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The effects of distorted waves on the high-energy inelastic scattering of protons by '2C were investigated
using the distorted-wave-impulse approximation. It was found that except for electric monopole transitions,
the use of distorted waves results in a reduction of the peak differential cross section by a factor of 2 or 3,
with little effect on the location or shape of the curve. It was also found that the presence of spin-orbit
coupling in the distorting potential has a non-negligible effect on the proton polarization at some angles. The
2+ level of "C at 4.43 MeV was treated in some detail in L-S and j-j coupling extremes to look at the relative
effects of distortions on nonspin-Rip and spin-Rip matrix elements.

I. INTRODUCTION pressions for the potential which produces the elastic
scattering (the optical potential) and expressions for in-
elastic scattering amplitudes, all in terms of the free
two-nucleon transition matrix. The optical potential
thus obtained has received considerable attention but
as yet' cannot accurately predict the elastic scattering.
A comparison of the predictions of calculated and em-
pirically determined optical parameters has been made
based on 180-MeV proton scattering by j'ohannson
et a/. ,' illustrating the failure of the calculated param-
eters to give quantitative agreement with the data.

In view of the fact that elastic scattering is essentially
a coherent, many-particle "transition" at any energy,
this failure is not so surprising. Inelastic scattering,
however, is a few-particle transition, and one may hope
that it will be more readily explained by the formalism
of KMT. ' Indeed, a considerable amount of qualitative
success has been obtained already, especially in the pre-
diction of the polarization produced by normal parity
[Aa = (—1)~] transitions. These calculations have been
performed either in the Born approximation, where

- distortion effects due to elastic scattering and refraction,
and absorption due to all other modes of excitation, are
ignored; or in the WEB approximation' which takes
into account some, but not all, of the optical eRects.

The distortion eRects are not negligible in any sense
and must be taken into account. For example, at 150
MeV the cross section for inelastic transitions in "C
are reduced. by as much as 50%%u~ when distortions are
introduced, and this attenuation persists even at very
high energies. ' In addition, the elastic scattering pro-
duces large polarizations, which indicates a spin-orbit

HE high-energy scattering of protons and elec-
trons on light nuclei has been of interest in recent

years as a means of investigating nuclear structure. '
High-energy projectiles with wavelengths on the order
of nuclear dimensions or smaller are necessary, if any
more than gross properties are to be observed. Nucleons
are desirable as projectiles because they "see" neutrons
and protons equally well, and because the strong spin
and isospin coupling which characterizes the nucleon-
nucleon interaction can conceivably provide valuable
information about the way in which nucleon spins are
distributed in the nucleus.

The outstanding drawback to use of nucleons as a tool
for structure investigation is our lack of knowledge about
the nucleon-nucleon interaction. In order to take full
advantage of the scattering information pertaining to a
given projectile interacting with a composite system,
one needs to know the potential characterizing the in-
teraction between the projectile and the constituent
particles of the target, and of course we do not possess
this information, if indeed a potential exists, for the two-
nucleon system.

An attempt has been made' to circumvent this dif-
hculty and express the nucleon-nucleus interaction in
terms of the free two-nucleon transition amplitude which
has been studied extensively and is experimeritally
accessible. This procedure depends on the use of the
impulse approximation and is only expected to be valid
at high energies ( 100 MeV or higher). It yields ex-
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coupling term in the optical potential. This presumably
will be refI.ected in the inelastic polarization.

The importance for isolating the effects of distortions
on the magnitude of the peak cross section arises in the
following way. Transitions to low-lying states of light,
even-even nuclei are thought to be collective in nature,
and as such will be enhanced relative to the correspond-
ing single-particle transitions. The amount of enhance-
ment is critical to a description of the structure of the
states participating in the transition, but is not directly
observable because of the presence of distortions effects
described in the previous paragraph. Therefore, in
order to test the accuracy of wave functions obtained
from a given structure calculation relative to the pre-
dicted collective effects, one must investigate the im-

portance of distortions rather carefully.

II. FORMULATION

A. The Inelastic Transition Amplitude

The transition amplitude which describes the in-
elastic scattering of a nucleon by a nucleus can be
written in the distorted-wave Born approximation
(DWBA) as'

1'ro ——P x„,„,&—~*(k,x)N*(ep)(C g(x, ) ~

nanb

XP U(x,x;)
~
Co(x;))N(e.)x .„.'+'(kp, X)dr (1)

j'-1

where x stands for the space, spin, and isospin coordi-
nates of the incident nucleon, r, s, and g, while x; rep-
resents the coordinates of the jth target nucleon. (In
fact, r is the relative coordinate in the nucleon-nucleus
center-of-mass system. )

The functions N(m, ) and N(nq) are spin functions of
the incident. nucleon. The quantities x'+) and g' ) are
distorted waves (see Appendix A) which include the
effects of elastic scattering, refraction and other inelas-
tic channels (absorption) in the incoming and outgoing
channels, respectively. These latter functions are
matrices in the spin space of the incident nucleon, allow-
ing for the possibility of spin-Rip caused by the spin-
orbit portion of the optical potential. (This spin-fhp, of
course, is independent of that which may be caused
by the interaction V which produces the inelastic
transition. )

Equation (1) describes an event wherein the incident
nucleon is scattered from an initial momentum state kp
and spin state m, to a final momentum state k, spin
state no~. The nucleus struck is excited from its ground
state Jp Mp Tp T p 7fp to a given excited state Jf 3ff,
~f& ~zfr ~f.

B. The Effective Interaction

The quantity V(x,x;) is the effective nucleon-nucleon
interaction which produces the inelastic scattering. At
low energies this is not simply related to the real inter-

action between two nucleons. At low energies where the
mean free path of the incident nucleon is not large com-
pared to nuclear size, multiple collisions become likely.
Since, by the form of (1), multiple-step contributions to
the transition have been eliminated, the form of V will

have to be chosen to account for them in an effective
one-step process. Not on}y will multiple scattering be-
come important in the sense just described but, in addi-
tion, at each step the bombarding nucleon will see
several nucleons, so that the potential to be iterated is
still not the two-nucleon interaction.

We can only hope to justify use of the two-nucleon
interaction at energies where the mean free path of the
projectile is long compared to the nuclear size, and where
its wavelength is small compared to target nucleon spac-
ing. (These conditions are related of course. ) We must
also assume that the target nucleon is not "distorted"
from its isolated condition by virtue of its existence
within nuclear matter.

These assumptions lead us to replace V(x,x,) by
t(x,x;), where this latter quantity is the transition matrix
for free two-nucleon scattering. t(x,x,) is a function of
bombarding energy and momentum transfer in the two-
nucleon collision (as well as spins and isospins), and
these are not simply related to the corresponding quanti-
ties in the nucleon-nucleus collision because of refrac-
tion effects. If we assume that refraction is not too im-

portant, and in addition ignore the momentum of the
struck nucleon, we can use

&(a,&o)~(r—r~)

in place of V, where Ep is the energy of the bombarding
nucleon in the laboratory system of coordinates, and

q=k —kp,

where ko and k are the wave numbers for the relative
nucleon-nucleus motion before and after the scattering.
Estimates of the importance of using these "asymp-
totic" kinematics rather than the corresponding quanti-
ties which actually obtain within the nucleus seem to
indicate that substantial errors result for forward scat-
tering, which will be important for Al=0 excitations,
but less significant for all others.

The interaction which we shall use in (1) is then

U(x,x;)= t;(q,Eo)8(r—r;) (2)

where, following KMT, t, (q,EO) will be parametrized in
the form

t;=(2A'/(2m)'m )[A+Be.8e,"8+C(e+e,) 8
+«j~,"q+&~ P~g P]. (3)

The unit vectors p, j, and ri form an orthogonal co-
ordinate system, defined by

j= (k—kp)/q,
8= (koXk)/(koXkj, (4)
P= jXR.

m„ is the proton rest mass.
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Manipulation of the matrix elements involved will be
simplified if (3) is written as

Equation (7) can now be written as

252

~=(»'i(2)' ) 2 d "(~ ) ' '() (5)
SS'XX' m„ss)x

where 0.P, 0& 8'(j) are spherical tensors representing
the spins of the incident and target nucleons. The
coeKcients dqq. s8' in (5) are expressible in terms of the
A' s, 8's, etc. in (3), as well as the nucleon-nucleus scat-
tering angle 0 given by

&& p (~,~,s~~.&
X ...~-&*(r)I',"'*(r)

nanb

~ b(r —r;)
)( (f ~ Q JJj ~'(P, ) ~

0&x„. „~+&(r)dr (10)
J

H=cos '(k2 k/k2k). (6) D. Nuclear Wave Functions

C. The Matrix Element

The matrix element (1)can be calculated using (2) and

(5) in a form which will facilitate use of the distorted-
wave code, JUr,rz. This quantity is more logically
written as

Tro= 2 X ...&-&*(r)(f
~ P u*(~b)i,

For E'0 15O MeV or greater and excitation of low-lying
nuclear states, we will set k=ko for convenience. The
form of the d's will be determined by the choice of axes.

We shall be interested for the moment in excitation
of the collective levels of light, even-even nuclei where
the transitions will be from T=O ground states to
T=0 or T= 1 excited states. In that case, the isospin
dependence of the two-nucleon scattering matrix can be
handled as by KMT in a very simple way. For that
reason the explicit isospin dependence of t; in Eqs. (3)
and (5) has been omitted. The A' s, 8's, etc. will have
one set of values for AT =0 transitions, and another for
AT= 1.

The calculation of Tfo in (10) requires determination
of a nuclear matrix element of the form

(ef(x~, xg)
~
P 6(x,x;) ~C&(x&, x&)&, (11)

where 40 and Cf are antisymmetrized wave functions.
In particular, we wish to consider coHective excitations
of even-even nuclei which have 0+, T=O ground states
and final states with angular-momentum states J, M,
even or odd parity and T=O or 1.

We shall restrict our attention for the moment to
hole-particle wave functions wherein the excited states
of such nuclei are described by the coupling of hole-
particle pairs to the quantum numbers of the final
state. The single-particle motions are described by har-
monic oscillator functions labeled by rl, l, and j(=l~ —',).;
and all hole-particle pairs which are allowed by the
selection rules of the transition and which correspond
to one-quantum transitions are included. The expres-
sion for (11) in the case of an extreme j-j coupled,
single-particle transition wi11 now be developed: exten-
sion to the more general wave functions will then be
trivial.

&&@(e.)8(r—r;)
~
0)X„.„.'+&(r)dr, (7)

(

(22)2m ~iglss'mtgx' r.2

S r r;)—
V("'*(r)C(lS'J: m', ) ',M')

x yz ~'(&;)(~~~ ~~'~ ~.&A~ "', (g)

where C(lS'j:m', X',3l') is a Clebsch-Gordan coeKci-
ent, F~ is a spherical harmonic, and 'g~ is a spherical
tensor of rank J' acting on the coordinates of the /th
nucleon and expressed by

where the nuclear matrix element (in bra-ket notation)
must be expressed in an appropriate form for the com-
puter code.

The operator in the nuclear matrix element can be
written as

1.Siogle-Particle Excitatioms

We shall represent the ground state of the nucleus as
any number of closed shells which do not participate in
the excitation, plus an even number of nucleons in an
outermost shell, j-j coupled to J=O. Let m&, l& and

jg, mg be the quantum numbers of a nucleon in this
shell, and let e&, l&, j&, and m& designate the quantum
numbers of the nucleon excited to a higher shell and
coupled to the remaining core to produce the angular
momentum of the excited state.

Utilizing the language of second quantization, let
a ~ and a, respectively, create and destroy particles in
the A shell with magnetic quantum number m, while

b ~ and b are analogous operators in the 8 shell. If we

represent the ground state of the nucleus by ~0), the
the excited state for a single-particle excitation can be
written as

~ y,Pr, )=g C(g,g,S,:p, m, m, )

&&(
—1) .+-~,„b„&(0&, (12)
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where we have used the fact that the state

( 1)jz+sna
~
0)

has the rotational properties of a particle of angular
momentum j& and magnetic quantum number m.
The particle-hole pair in (12) has been coupled to Jf Mf

The operator in Eq. (11) can be written as

Q n.'ns&n( n)P&, (13)
a,P

where &n~ 8 ~P) is the matrix element of 8(x,x,) between
single-particle states. The symbols e and ep each stand
for sets of j and m. Designating the quantity in (11)as

&J~Mr
~ 8~ 00), and using (12) and (13), we obtain

&JfMf~8~00&= Q C(jsj&Jr. umMf)( 1)'"+—
maPp

X( ~8(P)&o~a „tf„n.tn, ~o) (1.4)

Using Wick's theorem, or working directly with the
commutation rules, we arrive at

&JfMr
~

8
~
00)—P C(j sj pJf ~ umM f)

X(—1)'"+"&js,uI ~
I j~, —m&

With this result, the nuclear matrix element in (10)
becomes

2 CUsi~J~: umMf)( 1)'"'"—

8(r—r;)
X&jsul 'JJ~ '(&~)l&, —m), (16)

r2

where r, is the coordinate in the bra and ket. Equation
(16) reduces at once to

g( 1)~ +"C(j—zj &J'f umM f)us ~(r)
my

Xu (r)&j,ul'JJ u'I j,—m) (17)

Equation (17) was obtained by reasoning about one type
of particle. Since for this problem neutrons and protons
contribute equally, the matrix element in (17) should
be multiplied by v2 (which gives a factor of two in the
cross-section). Note that for p-n scattering this factor
would be absent.

Applying the Wigner-Eckart theorem to (17) in the
form

&j'm'I»'I jm&=( —1)"C(j&j':mom')&j'll~~llj&, (1g)

we obtain for the nuclear matrix element

~2us*(r)»(r)&jsllg~ II j~& &(—1)'"+™

XC(jsj ~Jg. umMr)C(j &J'js mM'u) . (1.9)—
The sum on magnetic quantum numbers can be per-
formed at once, and yields at last

K&uz (r)uz(r)( js/ff) 4 JI4f'~~, (20)

where j is short-hand for (2j+1)'~'.

Substituting (20) into (10),we arrive at an expression
for the transition matrix element in the case of a single-
particle excitation in the j-j coupling limit:

2V2A' js
d„„,ss C(lS Jr. Mr Y X)

(2m) m

X &2 II~'Ill) &jsfl'&III j~)

X g C(-'5-': n,X n)tX ...&-'*(r)F~~&-"'*(r)
fbi% Q

Xus*(r)u~(r)x . .&+'(r)dr. (21)

If the more general hole-particle wave functions are
used, the resulting transition matrix Tg will be a sum
of terms like (21) in the form

Tg g„n,Tro( ——), (22)

where to each value of v in the sum, there corresponds a
set e&, j&, l&, m&, j&, and E&, and the coeKcients o.„
are obtained from structure calculations.

Equation (22) represents the quantity we wish to
compute; with it we obtain a description of the inelastic
scattering to within the errors introduced by our
assumptions. Before calculating (22), however, we shall
attempt to isolate to some extent the contributions to
the form of the transition amplitude expected from the
effects of distorted waves.

These efFects will be considered in terms of the ex-
treme single-particle model for the nuclear wave func-
tions which mill eliminate all save the gross efFects of
nuclear structure. We shall look at the scattering at
bombarding energies of 90, 156, and 310 MeV, since the
two-nucleon coefFicients are readily available at these
energies. It should be kept in mind that the approxima-
tions made here become suspect at, or in the neighbor-
hood of, 100 MeV, so that some care must be exercised
when viewing the results obtained at 90 MeV.

III. DISTORTED WAVE CALCULATIONS

A. Optical Parameters

The parameters which specify the distorting optical
potential described in Appendix A can be obtained from
the analysis of elastic proton scattering data. Such an
analysis has been performed at 180 MeV by Johannson
et at. ,' and we shall rely on the optical parameters
quoted by these authors which are listed in Table I.

The tw'o-nucleon transition matrix is available at 90,
156, and 310 MeV, while we only have the parameters
for the optical potential at 180 MeV. Although it might
seem that interpolation of the t matrix to 180 MeV is
indicated, relatively more theoretical information on
the energy dependence of the strengths of the optical
potential is at hand, which relates the central and spin-
orbit portions of the optical potential to the central
and spin-orbit portions of the two-nucleon scattering
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Tmr. E I. The optical parameters at 180 MeV were obtained
from Ref. 3. The potential strengths at the other three energies
were obtained by extrapolation from 180 MeV.

180 MeV 90 MeV 156 MeV 310 MeV

V
lV
rc
r

Vs
~s
r'
8

16.
10.
1.26
l.
0.5
2.5—1
1.34
0.5

22.6
11.1
1.26
1.
0.5
2.88—1.53
1.34
0.5

18.2
10.2
1.26
1.
0.5
2.62—1.07
1.34
0.5

5.32
12.1
1.26
1.
0.5
2.1—0.806
1.34
0.5

amplitude. Using these relations, the 180-MeV poten-
tial strengths were extrapolated to 90, 156, and 310
MeV. The well radii and diffuseness were not varied.
The optical potentials thus obtained are displayed in
Table I.

us*(r) jr,(qr) ug(r) r'dr (23)

where q is the magnitude of the momentum transfer. L
is the orbital angular momentum transfer in the scat-
tering. Because the Bessel function damps out rapidly
for increasing argument, one can say to zeroth order
that for large q only small r is important. Hence, for
high-energy scattering (and not too close to the for-
ward direction), harmonic oscillator functions will

probably be adequate. However, when the large r por-
tion of the wave functions becomes important relative
to the small r portion, oscillator functions may prove
inadequate because of their Gaussian dependence in
this region. This tail region becomes important for for-
ward scattering: for I=0 where the inelastic cross sec-
tion peaks in the forward direction, the eA'ects should
be particularly large. In the DWBA the cross section is

B. 2+ Lgv@1 Of "C

We consider the transition from the 0+, T=0 ground
state of "C to the 2+, 7=0 level at 4.43 MeV. This cor-
responds to I=Jr=2 in Eq. (21).This is a 1p—1p par-
ticle transition: from j&——

~ to j&———,
' in j-j coupling,

and AL=2, AS=0 in L-S coupling. The initial and final
radial wave functions are 1p functions. If we use har-
monic oscillator functions,

(r) —(2&&/2&5I2/3/~) 1l2rr, ar—
The parameter o, should be related to the charge radius
which is inferred from elastic electron scattering. We
use the value n=0.188 I' '.

Oscillator functions probably yield a reasonable
radial distribution for small r, but fail conspicuously for
large r because of their Gaussian tail where an exponen-
tial tail is required. In the plane-wave limit where dis-
tortion effects are ignored, the inelastic cross section is
proportional to

proportional, not to (24), but to an average over vari-
ous momentum transfers produced by refraction. Thus,
although' the "asymptotic moment transfer" q= k—ko

might correspond to a case in the BA where the tail
region is unimportant, refraction e6ects could produce
a nonnegligible contribution from the large r part of the
wave function. A more important effect in the DWBA
is produced by absorption due to the imaginary part
of the optical potential. This produces an attenuation of
the wave function within the nuclear volume and thus
emphasizes the tail of the wave function.

Keeping these remarks in mind, we shall nevertheless
use oscillator functions for the nuclear radial wave
function. These will provide form factors of sufhcient
accuracy for explorative purpose, although they will be
replaced by solutions of a Saxon-Wood potential in
later detailed calculations. It should be pointed out
that the polarization results may be less sensitive to the
radial wave functions than the cross section. In the
plane-wave limit, the polarization is independent of the
radial integral. For L-S coupling, this is also approxi-
mately true in the DWBA, and hence we may expect
the form of the radial functions to be relatively unim-
portant in calculating the polarization.

2&2A' j~
2 fo —(jsll&J'~ll j~) 2

(2m)'m„Jr
Xmgng *(r)

g 7JgI"(r)u&'*(r)uz (r) X.. .+ (r)dr . (24)

Only the lowest permitted l transfer in any transition
has been retained in (24). The reduced matrix element
contains the coupling information for the initial and
final states involved. This transition amplitude will be
calculated exactly, using previously developed computer
codes.

The importance of distortions on the inelastic transi-
tion can be expected to vary with energy, not only be-
cause of the changing wavelength of the incident par-
ticle but also because of the energy variation of the
parameters which specify the optical potential which
produces the distortions. The contributions to the dis-
tortion effects from the various portions of the optical
potential were obtained at the three energies by setting
the appropriate strengths to zero. To facilitate discus-
sion, the abbreviations in Table II have been adopted.
V and 8', and V, and S', are the real and imaginary
strengths, respectively, of the central and spin-orbit
portions of the optical potential, while Z is the nuclear
charge. The cross sections and polarizations obtained

C. Zero-Range, Scalar Interaction

The effects of distorted waves on the inelastic scat-
tering cross section and polarization are most clearly
seen if we put t(g, Eo) = 1 in Eq. (2), corresponding to a
zero-range, scalar, two-nuclear interaction. The transi-
tion amplitude in this case is given by
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FIG. 1. Effects of distorted waves on the differential cross section using a zero-range, scalar, two-nucleon force. The curve labeling
is explained in the text and in Table II. The normalization has been chosen for convenience.

are shown in Figs. 1 and 2. The curves labeled INI and
FIN on the polarization plots resulted from including
the spin-orbit coupling only in the initial channel and
only in the final channel, respectively. The curve
labeled DYV contains the spin-orbit coupling in both
channels.

IV. RESULTS

A. Zero-Range, Scalar Force

The inelastic cross sections shown in Figs. 1—3 for a
zero-range, scalar, nucleon-nucleon interaction clearly

TABLE II. The labels de6ned here indicate which of the optical
potential strengths are zero in the distorted wave calculations.
The notation &0 indicates that the corresponding strength takes
the appropriate value from Table I.

BA
RE
IM
DW(s= 0)
DW

0
~0

0
+0
+0

0
0

+0
+0
+0

0
0
0

+0
+0

0
0
0

/0
Qp

0
0
0
0

+0

D. Two-Nucleon Interaction

The cross sections and polarizations were then cal-
culated using the full two-nucleon transition matrix
including its momentum transfer and spin dependence.
This was done for extreme j-j and extreme I;5 cou-
pling. The results obtained are shown in Figs. 3—5.

show the eGects of distorted waves compared to the
plane wave results, as well as the relative importance
of distortions produced by the real part of the optical
potential (reflection and refraction) and the imaginary
part (absorption). The following features are significant.
(These remarks are quite accurate for the 156- and. 310-
MeV results and are approximately true at 90 MeV.)

1. Refraction and reQection due to Coulomb scatter-
ing and the real part of the optical potential are almost
negligible except for forward scattering.

2. The peak cross section occurs at essentially the
same angle with and without distortions.

3. The over-all effect of distorted waves is a reduction
of the peak plane-wave inelastic cross section by a fac-
tor of about 2. These features are consistent with the
suits obtained by Kawai e] cl.' for the 1+ level of "C
at 15.11 MeV (which is an /=0, spin-flip transition).

The experimentally observable features of the cross
sections at these energies are the magnitude of the peak
cross section and its angular position. Details of shape
are somewhat uncertain. The results quoted here indi-
cate that the eftects of distorted waves relevant to re-
producing experimentally observed cross sections are
well represented if the central, absorptive portion of the
optical potential is accurately determined. This re-
quires the evaluation of three parameters at each
energy: the radius of the well, the diffuseness, and the
potential strength. If the first two parameters are de-

'M. Kawai, T. Terasawa, and K. Izumo (to be published).
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termined at some energy by a complete investigation of
the elastic scattering data and then regarded as essen-
tially the same at other energies, then the potential
strength is determined by the total reaction cross section.

The polarizations produced by the spin-orbit cou-
pling in the optical potential are shown in Fig. 2. In the
neighborhood of the peak cross section, the polariza-
tions produced with the spin-orbit force present only in
the initial channel or only in the final channel are essen-
tially equal, and seem to add to produce the polarization
that is produced with the spin-orbit force present in both
channels simultaneously; that is, the spin-orbit is
essentially perturbative in the region of interest. This
fact has been dealt with previously. ~

The discussion in this section has indicated that the
reflection and refraction effects produced by the real
part of the optical potential are essentially unimportant
at these energies. Strictly, we have only established that
reflection can be ignored, since the use of a force with a
6nite range could make refraction of considerably im-

~ R. M. Haybron, H. McManus, A. Werner, R. M. Drisco, and
G. R. Satchler, Phys. Rev. Letters 12, 249 (1964).

portance. Calculations including finite-range effects are
under way and will be reported.

B. Two-Nucleon Interaction

The transition considered here is probably not well
represented by either coupling extreme which we have
used here. %e can immediately rule out pure j-j
coupling from our results as compared to experiment in
Fig. 4(b). The 156 MeV polarization data clearly favors
the L-S coupling extreme. In addition, the collective
enhancement expected should, in this case, multiply
the results obtained here by a factor of 2, which
increases the L-S result at 156 MeV up close to the
experimental curve, but leaves the j-j cross section still
too small.

Concentrating on the L-S results, it can be seen that
the contributions to the inelastic polarization from the
optical spin-orbit coupling are not negligible at any
energy. This spin-orbit force is virtually negligible in
conhguration space compared to the other forces pres-
ent, but it is not small in spin space, and contributes
substantially to the polarization predicted. The optically
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produced polarization essentially adds to that produced
by the two-nucleon force. The fact that the former con-
tribution goes to zero near the peak two-nucleon con-
tribution accounts for the success of the KMT, plane-
wave predictions, for normal parity transitions. The
KMT predictions should be expected to fail for the ab-
normal parity transitions, where the two-nucleon inter-
action produces small polarizations, and calculations on
the 15.11 1VIeV, 1+ level of "C indicate this to be the
case.

Information about the ratio of the spin-flip to
nonspin-fiip matrix elements can be obtained from the
curves in Fig. 3(b). The 1.-5 coupled curve is propor-
tional only to the nonspin-flip matrix element both for
BA and DW. Therefore, dividing the D% results by the
BA results yields a function of scattering angle which
reflects the effects of distortions on the nonspin-flip
matrix element. The j-j cross section is determined by
a mixture of spin-fiip and nonspin-fiip, but we can still
calculate a ratio such as that described above. These
ratios for the 156-MeV cross sections are given in
Table III.

It can be seen that the ratios are almost identical.
Hence, the distortion effects are essentially the same
for the spin-Rip and nonspin-fiip matrix elements. In
the language of KMT, X is essentially a constant and
has the same value as in the case of plane waves. This is
merely a reAection of the fact that the spin-orbit cou-
pling in the optical potential is small as far as its effect
on the diQ'erential cross section is concerned.

The fact that X is essentially a constant is not obvious
from the polarization results because here the spin-orbit
portion of the distorting potential is not small. (That is,

TABLE III. The Grst two columns are the ratio of distorted-
wave cross section to plane-wave cross section for I;S and j-j
coupling, respectively. X (G.V.) is the spin-flip ratio calculated
from the Gillet transition density. X (exptl. ) is the same ratio
determined from p-y correlation measurements as described in
Ref. 8.

J=S j j
8(0) do(DW)/do(BA) do(DW)/do(BA) X(G.V.)

0 ~ ~ ~ 0.0295
5 3.48

10 0.830
15 0.671
20 0.614 0.0741
25 0.553
30 0.483
35 0.422
40 0.385 0.113
45 0.363

~ ~ ~

3.39
0.826
0.654
0.587
0.525
0.465
0.410
0.366
0.330

0.0725

) (exp tl.)

0.34 &0.105

0.10 ~0.5

0.069&0.013

s G. L. Salmon et a/. , Proc. Phys. Soc. (London) 79, 14 (1962).

the spin-orbit term is small in configuration space, but
not small in spin space compared to the nucleon-
nucleon force. ) This would also be true for the angular
correlation function. In both cases one must account for
the optical spin-orbit effects before attempting to deduce
the value of X or its angular dependence. This point is
rather significant, since, as noted by Clegg (see Ref. 1),
the angular dependence of X (or the lack of it) contains
considerable information about the nuclear states in-
volved. Analysis of the correlation function at 150
MeV' without the inclusion of spin-orbit effects has led
to a rather substantial angular dependence for the value
of X. In view of the results obtained here, it is possible
that much of this variation is due to the spin-orbit dis-
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tortions rather than eGects of nuclear structure, and
this point will be investigated more closely.

The Gillet wave functions' for the ground state and
first excited state define X for the transition under con-
sideration. This has been calculated and tabulated in
Table III, compared with the values obtained in Ref. 8.
The disagreement is probably due in part to the neglect
of spin-orbit effects in Ref. 9. The large discrepancy at
1$', which is just where spin-orbit distortions have a
large effect, and the relatively good agreement at 25'

& V, Gillet, thesis, Paris, 1962 (unpublished).

and 35', where the spin-orbit distortions are small, in-

dicate that spin-orbit coupling probably must be taken
into account in the analysis of p-y correlations to de-

termine X values.

V. OTHER XEVELS OZ»C

The eftects of distorted waves depend on the transi-
tion being considered. In order to display this fact, the
plane-wave and distorted-wave cross sections and
polarizations for several levels of "Chave been included
in I'ig. 5. The single-particle transition assumed to
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account for the excitation in every case labels the cor-
responding 6gure.

The general features Of the DWIA cross sections for
these levels can be seen to conform to the conclusions
arrived at for the 2+ level, except for the 7.7, 0+ level in
Fig. 5(d). If this transition is predominately 1p-2p,
the plane wave cross section is zero in the forward direc-
tion. Distorted waves, however, produce a nonzero for-
ward cross section due to refraction. This forward peak-
ing has been observed by Tibell. ' Based on a WEB
calculation, Brink" suggested that this peak is a dis-
torted-wave effect, a conclusion supported by our result.

The polarization curves shown indicate that ex-
cept for parity-favored, nonisospin-Qip transitions, the
plane-wave approximation does not yield reasonable
results.

VI. REMARKS

We have investigated high energy, inelastic, proton
scattering in order to determine the effects of distorted
waves on the predicted cross sections and polarizations
for transitions in light nuclei. The point of this is pri-
marily to develop a systematic way to test the detailed
structure calculations which are being done, in par-
ticular those employing the notion of hole-particle
coupling to represent collective effects. This report has
presented the apparatus with which we shall proceed
and a few examples. It was felt that in view of the sub-
stantial improvement in the treatment of the distortion
effects as compared. to any previous calculations, a
preliminary discussion was in order. In a forthcoming
communication, we shall present cross sections and
polarizations for a variety of levels in "C,"0,and "Ca,
the three nuclei investigated by Gillet.

The 90-MeV curves included here woold seem to be
out of place in a discussion devoted to high energy, im-

pulse approximation scattering, and indeed we should
not like to express faith in these results at this point.
However, there are a number of reasons why one could
hope that the DWBA matrix element in Eq. (1), with
an effective interaction based on the free two-nucleon
scattering operator, could conceivably work at energies
below the 100-MeV limit which is commonly quoted.

The scattered wave function is strongly damped in-
side the nucleus due to absorption. At 150 MeV, cal-
culations indicate that contributions to the inelastic
cross section fall off very rapidly inside the nucleus,
not an unfamiliar result. Since the reaction cross sec-
tion is known to stay constant to much lower energies,
this emphasis of the surface of the nucleus should per-
sist, as the bombarding energy is lowered. Hence, the

"G. Tibell (to be published).
"D.M. Brink (private communication).

inelastic transition is favored to occur in a region where
the nuclear potential is relatively weak and where the
nucleon density is lovr. Therefore, if the impulse approxi-'
mation works well at 150 MeV, it is conceivable that it
could also work at lower energies. Preliminary calcula-
tions on the excitation of the 5 level of "Ca with
55-MeV protons by Terasawa and Satchler" indicate
that the DWIA might be applicable there if corrected
for refraction.

APPENDIX A

The distorted waves x (+) satisfy the equation

2p
P+k' ——(U+UsL o) —V. X '+'(r) =0, (A1)

A2

where the choice of + or —represents a choice of out-
going or incoming boundary conditions. k is the wave
number of the relative motion of the target and pro-
jectile, p is the reduced mass, and V. the Coulomb
potential. The optical potentials are dehned by

V= —V/(1+e*) —iW/(1+e '),
where

x= (r rsM'")/u—
and

x'= (r—rs'M'")/u'.

M is the nuclear mass. U8 is given by

1d) 1
Us = —2( Vs+ its)- —

~

r dr&1ye )

(A2)

(A3)

(A4)

V, is the Coulomb potential produced by a uniform
spherical charge distribution of radius

Z, =r,m~/~. (A5)

The parameters which specify the optical potential at
a given energy are displayed in Table I.

T. Terasawa and G. R. Satchler (private communication).
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