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The notion of supermultiplets first developed by signer for the theory of nuclear structure is applied to the
structure of elementary particles. The group structure is assumed to be SUB. The quark model is assumed for
the entire discussion, although some of these results can be obtained from other models. It is found that the
octet of pseudoscalar mesons along with the octet and the singlet of vector mesons form a supermultiplet.
Okubo's speculated mass form for the vector mesons is derived. It is also found that the octet of baryons
along with a singlet particle of spin —, form a supermultiplet. The type of baryonic coupling for the electro-
magnetic and weak current is derived.

HE supermultiplet theory of the nucleus has been
proposed by Wigner. ' If one neglects the Coulomb

interaction, nuclear forces are invariant under rotations
in isospin space. If one also neglects the tensor force
and the spin-orbit force, the spin variables and space
variables are decoupled in the interactions so that
nuclear forces are invariant under a group SU2 which
transforms the nucleon-spin wave functions only among
themselves. Thus, the nuclear interactions are invariant
under a group SU2SU2 which is a direct product of
two SU~ groups: the ordinary spin group and the
isospin group. If the main part of the nuclear forces
contributing to nuclear binding does not depend, on
spin and isospin variables at all, it is invariant under
a larger group of transformations, SU4, which trans-
forms four fundamental constituents among them-
selves: pt, pq, et, and tsar. A basis of an irreducible
representation of the group SU4 is said to characterize
a supermultiplet of nuclear levels. In general, it can be
reduced to bases of irreducible representations of a
subgroup of the SU4, the group SU28SU2. By this
reduction it can be seen vrhat spin and charge multiplets
of nuclear levels belong to a supermultiplet. One of
the characteristics of the superrnultiplet theory is that
diRerent spin multiplets as well as charge multiplets
can be in a same supermultiplet, as the n psystems-
in 'S» and 'So state are.

The existence of an analogy between the elementary
particle structure and the nuclear structure has been
stressed by Sakata, 2 and he proposed a model in which
every elementary particle is a bound state of members
of the fundamental triplet p, ts,. and A; this is known
as the Sakata model.

A group of unitary transforrnations which transform
components of a fundamental triplet among them-
selves is known as a SU3 group. ' The octet model
(eightfold way) based on the group SUs has been

proposed by Gell-Mann and Ne'eman4 and has con-
siderable support from experiments, although at first
sight it seems not to have an analogy between the
elementary-particle structure and the nuclear structure.
As pointed out by Gell-Mann and Zweig, ' however,
this analogy may be retained simply by introducing a
fundamental triplet whose members, called 'quarks, '

have fractional electric and baryonic charges.
In what follows we assume a fundamental triplet of

"quarks" of spin —,
' as the constituents of elementary

particles just as the proton and the neutron constitute
nuclei. Further, we assume that the interaction binding
the fundamental triplets to form an elementary particle
are predominantly spin-ind. epend. ent. Then we may
proceed with the discussion of the elementary-particle
structure in a way parallel to the nuclear structure
mentioned before. The group we are going to work
with is the group SU6 which transforms the six compo-
nents of a fundamental triplet (including its spin
components) among themselves. We then obtain a
supermultiplet of elementary particles as a basis of an
irreducible representation of the group SU6, which can
be reduced into bases of irreducible representations of
a subgroup of the SU6, the group SU~ISSU3, where the
SU& refers to the ordinary spin group and the SU&

refers to the familiar SU3 group. By this reduction we

may exhibit the members of a supermultiplet in terms
of the familiar SU3 multiplets. The larger group SU6
mixes the spin and SU3 spin coordinates so that par-
ticles with different spin as well as with different isospin
and strangeness can be in a same supermultiplet. As
will be seen, the pseudoscalar mesons and the vector
mesons are in a same supermultiplet in this theory.

One of the most remark. able successes of the SU~
symmetry theory is the existence of the Gell-Mann-
Okubo (GMO) mass formular which may be obtained
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from a symmetry-breaking Hamiltonian transforming
as a component T3' of the regular representation of the
SU3 group. Here we shall assume two kinds of sym-
metry-breaking interactions: the one is SU6-nomin-
variant but SU28SU3-invariant and the other is SU3-
noninvariant. We shall also assume that the latter
interaction transforms as a component of the regular
representation of SU6 as well as SU3, this is a simple
generalization of the Okubo's symmetry-breaking in-
teraction to our theory.

A basis of an irreducible representation of the SU6
group can be obtained by considering an irreducible
tensorial set in a six-dimensional complex-vector
space. In general, the irreducible tensor can be desig-
nated by a signature of the Young symmetrization
operation. As far as the irreducible representations of
lower dimensions are concerned, however, it is simpler,
more physical, and more transparent to use for the
basis of the representation an elementary tensor, which
can be interpreted as a wave function of a system. We
shall write these tensors by using capital letters for
their suffixes running from 1 to 6. Since we will de-
compose the irreducible representation of the SU6 into
the irreducible representations of the SU~ SU3 sooner
or later, to see the members of a supermultiplet, it is
convenient to assign a set of suSxes in for each A,
where a Latin letter (i) runs 1 and 2 to form a tensor
representation of the group SU2 while a Greek letter
(n) runs from 1 to 3 for the group SUs.

To denote an irreducible representation of the SU6
group, we shall also use the dimension of the represen-
tation as is the prevailing custom in SU3 theory. For
example, "6" denotes a fundamental representation,
"6*" denotes its conjugate representation and "35"
denotes a regular representation, etc. To denote an
irreducible representation of the group SU2 SU3, we
use a pair of numbers (a,n), where a and n denote the
dimension of the representation of the SU2 and the
SU3 groups, respectively; thus the spin of a particle
belonging to this representation is given by —,(a—1).
By the help of this notation, the reduction of an ir-
reducible representation of SU6, "A," into irreducible
representations of SUs SUs, (a,n), (b,P), , is
written as following:

"A"= (a,n)+ (b,P)+.
in which an arithmetic relation A =an+be+ must
be satisfied.

After these preparations we shall first consider the
pseudoscalar and vector mesons, which we assume are
bound states of a fundamental particle and an anti-
particle in the 'So and 3S& states, respectively. Since
the fundamental particle belongs to a fundamental
representation of the SU6, "6," and its antiparticle
belongs to its conjugate representation, "6*," a bound

e Por example, H. Weyl, The Classical Group (Princeton U'ni-

versity Press, Princeton, New Jersey, 1946),

state of these particles must belong to the product
representation of the SUfI, "6")&"6*",which can be
reduced to "1"and "35":"6"X"6*"="35"+"1".It
is not difficult to see that the representation "35" is
reduced into (1,8), (3,8) and (3,1) representations
of the group SUs SUs, i.e., "35"= (1,8)+ (3,1)
+ (3,8), with which we may identify the octet of pseudo-
scalar mesons, the singlet and the octet of vector mesons,
respectively. In this theory, therefore, the octet of pseu-
doscalar mesons (E+Es7r+7r rr E Z'rt) and the singlet
and the octet of vector mesons QosE+*E *p+p p E *En*)
belong to the same supermultiplet. By using the tensor
notation, the basis of the "35" representation of the
group SU6 can be specified by a traceless second-rank
mixed tensor I"$4~"——0). The reduction stated above
can be demonstrated explicitly for the meson wave
function using elementary tensor calculus:

C'tt"—=C'tt' =(1/~&)L~'fs +(&)"
X(Vtt +(1/%3)btt Vs}), (1)

where ftt, Vtt, and Vs are an octet pseudoscalar-
meson, an octet vector-meson, and a singlet vector-
meson wave function, respectively, and e is the usual
Pauli spin matrix.

With the singlet representation "1"we may identify
the recently discovered X meson; it belongs to a
different supermultiplet here, in contrast to other
models. m

As mentioned before, we shall assume that the total
Hamiltonian of a system has the following three parts:

(i) The SUs invariant part Hs.
(ii) The SUs noninvariant but SUsSUs invariant

part II'. This interaction H' is spin-dependent and/or
SU3 spin-dependent, and in general it gives mass
splitting between particles of different ordinary spin
and/or SUs spin.

(iii) The SUs noninvariant part H". We assume that
B" transforms as a regular representation of the SU&

as well as the SU3 group, and the transformation
property of H" for the SU& group is T3' in order to
retain the GMO relation. Using the tensor notation,
II" can be written as

where T~" is a component of a representation "35".
This is the simplest generalization of the GMO
symmetry-breaking Hamiltonian.

For this Hamiltonian we may obtain the form of the
mass term in an effective Lagrangian for the pseudo-
scalar mesons and the vector mesons; it has three
parts corresponding to the three parts of the Hamil-
tonian. The contribution of B' to an eGective-mass

9 G. R. KalbQeisch, L. W. Alvarez, A. Barbaro-oaltieri, Q. I.
Dahl et al. , Phys. Rev. Letters 12, 527 (1964); M. Goldberg, M.
Gnndzik, S. Lichtman, J. Leitner et al , ibid 12, 546 (1.964. ).' J. Schwinger, Phys. Rev. 13S, 8816 (j.964); F. Gursey, T.D.
Lee, and M. Nauenberg, ibid 135, B46/ (19.64).
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term must have the following form:

m'C p'4 a»+ms'C;. ~ C p p. (3)

= —+a~c= —+~em= —+ca~. The decomposition of
the 4 into the (2 8), 1V„,P, and the (4 1), tP(;;si, can be
exhibited as follows:

The first term of (3) gives a spin-dependent mass
splitting while the second term is SU3 spin-dependent.
It is more transparent if we use the explicit formula
for C, Eq. (1), in (3), giving

2mi'fp f.P+3ms'Vo Vo (3')

To see the mass splitting due to Lt" we shall construct
the effective-mass term which transforms as Eq. (2):

m s{@ N(yAL, @~A@ B}

which can be written as

m 2 3 a 3 ~ a

(4)

' Since the pseudoscalar and, vector mesons belong to the
same supermultiplet, the mass splittings among the
octet of pseudoscalar mesons and among the octet of
vector mesons are related, as seen explicitly in (4'),
from which we obtain for example

m+jjp m p
—m+ mg )

which is known to be satisfied. "
Ke shall assume that the baryons are composed of

three fundamental particles in the S state. Because of
the Pauli principle, the three-particle wave function
must be antisymmetric for the interchange of any pair
of the particles so that it is a basis of the irreducible
representation "20" of the SU6. The representation
"20" reduces to the (2,8) and the (4, 1) representation
of SU&SUs. With the representation (2,8) we may
identify the octet of baryons (P,n, Z+,Zo,&, , o,Ao),
while with the (4, 1) we cannot identify any known
particle. The particle, tentatively denoted by Z', be-
longing to the representation (4 1) has spin and parity
—,'+, isospin 0, and strangeness —1, so that it should be
observed as a Z~ resonance in the I'3/2 state.

The wave function of the system can be written as a
totally antisymmetric third-rank tensor in a six-
dimensional complex-vector space: +~~g, where +~~~

"S.Okubo, Phys. Letters, 5, j.65 (1963)."S.Coleman and S. L. Glashow, Phys. Rev. 134, &671 (1964).

where 6 p=V, p+ (1/v3)(i pVo, and we omitted the con-
tribution of the second term in (4) because it does not
affect the mass differences. The first term in (4'),
f 'fo, gives the GMO mass relation for the pseudo-
scalar mesons while the second term, G 'G3, gives a
q
—co mixing as well as a mass splitting among the

vector mesons. The form of the second term is exactly
the same as the Okubo's speculated expression for the
vector mesons. "Therefore, if we neglect the SUB spin-
dependen. t term )second term in (3')j, we obtain the
equal-spacing result for the vector mesons:

m$ m11,4 —m+ilc m p and m p
—mep ~

2— 2 — 2— 2 d 2 — 2

A gs AC D@ & 6 2—(qyaqlf) (7)

where (&I "4) is an abbreviation for the trace, i.e.,
(+"0')=4"'"Po+gpo. Inserting the expression for the
+, Eq. (5), into Eq. (7) to see the type of the coupling
of the octet baryonic current, we obtain the following

"S.Coleman and S. I,. Glasbow, Phys. Rev. Letters 6, 423
(1961).

@ABC=+iajP,7oy= (1/6)lP((jk) eaPy

+ (1/3+6) )ejI {e po1V ~,'+e, olV p,'}
+«'{

eppes&-j'+

ep-v1l'vj'}

+ac{&&-o&'p"+expo~' }j (&)

where (P(,;i,i is completely symmetric with respect to
the interchange of the sures so that it is a spin
wave function of a spin-2 particle, and e;; and e p~ are
the totally antisyrrnnetric tensors in the two- and
three-dimensional spaces, respectively.

A mass formula for the baryons can be obtained in
the same way as the mesons. However, it is obvious
that no more than the GMO mass formula is obtained
for the baryons. Unfortunately, the mass of Z' may
not be predicted because it depends on the spin-
dependent mass splitting which is unknown a priori

In order to see the transformation property of the
electromagnetic interaction, we write down the minimal
electromagnetic interaction of the fundamental particle
in the static limit as the following:

pB*'Vi; ',4"'V,.gy--

+(—ip/2m) 8*'"V' —lit*' ~4'-)
+(/2 )(0*'& l0"&.)&«— A, (6)

where f, is the wave function of the fundamental
particle, and p and A are the electromagnetic scalar
and vector potentials, respectively. The first two terms
in (6) comprise the electric interaction, which trans-
forms as a member of the "35" representation under
the SUo group and the (1,8) representation under the
SU2SU3 group. The third term is the magnetic inter-
action which transforms as a member of "35" under
SUo and (3,8) under SUsSUs. We shall construct the
effective electromagnetic current of baryons in a bi-
linear form of 0' in such a way to retain these trans-
formation properties. Since "20"P "20*"contains only
(inc(13317(112()PP+112()a7111117+(1331j+L1173)7+1118971)
we expect only one type of coupling for the magnetic
current as well as for the electric current, while in the
ordinary SU3 symmetry theory there are, in general,
two types of coupling for the magnetic current known
as F type and D type. "

The form of the tensor of the "35" representation
constructed as a product of the "20" baryon and the
"20*"baryon* wave function is given by
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expression for the J~" after a lengthy but straight-
forward calculation:

given by
ao4* +s &.fs

~~"=~~~' = s~e(~) e 4*."'"'(~).-4 (-~-)

+ '&4"-'""«Nps +N p"e''V( s~)]

+s)8 (N-N p) p (e);—;((NOD) p

+asap -(NeN)], (7')
where

(NN p) s =N, N p
& Np&—N, ,

(NNn) p =N~"Np"+Np"N, ,'bs (—N—lV),

(NN)=Np N &.

The last line in Eq. (7') is the octet baryonic current
and the terms in this line correspond to the (1,8), the
(3,8), and the (3,1) representation of the SUsSSUs
group, respectively. From this expression we may see
that we have F-type coupling for the (1,8) current
while we have D-type coupling for the (3,8) current.

Recalling that the electric and the magnetic inter-
actions transform as the (1,8) and the (3,8) repre-
sentation, respectively, we conclude from the previous
considerations that the electric interaction of the octet
of baryons is of F-type coupling, as we would expect
from charge conservation, while the magnetic inter-
action is of D type.

We may readily extend above observations to the
weak baryonic current in the leptonic decays of the
baryons. We shall assume that the main part of the
weak current is a bilinear form of the fundamental
particle Gelds. Then the weak currents belong also to
the "35"representation of the SU6 group in the static
limit. Corisidering the spin dependence of the currents,
the Fermi current belongs to the (1,8) representation
while the Gamor-Teller current belongs to the (3,8)
representation of the SU2SUB group. By using the
previous observations, therefore, we conclude that the
Fermi current must be of the Ii type an.d Gamow-
Teller current must be of the D type. In the V-A
theory of the weak interaction, the V current gives the
Fermi current while the A current gives the Gamow-
Teller current. Therefore, we may see that the con-
clusion we derived is consistent with present experi-
ments by comparing with Cabibbo's work' in which
he showed that the V current was of Ii type and the
A current was almost pure D type.

If we assume that the conservation of parity holds
for strong interactions, a nonderivative type of static
meson baryon interaction is not allowed. But once we
introduce a derivative into the interactions it can, no
longer be invariant under the group SU6. Therefore the
static meson-baryon interaction is a symmetry-violating
interaction of the SU6, although it is still invariant
under the group SU3.

I.et us first consider the interaction of mesons with
the fundamental particles in a static limit which is

"' N. Cabibbo, Phys. Rev. Letters, 10, 531 (1963).

In this interaction the P* mPs part transforms as the
"35"representation of the SUs and the (3,8) represen-
tation of the SU2SU3. We may obtain an effective
meson-baryon interaction from this interaction Hamil-
tonian by taking the expectation value of it between
two baryonic states. If we assume that the meson field
is not affected in taking an expectation value and is
treated as an external field as in the case of the electro-
magnetic field, we see that the meson Geld interacts
with baryons in the same way as the electromagnetic
field does. Therefore, we obtain the D-type coupling for
the octet meson baryon interactions which seems to be
consistent with the analysis of the I'&~2 meson-baryon
resonances. "

We may make an analogous discussion for the octet
vector-meson —baryon interactions and find that F-type
coupling holds for them.

We assumed the quark model of elementary particles
and applied the idea of the supermultiplet of the
nucleus to it without any justification. The results
obtained seem to be interesting and give some support
to the idea of a supermultiplet of elementary particles.
Although the quark model is assumed here, the idea of
supermiiltiplet may still be useful for other models
such as the broken SU4 model in which the same super-
multiplet of mesons must be obtained.

Since we started from the quark model, we should
not have R invariance at the beginning. However, if
we look at the effective interactions of the baryons and
the meso', s, we see the existence of the R invariance in
it if we appropriately define the R transformation for
the octet pseudoscalar and vector meson. s (RC of the
meson. s=1). This suggests, in gen. eral, that even if the
original model does not indicate the R invariance, an
approximate stronger symmetry (in this case the group
SUs) is possible to impose the R invariance as a result
in the same approximation.

Our discussion was in a nonrelativistic framework.
One would find some difhculty in extending this theory
to satisfy the relativistic dynamics. As we mentioned
before, even in the nuclear supermultiplet theory it is
necessary to separate the spin group from the ordinary
space-rotation group, which was accomplished by
neglecting the tensor and the spin-orbit interaction in
a first approximation. In a relativistic wave equation,
the spin indices are so tightly related to the coordinates
(as we may see in the Dirac equation) that it is im-
possible to decouple the spin variables from the co-
ordinates in the free Hamiltonian. Therefore, in order
to proceed with the same arguments as given here in
the case of relativistic dynamics, we might have to
separate a part of the free Hamiltoriian from the rest
in a first approximation and treat it as a perturbation,

r' A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963);
R. Cntkoslry, Ann. Phys. (N. Y.) 23, 415 (1963).
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which resembles a treatment in the old strong-coupling
theory.

Another possibility of extension is to search for a
larger group which includes the SU6 group and the
Iorentz group as subgroups. One possible group of this
kind is the SLs group (unimodula linear-transformation.
group in a six- dimensional complex-vector space),
which contains SL2SL3 as a subgroup. However, it

seems to be impossible to have a wave equation com-
patible with this group without extending the four-
dimensional Minkowsky space to a higher dimensional.

space (36-dimensional space!) ."
"After this paper was written, the author became aware of a

paper by F. Giirsey and L. A. Radicati /Phys. Rev. Letters 13,
173 (1964)j, in which they claim that the relativistic extension
of the theory is possible.
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A self-consistent calculation is performed for the low-energy P&&2, T=—',, pion-nucleon scattering amplitude,
using the E/D method. The distant part of the left-hand cut ior the partial-wave amplitude is dealt with in
the manner of Balazs. The mass of the nucleon bound state is found to be =880 MeV, the coupling constant
=12.The low-energy phase shifts and the scattering length are also in good qualitative agreement with the
observed ones.

I. INTRODUCTION
' Q URGING the past few years, the low-energy pion-

nucleon system has been subjected to extensive
investigations within the framework of dispersion
theory. The main feature of such investigations has
been to calculate the pion-nucleon scattering amplitude
(to be precise, the various low angular-momentum
partial-wave amplitudes) given by forces that arise
from the low-mass intermediate states in the crossed
x —N and xw —+.0& "E channels. ' ' These low-mass states
are the familiar nucleon and the I'3/2 T 2 x N reso-
nance, N* for the crossed x —N channel and the T= j.,J= i, sr~ resonance, i.e., the p meson, for the channel
vrvr —& NX. For a more accurate determination of the
z —N scattering amplitude, one must of course incorpo-
rate in the problem the forces that arise from the higher
mass intermediate states in the crossed channels. In the
language of the Ã/D method, that provides the ap-
propriate technique for such calculations, this amounts
to taking into account the contributions that arise from
the distant part of the left-hand cut of the various
partial-wave amplitudes in the s plane. This, however,
is a difficult problem. A method to tackle it has been

t Present address: Tata Institute of Fundamental Research,
Bombay, India.

'S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960). We follow the notation of this paper; note that our units
are A=c=m =1.' J. S. Ball and D. Wong, Phys. Rev. 133, B179 (1964).

suggested by Balazs, 3 wherein. these far left-hand cut
contributions can be approximated by a set of pole
terms; the locations of these poles are known but the
residues are, as such, unknown constants. However, if
one knows the amplitude correctly at any point in the
low-energy region, these residues can be determined by
matching, at this point, the expression for the ampli-
tude involving these residues with the known ampli-
tude. 4 The latter quantity can be obtained from the ab-
sorptive parts of the crossed channels through a
fixed-energy dispersion relation.

The above method, if reliable, would certainly lead
to a more accurate determination of any scattering
amplitude than if the far left-hand cut contributions
were just ignored, but one would still have to treat the
crossed channels as known. For instance, if the various
low-energy, low angular-momentum partial-wave am-
plitudes for m —N scattering were calculated and one
thus found a bound state (nucleon) and a resonan. ce
(1V*), it would be only after on.e inserted them before-
hand in the crossed x —N channel. At this stage, how-
ever, if the criterion of self-consistency' is invoked,

' L. A. P. Balazs, Phys. Rev. 128, 1939 (1962}.
4 One will have to match the amplitude and the 6rst n —1 de-

rivatives, if the number of Balazs residues to be determined is n.
~ G. F. Chew, Proceed&sgs of the International Conference on

IIigh-energy Euclear Physics, Geneva, 196Z, edited by J. Prentki
(CERN, Geneva, 1962), p. 525.' G. F. Chew, Phys. Rev. Letters 9, 233 (1962).


