terms, they show up explicitly through Eqs. (11) and (12).

nance. "The answer was in the negative. The D function
simply becomes more and more negative after passing
through zero corresponding to the bound state
(nucleon). This behavior persists even when one adds
the contribution of the possible P~~~2, T= —,

' resonance
with a mass around 1485 MeV, 22 and the width within
a wide range of possibility, in the amplitude g»(s) in
Eq. (10).This contribution is simply

gtr'"(s) =gtr'""(s)+gtr""(s), (16)
with

tions of all these points consequently change as we vary
the input nucleon mass. Many points which could be
used for matching do not remain good as we vary the
input mass in a range within which self-consistency is
expected.

The matching point used in the calculations of the
last section is a rather "safe" one, in addition to being
the most convenient from the calculational point of
view. The points close to this one are also relatively
safe. We tried, for instance, the point s=s0=28.0. The
results did show variation: the mass was close to 6.0
but the coupling constant changed by almost 50%. We
also tried points s=s0=45.0. This point is quite close
to, in fact slightly above, the point where self-con-
sistency is expected, i.e., the point where the 1VjD
amplitude has the nucleon pole. In this region for match-
ing, the Balazs residues Quctuate wildly as we vary the
input mass. The reason is that grr&~'(s=se) has the de-
nominator (ss—nz'), which makes gr, 'Nl(s) change sign
through infinity as we vary the input from m'(so to
m') so. Although one can get results in this region, they
cannot be taken seriously. That a situation of this sort
occurs in calculations of bound states (and not of reso-
nances, as resonances occur above thresholds where one
does not match anyway) has been noted earlier also. '4

In conclusion, it should be said that although the
region in which one could move the matching point is
not really arbitrarily large, yet the final results are rot
glide stable against whatever variation in the position
of the matching point one is legitin1ately allowed to try.
The reason is, presumably, that the amplitude one cal-
culates to match with is quite approximate. Within all
these limitations, however, the present method does
seem to be useful in the context of the pion-nucleon
problem, as one gets interesting results for all low
angular-momentum partial waves by using the same
matching point.
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