
BINDING ENERGY OF X PARTICLE IN NUCLEAR MATTER

exceed a few MeV. Also the calculation of V in I and II
is approximate. In particular, the main contribution to
V from the attractive part of v&~, namely that in the E'

state, has been calculated in an approximation of
uncertain accuracy.

Still our results show —at least qualitatively —that
there is no serious discrepancy between the calculated

and measured binding energy of a A-particle in heavy
hypernuclei.
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The cross section for electron bremsstrahlung in the presence of a magnetic dipole potential is considered
with dependence on photon polarization explicit. Modi6cations of a result due to Sarkar, to include nuclear
spin effects, are derived, and the angula»nd energy distributions of the radiated quanta are obtained. The
related process of pair production is discussed. The infrared divergence is eliminated in the same way as for
the Coulomb potential.

I. INTRODUCTION
' 'N the scattering of electrons by a nucleus, the emis-
~ - sion of photons depends on the nuclear magnetic
moment as well as on the nuclear charge. Sarkar' has
obtained the bremsstrahlung cross section correspond-
ing to a spin-independent (i.e., classical) nuclear mag-
netic moment. It is the purpose of this paper to deter-
mine the e8ects of nuclear spin on the cross section, to
obtain the angular and energy distributions of the
radiated particles, and to show that, as in the Coulomb

case, the infrared divergence is spurious.
The results presented parallel those of Bethe and

Heitler, ' and of Gluckstern, Hull, and Breit' for
bremsstrahlung in the Coulomb 6eld.

An electromagnetic potential is introduced to repre-
sent the nucleus

A„(r) = (—p & V,ieZ)r

where p, and Z are the nuclear magnetic moment and
atomic number. The relative magnitude of the magnetic
and Coulomb interactions with the electron is con-
sidered by Newton, 4 the ratio being

l [ q]/eZ= (]q] l /p~)/2mcZ, (1.2)
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where jI is the mass of the nucleon, p,~ the nuclear
magneton, and g a momentum transfer characteristic
of the scattering process. Evidently, magnetic scatter-
ing is of greatest importance for high-energy electrons,
the effect decreasing with Z. Unless the momentum
transfer is comparable with the nuclear mass, the exist-
ence of magnetic properties of the nucleus is almost
completely masked by the nuclear charge.

The assumption that the nucleus does not recoil is
admittedly unrealistic for very light nuclei, since it is
necessary that the experiments be performed at high
energies. The most serious violation of this approxima-
tion, scattering from the proton, has been considered by
Berg and Lindner. '

It is interesting to note that polarized targets,
suitable for scattering experiments, are currently under
investigation. '

II. THE DIFFERENTIAL CROSS SECTION

The electromagnetic potential is treated in the 6rst
Born approximation. If (pp, iEp) denotes the four-
momentum of the incident electron, (p,iE) that of the
electron after scattering, then the cross section for
emission of a photon with momentum k and polariza-
tion direction e, is'

d = (Z'e'/8 ')(kdk/q')(P/P, ) Tr(A++8+)
)& (H+E)(A+B)(Hp+Ep)dMQs, (2.1)

~ R. A. Berg and C. N. Lindner, Phys. Rev. 112, 20'72 (1958).
'O. Chamberlain, C. D. Je8ries, C. Schultz, and G. Shapiro,

Bull. Am. Phys. Soc. 8, 38 (1963).
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where

A = (~'q'/eZ)goy e(H +Ep)pppA(tI)/(kA),

The momentum transfer to the nucleus is

tI=pp —p —k (2.6)

8= (~'q'/eZ)yoyA( q)(H—"+E)y ego/(kAs), (2.3)

A,(tI)=(2s'q') '(i@ xtI, ieZ). (2.4)

(2.5)

The notation is that of reference one, with the exception
that the Dirac matrices are anti-Hermitian:

6= (kE p—k)/k, 6,= (kZ, —p, k)/k, (2.7)

p,'= p,+ko, p,"=po, k„.— (2.8)

That there is no interference between charge and
magnetic scattering is evident, after some algebraic
manipulation, from Eq. (2.1). Gluckstern et al. ,' and
May~ derived that part of the cross section dependent
on the nuclear charge. The cross section for brems-
strahlung in the field of a static (i.e., nonspin-dependent)
magnetic dipole is given by Sarkar' '.

do = (e'/8s') (Mtt~) '(pkdk/po) (dQdQs/q4) {2(L e) '——',L'{2—6/6o —5o/6
—(q'/k')[(y e)'/5'+(yo e)'/t4s —2y cps e /hD o]}+4L eL pop e/kh —4L eL ypo e /kh o+(L po)'[q'/AA,

+4(p e)'/6']/2k'+(L p)'[q'/ADo+4(yo e)'/ho']/2k' —L'pL'pp(q'+4y epo e)/k'h5o},
L= It&(tI. (2.9)

This cross section vanishes if the momentum transfer
is parallel to the magnetic moment, that is, if

p xq=o.

III. NUCLEAR SPIN MODIFICATIONS

(2.10)

Newton' has pointed out that the static treatment of
the nuclear moment is an unnecessary restriction, re-
moved in the following manner. Modification of the
interaction to include nuclear spin e6ects results in re-
placing p in the scattering amplitude by matrix ele-
ments of the magnetic moment operator p between
initial and Anal nuclear spin states, labeled by Jm and
J'm', respectively. The components of the operator
p do not commute, so that, in the cross section, Eq.
(2.9), t.ap b~s(t ay b+t by a).
More explicitly, the replacement is

(3.1)

Z~ - (J~
I
t.a

I
J'~')(J'~'I t.b

I
J~)= (Jll J ylf J) '

J(J+1)

y ap b~lZ~ (Jmlp alJ'~')
)&(J'm'lp bl Jm)+(a~b). (3.2)

The final nuclear spin, not observed, has been summed.
Reduction of the sum on J' and m' is accomplished

by using the decomposition and factorization theorems
for spherical vector operators, ' with the result that

element (the square of) which appears as a multiplica-
tive factor in the cross section.

The nuclear magnetic moment is defined as

t =(JJI p. rtl JJ), (3 4)

where 8 is the polarization direction in the initial nuclear
state (the axis of quantization). This may also be

t =(JIIJ ItllJ)/(J+1) (3 5)

The sum on ttt' in Eq. (3.3) is elementary, and equals

a b[J(J+1)—rrt']+a r'tb R[3rrt' —J(J+1)]. (3.6)

Combining Eqs. (3.3), (3.5), and (3.6), the replacement
to be made in the cross section Eq. (2.9) is

t aL b~ s(t/J)'{a b[J(J+1)—~s]
+a tabb tI[3m' —J(J+1)]}. (3.7)

In the same way,

y'~ t '(J+1)/J. (3 8)

Qf particular interest is the case J equal to one-half,
for no correlation is then predicted with respect to the
polarization direction A'.

Since Eq. (3.7) is independent of the sign of m, it is
also correct for aligned nuclei.

If the initial state is unpolarized m is averaged. Thus,
from Eq. (3.7)

(Jrrtl J al Jm')(Jrrt'I J bl Jrrt). (3.3)

All reference to p is contained in the reduced matrix

t.ap b~-'st &a b(J+I)/J
and Eq. (3.8) is unchanged.

(3.9)

r M. M. May, Phys. Rev. 84, 265 (1951).
Sarkar's result omits a factor of four.

'M. E. Rose, Etementary Theory of Arlgalar Momeetlm (John
Wiley 8z Sons, Inc. , New York, 1957), p. 94 ft.

IV. THE CROSS SECTION FOR POLARIZED NUCLEI

Incorporating Eqs. (3.7) and (3.8) in Eq. (2.9), the
cross section for scattering from a polarized nucleus is



ELECTRON BREMSSTRAHLUNG

dp= (eo/8&P)(p/Mp")P(P/Pp)(kdk/q4)(dQdQq/2 J&)

X [IJ(J+1) ~'}{2(qX8)'+pe'[2—hlho hp/h (9'/k')[(y'e)'/h'+(yo'e)'/ho' —2y'epo'e/hhp]}

+(4/k)(qX8 q x ppp 8/h —qX8 q x ypp 8/hp)+q'(q xk)'/2k'hhp+(2/k') [(q xp, )'(p e)'/h'+(q x y)'

X(po e)'/ho' —2qxp q xpop epo 8/hho]}+I3m' —J(J+1)}[2(qXe ~)'+-'(q ")'{2—h/hp —hp/h —(q'/k')

X[(P 8)P/h'+(Pp e)'/hp' —2P ePp e/hhp]}+(4qXe n/k)(qxPp nP e/h q—xy nyp'e/ho)

+q'(q xk n)'/2k'hhp+(2/k')[(qxP n)'(Pp e)'/hop+(qxPp 8)'(P e)'/h' —2qxy nqxyp ny ePo e/hho]]
—J(J+1)q'I2 —h/hp —hp/h —(q'/k')[(y e)'/h'+(pp. e)'/hp' —2p epp e/hhp]}]. (4.1)

This result, for the emission of a photon in the presence of a polarized nucleus of spin J, complements that derived
by May~ for the Coulomb potential.

The quantum-mechanical condition corresponding to Eq. (2.10) is

8Xg=o. (4.2)

When Eq. (4.2) is valid, the cross section Eq. (4.1) has the form

da=(e /16~ )(p/p~M) (P/Pp)(kdk/qo)dQdQp{[J(J j1) m—]/J }[—2(n e)P+2{h/ho+ho/h
—(q'/k') [(p e)'/h'+(pp e)'/hp' —2y. epp 8/hho]}+(4/k)(AX8 n Xpop 8/h —nXe nXpyp. e/ho)

+(qXk)'/2hhp+(2/k')[(BXpo)'(p e)'/hoo+(BXy)'(pp e)'/hpo —28Xy nXppp epo e/hh, ]]. (4.3)

The cross section vanishes identically in the classical limit, J—+~, in agreement with the result of Sec. II. This, of
course, is a manifestation of the correspondence principle.

In general, the cross section Eq. (4.3) is not identically zero, even if the nucleus is completely polarized. The
quantity

(J~IJ' (J ~)'IJ")=J(J"1)—~'

occurring in Eq. (4.3) (this is a measure of the deviation of the component of angular momentum perpendicular to
", from the expectation value zero) is positive, even if

l ml is equal to J.

V. THE CROSS SECTION FOR UNPOLARIZED NUCLEI

Summing Eq. (4.1) over m, or, equivalently, introducing the replacements Eqs. (3.8) and (3.9) in Eq. (2.9), gives
the cross section for scattering from an unpolarized nuclear target.

do = (e /Sx') [(J+1)/3J](p/Mp")'(P/Pp)(dk/k)(dQdQq/q )[p epp e(4' 4EEp q')/h—h-
+(p 8)'(q'+4P p')/2h'+(yp 8)'(V'+4P')/2hp'+ pk'(hlhp+ho/h+2+q'/hh )] (5 1)

In the limit J~~, Eq. (5.1) becomes the classical result. A similar remark pertains to Eq. (4.1), for a com-
pletely polarized nucleus, lm l

=J.
VI. PHOTON POLARIZATION SUM

Summation over the polarization directions of the photon, in Eqs. (4.1) and (5.1), leads to magnetic analog
of the Bethe-Heitler formula. The cross section for scattering by a classical magnetic moment distribution is, from
Eq. (2.9)

do=(e'/Sn-')(M .p~) '(P/Pp)(kdk/g')dQdQp{2(LXk)' —(L')(2—h/hp —hp/h)

+(q'/2k')(L')[(pXk)'/h'+(poXk)'/ho' —2poXk pXk/hhp]+4(L p,/kh)(L p—L kp k)
—4(L p/khp)(L yp

—L kpp k)+k '(L.pp)'[g'/hhp+2(pXk)'/h']~k-'(L p)'
X[//hho+2(poXk) /ho] 2L yL po(q+2pXk poXk)/k hho}. (6.1)

If the nucleus is unoriented, the cross section, from Eq. (5.1), is

do=(e /Sm')[(1+1)/3. J](p/Mylar)'(P/P p)(dk/k)(dQdQ'/g') [yoXk pXk(4m' —4EEo—q')/hhp
+(yXk)'(q'+4Po')/2h'+(ypXk)'(q'+4P')/2h '+k'(hlh +ho/h+2+g'/hh )]. (6.2)

VII. THE INTEGRATED BREMSSTRAHLUNG CROSS SECTION

In this section, the bremsstrahlung cross section or scattering from an unpolarized nucleus, Eq. (5.1), js jn
tegrated over the direction of the scattered electron. The integrals involved are discussed in the appendix to Ref. &0.
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The notation of Gluckstern and Hull" is adopted:

=l [(E+p)/(E-p)], "=l [(E.+p.)/(E.-p.)5, "=l L(T+p)/(T —p)],
T=po —k, L=ln[(EEo—m'-+ppo)/(EEo —m' —ppo)]. (7.1)

Integration of Eq. (5.1), after considerable simplification, yields the following cross section:

d = (e'/kr)[(7+1)/3J]( /M )'(p/po)(dk/k)dQ

X {(o'/p T)[—2m'T'/Ao'y (k'/T') (kho+ p'+kE) ]+(o/pro) (Eho+ po'+ p')
+(L/2Ao ppo)[k Ao +2m kko+2m (EEo—m )]+m /Ao —3—(Ao —F)(k /Aoj )}. (7.2)

The result, Eq. (7.2), assumes that the polarization of the photon is not observed. If this polarization is observed,
then it is sufhcient to consider only photons polarized in the pok plane, " that is,

e= [kt'a+ E(T'—p' —2kE) b]/2
~
po x k ~,

a=2'f/p b=k/F p= Toypo

(7 3)

(7.4)

The cross section, for the production of photons polarized according to Eq. (7.3), is

d~= (e'/4~) (~/M~~)'(p/po)(dk/k)d Q, {(P/pT) [—4m'k/So —2m'p'/Ao&+ Ek+3EE,—2mo+ 2(F—go)o/»noq,

+ (k /2T )(k&o+po+Ek)]+ (o/p) {(2EEo+ko —2m')/Ao+ io [ LAo'+2Ao(FFo —poo)

+F(2Po' m')5—/(po e)'}+(L/2AoPPo) [O'Ao/2+ho '(po e) '(EoAo m )
X[ 2F—okAo'+2Ao(2m'k FP—o')+2m'(EEo m')—5]+k'(E g)—/2A To —2} (7 5)

These two results, Eqs. (7.2) and (7.5), correspond to
doi and doiz (for the Coulomb potential) in the work of
Gluckstern and Hull.

Finally, the cross section, Eq. (7.2), is integrated over
the direction of the photon. From this integration re-
sults the energy spectrum of the emitted radiation,
which, again after much simplification, is

«= e'[(1+1)/6J](u/Ml ~)'(p/po) (dk/k)

X [(kL/ppo) (2k+m'oo/po m'c/p)—
+ (coo/p po) (p'+ po')]. (7.6)

The symmetry of this equation under interchange of

(po, iEo) and (y, iE) is to be expected from detailed
balance, together with the fact that integration over the
direction of both final particles is symmetric under the
same interchange (k= Eo—E—& —k).

The cross section, Eq. (6.1), for polarized nuclei, has
also been integrated over the direction of the scattered
electron, but the result, which is rather long, will not be
given here.

VIII. POLARIZATION DEPENDENCE FOR FIXED
ELECTRON RECOIL DIRECTION

Gluckstern et al. ' show that, with the direction of the
scattered electron fixed, the dependence of the brems-

strahlung cross section, for the Coulomb potential, on

the polarization direction of the photon is

da = )A+8 cos2&+C sin2$]dQdQ~

=- [A D+2D cos'(P——Po)]dQdQc

wllele D= (8'+C')'", tan2&o= C/B. P is the direction
of e in a plane perpendicular to k. Reference to Eq. (4.1)
shows that a similar relation is valid for the magnetic
process. Thus, the cross section including both effects
has the form of Eq. (8.1), but, of course, with difkrent
coefficients, A, 8, C, D.

The analysis of Ref. 3 demonstrates that the radia-
tion can be interpreted as consisting of an unpolarized
part and a linearly polarized part, with intensities pro-
portional to 2—D and 2D, respectively.

IX. PAIR PRODUCTION

The bremsstrahlung and pair production cross sec-
tions are connected by the (four-momentum) sub-
stitutions":

polyp, p~ —p+, k —+k.

Combining Eqs. (2.1) and (9.1), and making the
requisite change in the density of states factor, the cross
section for production of an electron-positron pair of
momenta y and p+, from a photon of momentum k, is

do = (eo/47ro)(Mdiv) o(p—+p dE+/k)(dQ+dQ /q4)

X {2(L e)' —i(L)o{2+6+/6 +6 /A+ —(q'/k')[(p+ e)'/6+'+(p e)'/6 o—2y+ ep e/A+A ]}
+4L eL p p+ e/kh++4L 8L p+p e/kA 12(L p )'(y+ e)'/k'6+'

+2(L p+)o(p e). /k A 'y4L y+L p /ko~, ~ qo(L k)o/—2~,~ }. (9.2)

'0 R. L. Gluekstern and M. H. Hull, Phys. Rev. 90, 1030 (1953).
» J. M. Jauch and F. Rohrlich, The Theory of Photoes used E'lectroes (Ad dison=Wesley Publishing Company, Reading,

Massachusetts, 1955).
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In Eq. (9.2):
tl= P—+9+

A+= (kE+—p+ k)/k, 6 = (kE=p ir)/k. (9.3)

equation.

M =m+ie'
d'k 1—e"*y„(m+ys) 'y„e '"' (10.4)

(27r)4 k'

All of the results presented in the preceding sections can
be modified in the same way except Eq. (7.6), which
involves integration over the photon direction.

X. THE INFRARED DIVERGENCE

The bremsstrahlung cross section is characterized by
a factor dk/k, where k is the photon energy. Integration
with respect to this variable (0&k&ED—m) leads to a
divergence in the limit k ~ 0. That this divergence is
actually nonexistent in an experimentally observable
cross section was shown first by Schwinger" for the
case of single photon production in the Coulomb field.
The argument is that an experiment cannot distinguish
between a true elastic scattering event and a process in
which an extremely soft photon (with energy less than
some minimum Ae, determined by the resolution of the
experimental apparatus) is emitted. Thus, the elastic
cross section and the cross section for soft photon emis-
sion must be combined in order to calculate a cross sec-
tion to be compared with experiment. Since the brems-
strahlung cross section is of order n'A', where A„ is the
vector potential, it is also necessary to include the
radiative correction to elastic scattering (since the cross
term between this amplitude and the elastic amplitude
is of order n'A'), as well as the effect of vacuum
polarization.

and developed an expansion in powers of eA. The one-
photon mass operator, Eq. (10.3), to first order in eA, is

'LCL

Mi m+-—
4m

oo ]

dig —t sQsl

where

mi(u, s,k) = g&&
—1su, v (1—v) Ie2

e'"*mi(u, s,k), (10.5)
(2v.)'

A„=—A„(k)= A„(x)e ""*.
(2v)'

(10.7)

In both Eq. (10.5) and Eq. (10.7), x is an operator.

B. The Cross Section

Newton" gives a derivation of the diRerential scat-
tering cross section in a context facilitating calculations
with the mass operator. A Dirac equation of the form

X {mu(u —1)oF+[2—uy2u-'v(1 —v)

—4ism'u(u' —1)v(1—2v))y Ji . (1().6)

J"„„andJ„are I'ourier transforms of the field and current
operators, defined by

A. The Mass Operator (yp+ m+X)ip =0 (10.8)
Calculation of the radiative correction to elastic scat-

tering is based on the concept of the mass operator. The
formulation considered" depends on a modification of
the Dirac equation of the following form:

(yir+M)tP=0,

v.„=p„—eA„.

(1o 1)

(10.2)

"J.Schwinger, Phys. Rev. 76, 790 6. (j.949), esperially p. 812.
"R.G. Newton, Phys. Rev. 94, 1773 (1954)."J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).

The eRect of the external held A„on the motion of the
electron, with all virtual processes excluded, is deter-
mined by x„. 3f, the mass operator, symbolizes all
(virtual) radiative effects in the field A„. In position
representation, the mass operator, correct to first order
in e' (and exact in the external field A„), is'4

M( -, ') = &(*—')+ ' 'v.G(,*')v D(,*'). (1o 3)

G is the (out. -going wave) Green's function for the elec-
tron, and D the photon propagator.

Newton" has considered the operator form of this

The interaction

K= —eyA —eyA'+Mi (10.11)

accounts for both elastic scattering and a radiative proc-
ess involving one virtual photon, in addition to the
vacuum polarization term, A „', related to A „according
to15

CY
1

A „'(k)= ——A „(k) dv(1 —v')
2' p

ds k'—exp is m'+ ——(1—v') . (1().12)
$

"J.Schwinger, Phys. Rev. 82, 67g (1951).

is considered, with X describing all eRects of the electro-
magnetic field. If p and g are the momenta of the elec-
tron before and after scattering, respectively, than the
cross section is

do/dQ = 2v' Tr(m —pp)(p I
EI

I q)
X (m —vc)(t(I vo&'7o

I p) (10 9)
H= (1+%Go) '& Gs ——(m+pp) ' (10.10)
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Matrix elements of the mass operator are calculated
from Eq. (10.5):

(p ~
Mi

~ q) = air&(k)+saso&(k),

k=p —q.

(10.13)

(10.14)

The (field-independent) coe@cients, ai and as, are also
determined from Eq. (10.5).

Because of a nonallowed expansion in powers of eA,
the mass operator is actually infrared divergent. Di-
vergences of this type are discussed in detail by
Schwinger" and by Newton ""who show that intro-
duction of a nonzero photon mass e makes the ex-
pansion valid and, at the same time, prevents the(inte-
grated) bremsstrahlung cross section from diverging.
The physical reason for the divergences is that the pho-
ton mass is zero, and the procedure for combining the
divergent amplitudes for radiative processes is to assume
a photon mass e and to attempt to eliminate terms
diverging as e —& 0.

The result of the calculation, which is straightfor-
ward, is that the cross section for scattering in an arbi-
trary electromagnetic potential A„, including radiative
effects to first order, is

o, ,(8)= t 1—8(8,Ae) jo(8) . (10.15)

Since 8(8,Ae) is independent of the potential, it is identi-
cal with the function derived by Schwinger" and
Newton" for Coulomb scattering.

&p R. G, Newton, Phys. Rev. 96, 1523 (1954).

As is easily verified from Eq. (10.9), the elastic cross
section for scattering by a magnetic dipole distribution
1s

o(8) =4ir'e4(Mdiv) '(p —q) 4

&&((p—«)'Lp&&(p —«)7'+4(p ~p «)') (» 16)

The modifications for nuclear spin (Sec. III) apply also
to this result.

The possibility of the emission of very soft quanta
(which need not be observed, and, in fact, are assumed
unobservable) thus necessitates a correction to the elas-
tic cross section. This correction simultaneously per-
mits elimination of the infrared divergence associated
with bremsstrahlung.

Since Eq. (10.15) already includes emission of quanta
with energy less than Ae(he«m), the cross section for
electron scattering with energy loss not greater than
AE(he&AE&Ep —m) is the sum of Eqs. (10.15) and
(4.1), the latter having been integrated over the photon
variables with Ae&k&AE. The dependence on Ae then
cancels and the cross section is finite. lf DE=ED—m,
the cross section with the final electron energy not ob-
served is obtained. The resulting integrals, however, are
rather complicated.
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