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Analysis of p-p Data Near the Interference Minimum*f
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In the first part of this paper p-p elastic scattering data at 90'c.m. near the Coulomb-nuclear interfer-
ence minimum are analyzed. The energy of the minimum of the 90' cross section is found to be at 0.38243
&0.00020 MeV. The nuclear s-wave phase shift, defined with respect to wave functions which solve the Cou-
lomb plus vacuum polarization potential problem, is found to be BP=0.25501~0.00020, at the precise
energy 0.38243 MeV. In the second part of the paper the phase shift just obtained is used, in conjunction with
four very accurate phase shifts from 1.4 to 3.0 MeV, to determine the parameters of the s-wave effective-
range expansion. If this expansion is cut off after three terms (quadratic fit) then the scattering length is
found to be a =—7.815&0.008F; the effective rangero =2.795&0.025 F; and the shape-dependent parameter
P =0.028&0.014. However, it is argued that the first three coefIIcients in the actual power-series expansion
of the effective-range function are not known this well, and in particular, I' may be very different from the
actual coefficient occurring in the k4 term.

I. INTRODUCTION

HE recent availability of very accurate low-energy
proton-proton cross-section data makes it possi-

ble to determine the energy dependence of the s-wave
phase shift to a considerably greater accuracy than
before, and in particular to determine the curvature of
the effective range function plotted versus energy.

In the first part of this paper (II) p-p cross section
data' ' at 90'c.m. near the Coulomb nuclear interference
minimum are analyzed. The data are summarized in
Sec. II A and a brief account of the theory presented in
Sec. II B. The method used to take into account the
geometry of the experiment and multiple scattering in
the gas is discussed in Sec. II C. Section II D merely
states that molecular eGects are completely negligible
even though they do smear out the center-of-mass
energy. In Sec. II E, the results of the analysis of the
experiment' are presented.

In part III, the phase shift obtained in part II is used
in conjunction with accurate low-energy s-wave phase
shifts obtained from Wisconsin data'4 to examine the
energy dependence of the s-wave phase shift. The
scattering length, effective range, and shape-dependent
parameter are evaluated using a quadratic fit to the
effective range function, and a discussion is presented
of the relation between these parameters and the actual
coeKcients of the power series expansion of that
function.

Appendix A presents some empirical formulas for the
vacuum polarization quantities which are used in the

*Work done under the auspices of the U. S. Atomic Energy
Commission.

t Preliminary accounts of this work were reported at the
Pasadena and Tucson meetings of the American Physical Society
LBulL Am. Phys. Soc. 8, 605 (1963), and 9, 154 (1964)j.

' J. E. Brolley, Jr., J. D. Seagrave, and J. G. Beery, Phys. Rev.
135, B1119 (1964).

'A similar experiment with less precision was performed by
D. L. Cooper, D. H. Frisch and R. L. Zirnmerman, Phys. Rev.
94, 1209 (1954).' D. J. Knecht, S. Messelt, E. D. Berners, and L. C. Northc]iffe,
Phys. Rev. 114, 550 (1959) and more recent data to be published
(private communication from P. F. Dahl and D. J. Knecht).

4 H. P. Noyes, Phys. Rev. Letters 12, 1/1 (1964).

analysis, and Appendix B contains a simple discussion
of the Coulomb plus s-wave nuclear amplitude at
90'c.m.

II. ANALYSIS OF LOS ALAMOS EXPERIMENT

A. Summary of Experimental Results
to be Analyzed

The experiment which provided the data for the
low-energy analysis of this paper has been described in
detail elsewhere. Basically, it consisted of a coincidence
measurement of the elastic cross section at 90'c.m. at
several energies near the interference minimum (see
Fig. 1).

The resulting data are presented, along with the
errors associated therewith, in Table I. These numbers
vrere obtained from Table I of Ref. 1. cV (E) represents
the number of coincidences per unit incident charge,
and hence has the signi6cance of a relative cross section.
Since no attempt was made to measure the temperature
of the target hydrogen, ' its density is not well known,
and therefore comparisons with the absolute value of
the cross section cannot be made accurately. In Sec. E
such a comparison is discussed nevertheless, and it is
sihown that there is no contradiction.

As discussed in Ref. 1, there is reason to believe that
the data at 0.37283 MeV are not as reliable as the error
quoted for it (due mainly to statistics) might indicate.
With this in mind we have performed the analysis both
with and without this point included. The difference
between these two sets of results will be displayed
later on.

B. Theory

Proton-proton effective range theory with explicit
inclusion of vacuum polarization eGects has been
treated earlier by Belier. ' We shall here summarize the
principal results of that work using similar notation.

The unsymmetrized scattering amplitude (in the

e L. Heller, Phys. Rev. 120, 627 (1960).
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240; TmLE I. Relative cross sections measured at six energies. '
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The amplitude which describes the effect of vacuum
polarization is used in the form

f„~.= (1/k. )g(2K+1)r'e '&'' "'P~(cosg),
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FIG. 1. Center-of-mass differential cross section at 90' versus
the laboratory energy of the incident proton. The Mott cross
section is shown and the actual cross section computed from the
parameters which are found in Part II to give the best quadratic
Gt to the effective range function. The region between the two
arrows is the energy range of the experiment (Ref. 1) being
analyzed in Part I. The insert shows the region near the minimum
in greater detail.

with

'(8) = e
—2ig in sin(8/2)

2k sin'(0/2)

g=e'/ks,

(2)

where z is the laboratory velocity of the incident
proton, ~ and

k= (MEi,b/2k')'~'

with M the proton mass.

6 In Ref. 5, for illustrative purposes, the symmetrized singlet
cross section was written out explicitly with the approximation
that the term

~ f ', ~
is negligible. Since in this experiment f. and

fz cancel each other to a very great extent, one should not make
that approximation.

'We have adopted a suggestion of G. Breit, Rev. Mod. Phys.
34, 766 (1962), and computed g in this manner, using the correct
relativistic velocity of the incident proton. As expected, and
demonstrated later on, this relativistic eGect is almost completely
negligible at this energy.

c.m. system) is given as the sum of three terins

f(~)=f (~)+f .9)+fN(~) (1)

The cross section is obtained by symmetrizing (anti-
symmetrizing) this amplitude in the singlet (triplet)
state, and adding ~~ of the singlet cross section to 4 of
the triplet cross section. '

The ordinary Coulomb amplitude is given by

where 7.~, the vacuum polarization phase shift, is much
less than unity and O'I is the Coulomb phase shift. We
designate the Coulomb plus vacuum polarization
potentials as the 'electric' potential, and the wave
functions which solve that problem as the electric
functions.

The nuclear amplitude in general is given by

f~= (1/2ik)Q(2I. +1)e"t'' "'
Xe'"z(e"'' —1)Pz(cos8), (4)

where 81,~ is the nuclear phase shift defined with respect
to the electric functions. The superscript E is used on
the phase shift defined in this way throughout the
paper.

We assume that the only nuclear contribution to the
singlet amplitude comes from I=0, and thus we take

f (0)=e' sing 8 '/k (5)

We have computed the d-wave amplitude predicted by
one pion exchange and hand that it is completely negli-
gible (even though the nuclear and Coulomb singlet
amplitudes cancel each other to a considerable extent).
The three p-wave phase shifts were computed as in
Ref. 4 with the additional simplification that the linear
combination which is proportional to the strength of
the central force plays no role at 90', i.e., we include
only the one-pion-exchange tensor force. We And it is
completely negligible, and would still be if the tensor
force were four times as strong.

The dependence of Sp~ on energy is represented by an
expansion of the effective range function. This function
(treating vacuum polarization to first order) and its
expansion are given by

X(k)—:C k/(1+2xp) cot5p —rs]+2gk/k(g)+le(g)]

1
+ rok' Pro'k'+Qr—o'—k' — —. (6)—

8 2

The quantities Tp, Xp, and lp are defined in terms of the
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electric functions in Ref. 5, and were computed as a
first-order perturbation and plotted versus energy in
that reference. In Appendix A empirical formulas are
presented for these quantities and, for the vacuum
polarization scattering amplitude as well. h(g) is the
same function which appears in the more common
eftective range expansion' for nuclear phase shifts
defined with respect to Coulomb functions:

1-r'(—i~) r'(i&)-
h(g) =- + —in'.

2 r (—z~) r (z~)

The parameters a, ro, and P are commonly referred to
as the effective range, scattering length, and shape-
dependent parameter. Also

C'= 2~g/(e'"& —1) .
The reason for choosing the interference minimum

as the energy region for doing an experiment is that the
great cancellation which occurs between Coulomb and
nuclear amplitudes (see Fig. 1 and Appendix 3) makes
it possible with just a modest accuracy in, the cross
section, like 1%%uo, to determine the s-wave phase shift
to -0.1%.See Ref. 8, pp. 100—102 and references cited
therein for more discussion of this question.

As we now show, in this energy region the cross
section is determined almost completely by a single
quantity, E;„,the energy at the minimum of the 90'
cross section. At these energies the differential cross
section at 90'c.m. is a function of the energy, and of the
s-wave phase shift 8, which is itself a function of the
energy and the effective range parameters which we
designate collectively by n.

it turns out that at the energies of this experiment

I v+2~E+

giving the result that
BE

BX BX
=—,(E,~) (E») =f(E,t)

BE Bb

Thus, it follows that

=g(E,~),
dE

(8)

and the use of identical arguments shows that all
derivatives of cr with respect to energy are functions
only of E and 6, with no other dependence upon the
parameters. Expanding cr about 8;„, all derivatives
evaluated at E;„become functions of E;„and
5(E;„)—=8;„.In addition the total derivative in (8)
must vanish at E;„,by definition of E;„.This condi-
tion imposes a functional dependence of 8;„upon
E;„.Hence the principal parameter defining the cross
section in this energy region is E; . If just the 90
Coulomb amplitude and the s-wave nuclear amplitud. e
are included, in the analysis, the relation between 6;
and E;„can be pursued somewhat further. In Appen-
dix 8 this is discussed briefly.

However, with vacuum polarization included, the
explicit dependen. ce of 0 upon E; (and such other
parameters as may enter in a minor way) is not easily
obtained, . On the basis of numerical calculations it can
be determined that to a high degree of accuracy

0=a(E,5). (7) E;,(MeV) =0.66463+0.03800a+0.00530ro.

This implies for the first derivative with respect to
energy

der Bo- Bo. M
(E ~)+—(E») (E ~)

dE BE B5 BE

where the variables in parentheses are the ones upon
which the corresponding function. s depend.

Writing Kq. (6) as

X(8 E) =P+yE+yE+ ~

This is valid. for P=O, but the spread in E; obtained
by letting P vary over a wide range of reasonable values
is less than 0.2 keV. This is a reQection of the fact that
the term in the effective range expansion involving P
is almost completely negligible at the energies of this
experiment. The term involving Q is negligible. Since
this is an approximation we prefer to define a new
parameter exactly by

8—=0.66463+0.03800a+0.00530r~

where P, y, and p are simply related to the parameters
e, and differentiating with respect to E gives

as well as an "orthogonal" parameter

X)—=0.03800ro—0.00530a, (10)

BX BX BS
(E 5)+ (E 8) =y+2pE+ ~ ~ ~

BE Bb BE

Using approximate values for the effective range
parameters, some of which are already known vrell from
previous experiments and others bracketed by theory,

' J. D. Jackson and J. M. Blatt, Rev. Mod. Phys. 22, 96
(&95O).

and carry out the analysis in terms of these two param-
eters and P instead of u, ro, and P. We expect that 8
will be determined very well by the experiment, X)

rather poorly, and P not at all. We do not search on P.
Instead, P is set equal to zero Las are all higher order
terms in Eq. (6)$, and later the effect of varying P over
a wide range of values, from —0.05 to +0.10, is con-
sidered. This range includes all values of P which are
known to the authors to have ever been considered for
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the proton-proton problem. In practice, after choosing
a pair (8,S), Eqs. (9) and (10) must be inverted to lnd
(a,ro) which are then put into Eq. (6) to determine b.

C. Geometry and Multiple Scattering

Due to the finite size of the volume in which the
scatterings occur and to the finite size of the detectors
(see Fig. 3 in Ref. 1), the quantities measured (tabu-
lated in Table I) include contributions from a small
range of scattering angles around 90'c.m. Ignoring for
the moment the role of multiple scattering (in causing
somewhat the same effect), we take geometrical effects
into account in the following manner.

The theoretical prediction for 1V(E,n), the number of
counts recorded per incident proton is proportional to
an integral over the scattering volume and detector
solid angle of the theoretical differential cross section.
The proportionality constant C converts cross section
to number of counts and is independent of all relevant
variables.

E(E,n) =C S(E,zz,Sz)f(r„,sz, , pz)d3r„dq Qsz. , (11)

where S(E,n, sz,)=(do./dQ)q, bsinsz, . The variables r~,
OJ„, and pl. are, respectively, the location of the scatter-
ing event, and the polar and azimuthal angles in the
lab system of one of the protons' resultant path. LThe
recoil proton angles are, of course, —,'m —sz, , q z+m. ) The
energy dependence as well as dependence on other

parameters (symbolized by a) are contained in

S(E,n,sz). f(r„,sz„pz) is a function of the geometry of
the apparatus in that f= 1 if both scattered protons can
traverse the slit system and result in a coincidence
count; f=0 if either proton cannot. The integral must
be taken over ranges of values of r„, ez„&1,suKciently
broad to include all such values for which f= 1.

The quantity

F (Sz)= f(r„,—sz„q z,)d'r, d q z, (12)

.7(E n) =
CLSp (E a)ID+ST (E n) I,], (14)

Io= F (sz,)dSz„

(8,—45')'F (S,)ds, .

Since Io depends neither upon E& nor o. we may write

which represents the angular weight function for the
geometry of this experiment is shown in Fig. 2.

Since S(E,a,sz) is symmetric about sz, =45', and the
range of scattering angles is small, we may write

S(E,ce,sz) =So(E,n)+S2(E,n) (Sz.—45')', (13)

where Sp(E,u) =—S(E,n, 45').
Hence

O
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S,(E,a) I, —

Ã(E,n) =C'Sp(E, o,) 1+
So(E,n) I,

where I2/Io is simply the normalized second moment of
F(sz). Also plotted in Fig. 2 is S(E,n, sz) at several
energies for the values of the parameters which we will
later find provide the best fit to the data.

We now ask if there exists an eRective angle 8„
independent of E and n, such that the value of S(E,n, s,)
is proportional to X(E,zz) with the proportionality
constant also independent of E and 0.. Such an angle
does exist, and can be found from its de6nitiori

C"LSO+S2(8,—45')'j= pSOIo+S2I2].

0.5

.350 —0.4

.4l0

Choosing C"=Io,

S.=45'+ (I,/I, )&&2. (18)

.370
-0.2

r
I

43.2
I

'
I

43.8

(DEGREES)

I

44.4

Fxo. 2. Ii (8) is the angular weight function, in arbitrary units,
for the geometry of the experiment (Ref. 1) being analyzed. S is the
laboratory differential cross section multiplied by the sine func-
tion of the laboratory angle, computed at 6ve equally spaced
energies near the minimum, using the parameters (e,r0) which are
found in Part D to provide the best 6t to the data.

The use of the eRective angle results in an accuracy for
the integrated quantity E(E,zz) which is very znuch
greater than the corresponding experimental accuracy.
This result also justifies the use of the quadratic approx-
mation of Eq. (13).

Before computing I2/Io from Eqs. (15) and (16),we
first discuss the role played by multiple scattering, even
though it is a very small eRect for the physical corldi-
tions of the experiment. '

Since the multiple scattering in the apparatus smears
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nonrelativistic one used above) can also be considered
as an effect upon Is/Is which is completely negligible.

We adopt 1.171X10 4 as the best value of Is/Is, and
this leads to an effective laboratory angle 8,=45.62'
Lsee Eq. (18)$.

D. Energy Resolution

Although the laboratory energies were measured to
great precision, ' there is a spread in center-of-mass
energies„due to the zero-point vibrational motion of the
hydrogen molecules, "which amounts to approximately
1 keV (full width). We have investigated the effect of
smearing the theoretical cross section over this range
and find that it is completely negligible, even though
the minimum of the cross section is located to 0.1 keV
(c.m.).

E. Results of Analysis of the Los Alamos
Experiment

The parameters which enter the analysis fall into two
categories: (i) the geometry factor Is/Ie, and the shape
parameter I', which are varied over specified ranges but
are not searched upon; and (ii) 8, S, and the normali-
zation constant (which converts cross section to number
of counts), which are searched upon for fixed values of
the type (i) parameters.

A least-squares fit was performed, first omitting the
data at 0.37283 MeV (see the discussion in Ref. 1 con-
cerning this point). Choosing Is/Is equal to 1.171X10 4

(see Sec. C) and P=O, the optimum parameters are

8=0.38242 S=0.142

with x'=3.48 (two degrees of freedom). Inverting the

60- I I I I
I

~ I ~,
I

I I I I 1

.2580

50—

-a = 7.80F
ro 285 F
P =0

Pg .2550

lal O
40

40—
.2540—

I I t
l.5

20—

IO—

0
330

t

350
t I

370
E(LA@)-kev

1

390 4IO

FIG. S. The best Gt to the data obtained by integrating the
theoretical cross section, using the parameters shown on the
figure, over the geometry of the experiment. Including or omitting
the point at 373 keV results in best Gts which are indistinguishable
on the scale used here.

"We thank Dr. Critch6eld for calling this point to our attention.

FIG. 6. For each assumed value of I2/Io (the normalized second
moment of the angular weight function) the least-squares fit
de6nes a range of acceptable values of the s-wave phase shift 5P
at the energy 0.38243 MeV, shown with hachure. The vertical

'

lines limit the permitted range of Is/Io and therefore the area of
crossed hachure is the region of the plot which the geometry of the
experiment (and multiple scattering) allows.

definitions (9) and (10) gives

a= —7.80 F, r0=2.65 F.
This fit to the data is shown on Fig. 5. Furthermore the
energy at which o(90 ) has its minimum is E;„
=0.38243 MeV, which is almost identical with b, and
thephaseshift at 0.38243 MeV is 5P(0.38243) =0.25501.
Of course there is an error associated with each of these
quantities, and this error will be enlarged by considering
the whole range of acceptable values of Is/Is and P. We
first vary I&/Ie from 1.13X10 ' to 1.22X 10 ' (see Sec.
C), keeping I fixed at zero. This has an almost negligible
effect upon all of the above parameters (and their
errors) except S (which is poorly known). In Fig. 6 is
plotted the variation of 8sE(0.38243 MeV) with Is/Is
over a much wider range, including (Is/Ip) =-0 which
represents pure 90' scattering. The vertical lines limit
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the acceptable range of I2/Io, and the two curves
represent, for each value of I~/Io, the extreme values of
80~ which the least-squares analysis defines. The area
of crossed hachure is therefore the acceptable region of
the plot, and it is seen that the uncertain. ty in the
geometrical aspects of the calculation gives rise to an
almost negligible additioDal uncertail:ty in the phase
shift over what the statistics alone dema, nd. It is also
clear from Fig. 6 that includirig the finite geometry in
the analysis makes a significant difference in the ability
to pin down the phase shift.

A similar calculation is performed by varying P from
—0.05 to +0.10 (see Sec. 8) keeping I2/Io fixed at
1.171&(10 4. Again there is very little effect upon the
best values of the parameters, but their uncertainties
are increased. The effect upon 80~(0.38243 MeV) is
shown on Fig. 7 where the two curves represent, for
each value of P', the extreme values of 50~ defined by the
least-squares analysis.

The net effect of the variations in I2/Io and I', is the
following set of parameters:

h =0.38242&0.00026,

S=0.142~0.043,

E,„;„(90')=0.38243&0.00020 MeV,

50E (0.38243 MeV) =0.25501+0.00020

with 60'Po of the errors in E;„and 5P coming from
statistics, and almost 3B the remainder arising from the
spread in P. If this data were analyzed simultaneously
with data at slightly higher energies, then P could be
searched upon as another parameter and this would
very probably lower the errors given above. The result
for E; agrees with the older experiment' but is much
more accurate.

The scattering length and effective range are found
to be

c=—7.80%0.15 F
ro= 2.65&1.1 F.

As anticipated, a and ro separately are determined very
poorly from this experiment. Only the one linear com-
bination 8, which is very accurately equal to the energy
of the minimum of the 90' cross section, is determined
well by the experiment. Indeed the entire uncertainty
in u and ro is due to the uncertainty in the orthogonal
combination S.

If the less reliable' data at 0.37283 are included in the
analysis, then (with I2/Io at its best value, and I'=0)
5P(0.38243) =0.25489, which is within the previously
quoted error, but y'= 13.35. The one point in question
contributes 7.40 to x'. The statistical error alone on this
phase shift is &0.00018. This best fit is indistinguish-
able from the best 6t which omits this point, on the
scale used in Fig. 5. We choose as our final results those
gbtaineed without this point.

If the Coulomb parameter q is computed using a. non-

~ I ~ ~
1

I ~ ' ~ ~
l

I I ~ I

.2580—

2550 ~

O

.2540—

I

-.05
I ~ I ~ l.l0

F?G. 7. For each assumed value of P, the least-squares fit
defines a range of acceptable values of the s-wave phase shift
6P at the energy G.38243 MeV, shown with hachure. The entire
range of P shown was considered acceptable for the sake of evalu-
ating the uncertainty in b0 .

relativistic calculation of the proton's laboratory
velocity, then the phase shift is 5P(0.38243) =0.25493,
which is within the previously quoted error, and x' is
almost identical with the value obtained above. Since
this value of g is even more removed from the value used
above than what would have been obtained using twice
the center-of-mass velocity of the incident proton
(computed relativistically, see Ref. 7), it is clear that
(as expected) this relativistic question is of practically
no consequence at this energy, even for such an accurate
experiment.

If the entire analysis is performed omitting vacuum
polarization, then 5o(0.38243) =0.25409 and x' is
essentially unchanged from its value when vacuum
polarization was included. This is as expected since, in
general, it is not possible for cross sections over a very
small energy and/or angular interval to distinguish
whether or not vacuum polarization is present. Note,
however, that the phase shift required to fit the data
when vacuum polarization is omitted (written above
with no superscript) is well outside the acceptable
range for 80~.

From the method of admission of the hydrogen. to the
apparatus (see Fig. 4 of Ref. 1) the gas in the target
area is expected to be below room temperature. A
simple adiabatic expansion from 295'K and 3.65 Torr
to 0.307 Torr would result in a temperature of 145'K.
The actual temperature must be larger than this be-
cause the gas enters as a jet, and the directed velocity
is rapidly randomized; in addition there is some con-
duction from the walls, and beam heating. Vsirig the
conversion factor, kindly supplied by Seagrave, that
one unit of Q )see column (k), Table I, Ref. 1$ equals
1.25y, 10"protons, and the fact that the normalization
constant C' in Eq. (17) is 37.8 F ' (as determined by
the least-squares analysis), we find that the temperature
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required for the target gas is 243'K, if the absolute
value of the cross section is to be fit. In the sense that
this temperature is between the crude limits stated
above, there is no inconsistency.

III. THE s-WAVE PHASE SHIFT UP To 3 MeV

If the phase shift given above is combined with the
four s-wave phase shifts obtained from the most recent
very precise Wisconsin data'4 which extends from 1.4
to 3.0 MeV, then the discussion in Ref. 5 shows that one
has enough information to expand the effective range
function beyond the shape-independent approximation.
The following caution must be exercised concerning the
significance of the coefFicients in this expansion.

The effective range function is an analytic function"
of k' in a region containing k'=0, and therefore has a
power series expansion, Eq. (6), convergent in some
finite circle. If one fits some experimentally determined
values of X using a second-order polynomial (k4 is the
highest power), then are the coefficients so determined
actually equal to the first three coefFicients in the power
series expansions The answer is yes only if the higher
terms in the power series are negligible at all of the
experimental energies under consideration. One cannot
decide this by just examining the experimentally
determined phase shifts, which may have only enough
information in them to enable three coefFicients to be
extracted. Rather, one must have some theoretical
guidance as to whether or not the higher terms are
negligible, e.g. , by using a fairly realistic potential and
seeing what it predicts for the higher terms.

Using some low-energy s-wave phase shifts computed
by Signell, "which are the predictions of the Yale' and
Hamada-Johnston's potentials, we find that the ks term
in the expansion is of comparable importance with the
k' term at 3 MeV. This means that a second-order
polynomial fit to the experimental phase shifts will not
yield the first three coefFicients of the power series

2 I I I
/

I I I I
I

I I I I
I

I I I

expansion. This must be kept in mind when efforts are
made to compare the numbers obtained from a second-
order polynomial fit to the predictions of some model.
Rather than compare some intermediate quantities
such as the effective range parameters, it would be
better to compare the predicted phase shifts directly
with the experimentally determined ones, or better
still, the predicted cross sections with the experimental
values.

Bearing in mind the restricted signi6cance to be
attached to the coefFicients obtained from polynomial
fits, we have made linear, quadratic, and cubic fits to
the phase shifts. Table II shows the phase shifts which
were used, "and Table III shows the results of the three
fits along with their g' values and probabilities.

It is seen that the data do not contain any informa-
tion about Q, and also that the value of P obtained from
the quadratic fit probably has very little to do with the
actual coefIicient of the k4 term in the power series
expansion of the effective range function. To the extent
that a and rs are stable (against the effect of including
higher powers of k') one may assume that they cor-
rectly represent the coefIicients of the constant and
linear terms in the series expansion.

The linear and quadratic fits have been plotted on
Fig. 8, along with the experimentally determined values
of the effective range function using the phase shifts and
uncertainties from Table II. To make the distinction
between the linear and quadratic fits apparent, we
subtracted at each energy the value of the linear ht
from each quantity, and then plotted the results on a
greatly expanded vertical scale. The linear fit itself
therefore appears as a horizontal line through the value
zero. It is plain from Fig. 8 that the experimentally
determined values of the effective range function do
exhibit curvature as a function of energy, of the type
which goes with a positive value for the parameter I'.

Tmr, z II. Phase shifts used in effective range analysis. a=-7.8I5 F
r;-2,80 F

o=-7.802 F
r,=2,75 F

Elab
(MeV)

0.38243
1.397
1.855
2.425
3.037

g E

(des)

14.611&0,011
39.317&0.015
44.346&0.021
48.361&0.014
51.013&0.020

0

I

O

"See H. Cornille and A. Martin, Nuovo Cimento 26, 298 (1962),
and D. Y. Wong and H. P. Noyes, Phys. Rev. 126, 1866 (1962) for
the Coulomb-plus-nuclear case. We believe, but have not yet
proven, that the effective range function employed in this paper
which includes vacuum polarization is also analytic out to 10
MeV laboratory energy (corresponding to one pion exchange).

"We thank Dr. Signell for kindly supplying us with these phase
shifts.

'4 K. E.Lassila, M. H. Hull, Jr., H. M. Ruppel, F.A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962).

'5 T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).
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FIG. 8. Linear and quadratic 6ts to the Gve experimentally
determined values of the effective range function. At each energy
the value of the linear fit was subtracted from each quantity
(linear Gt, quadratic 6t, and experimental value) and the results
plotted on a greatly expanded vertical scale. The parameters
associated with the two 6ts are shown.

'6 The four Wisconsin phases were taken from Ref. 4 using the
relation X0——5P+ro and values of so from Ref. 5.
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T~LK III. EGective range parameters obtained from three diferent polynomial fits to the 6ve very accurate low-energy phase shifts.

Linear
Quadratic
Cubic

u(P)
—7.802+0.005—7.815%0.008—7.823+0.012

«(~)
2.745+0.006
2.795&0.025
2.866+0.078

0
0.028&0.014
0.114+0.093

Q

0
0

0.17+0.18

5.9
1.74
0.81

&(x'&x'nt, )

0.12
0.42
0.37

Although P is now delimited considerably better than
the range which was permitted in Part II of the paper we
have not gone back to reduce the errors quoted. there,
partly to keep the results of that analysis independent
of the higher energy experiments, and also in an attempt
to take some cognizance of the 'bad' point at 0.37283
MeV. We do not know the proper way to do this, but
think that the enlarged errors used in Part II should be
kept partly for this reason.

If the quadratic-fit parameters obtained above are
used at 9.69 MeVI 90'c.m. , with the same p-wave
assumptions as before, namely, one pion exchange
tensor force and no spin-orbit force, the result is
o;. .=55.0 mb/ster, compared with the experimental
value'r of 54.6&0.4 mb/ster. This good agreement
further demonstrates the distinction between a poly-
nomial fit with a few terms and a power series, because
the power series expansion of the effective range func-
tion is known to diverge" beyond 10 MeV, and therefore
the first three terms of the series are not likely to be a
good approximation to the entire series at 9.69 MeV.

IV. CONCLUSIONS

An analysis of cross-section data'near 90'c.m. (omit ting
the point at 0.37283 MeV) located the minimum of the
90' cross section at E;„=0.38243&0.00020 MeV, and
the nuclear s-wave phase shift was evaluated, : 8p~
=0.25501&0.00020 at the precise energy 0.38243 MeV.
Sixty percent of these uncertainties come from the
statistics and most of the remainder from a permitted
spread in the parameter P which was not searched, upon.
If the point at 0.37283 MeV (see discussion in Ref. 1
about. this point) is included in the analysis a poor
statistical fit is obtained, but the phase shift is within
the error quoted above. In the course of studying the
effect of the geometry of the experiment' and multiple
scattering upon the results it was found that the effec-
tive angle is 8, =91.24', i.e., 3 (E) in Table I is
proportional to the cross section at this angle.

When the phase shift given above is combined with
the four recent phase shifts obtained from Wisconsin
data'4 which extend from 1.4 to 3.0 MeV, it is found
that a quadratic fit to the effective range function is
definitely superior to a linear fit, and the parameters of
the former fit are: a= —7.815&0.008 F; rp= 2.795
%0.025 F; and P=0.028&0.014. Consideration of
some realistic potentials shows that the next term (ko)

~' L, H. Johnston and D. F. Young, Phys. Rev, 116, 989 (19)9).

in the expansion of the effective range function is of
comparable importance with the k4 term at 3 MeV, and
therefore the parameters of the quadratic fit are not
necessarily the ones associated with the power series
expansion of the effective range function. The compar-
ative stability of u and rp as higher powers of k' are
introduced indicate that their values are quite close to
the corresponding coefFicients in the first two terms of
the power series, but P may be quite different from the
actual coefficient occurring in the k4 term.

Nevertheless one can use the quadratic fit as an
accurate method for predicting the s-wave phase shift
at low energies, and even at 9.69 MeV good agreement
with the experimentaP~ 90' cross section is obtained.
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APPENDIX A: EMPIRICAL FORMULAS FOR VACUUM
POLARIZATION QUANTITIES

The first set of three formulas refer to the quantities
which enter the s-wave eBective range expansion. They
are accurate to better than 1% in the energy range
0.1(E&4.2, where E is the laboratory energy in MeV,
and ln is the natural logarithm.

ro = —1 59167X 10 '+3 00470X 10 o lnE
+3.02177X 10—' ln'E —2.16455X 10 ' ln'E
+3.73036X 10—' 1n4E,

Xo= —1.51975X10 '+5 97111X10 4 lnE
—1.12282X 10 ln E+5.49672X 10 ln'E

+5.05571X10—' ln4E,

lo= —2 66203X10 '+5.48719X10 ' lnE
+2.95002X 10 ln'E —4.52868X 10 lnoE
—8.35377X10—' ln4E.

The next set of formulas calculate the real and
imaginary parts of the (unsymmetrized) vacuum
polarization scattering amplitude. The formulas are
presented in the form of corrections to the amplitude
calculated by Durand. "These corrections vanish as thp

"I. Dqrand, III, Phys. Rev. 108. 1597 (j957),
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energy increases. The numbers within the quotation
marks are equation numbers in Durand's paper. "

v=2''/k', (2~) '=5/2mc= 193.1X10 ~3 cm,

0 is center-of-mass scattering angle,

x=—cos8,

RePf.., (e)]=["12.2"y "19.2"+"20"j

0.6i—

OAi—

X 1+(2.6843—2.3237x—0.912x')

2.4-

X 10-2i
E0.255161~

m[&f. , (e)j
= "19.1"+[—6.9231—3.6319x —8.3669x'—7.2723x'j

(
2.9

X10 '
0.2551611

&(x) in "12.2" is obtained from "12.3"' and "12.4".
These amplitude formulas are valid above 200 keV

with the following restrictions on angle:
At E&1.4 MeV, the corrections are all small and

should be set equal to zero forward of 20'c.m. The
uncorrected formulas are good between 10 and 20'.

At E=0.4 MeV, the corrections are no good forward
of 30'.

—',0f,(90') = —qe'~ '~. (82)

As the real number 8 increases from zero (with increas-
ing energy) single" moves in the complex plane, along
the arc of a circle whose center is at 0.5i and whose
ra,dius is 0.5. This is shown on Fig. 9. As the real number

tt decreases (with increasing energy), qe'& '"', which from
Eq. (82) is proportional to the negative of the 90'
Coulomb amplitude, moves inward along an Archi-
medes spiral in the complex plane. This is also shown on

APPENDIX B: THE 90' COULOMB AND NUCLEAR
s-WAVE AMPLITUDES

A simple physical picture of the main features of the
low-energy scattering amplitude at 90'c.m. can be
gotten if vacuum polarization is omitted from consider-
ation. . For then the symmetriz ed (singlet) nuclear
amplitude (assumed to be pure s-wave) can be written
as

,'0f~ sinbe"-——
where 8 is the s-wave phase shift. The symmetrized
(singlet) Coulomb amplitude at 90'c.m. is

0.0 0,2 0.4 0.6

FIG- 9. The complex plane showing —,'k multiplied by the sym-
metrized singlet nuclear s-wave amplitude and the same thing for
the negative of the 90' Coulomb amplitude. The straight line
segments, labeled with the laboratory energy of the incident
proton, connect corresponding points on the two curves and
represent ~~k multiplied by the sum of the Coulomb and nuclear
amplitudes. The arrows show how the points move with increasing
energy.

'~ H. A. Bethe and P. Morrison, E/ementary %@clear Theory
(John Wiley 8z Sons, Inc. , New York, 1956), 2nd ed. , pp. 95—96.

Fig. 9. For a given value of the energy, p has a definite
value corresponding to a fixed point on the spiral. The
nuclear-physics problem is to determine where one is on
the circle for that same value of the energy, i.e., what

5(E) is. A straight line connecting the two points in

question would be proportional to the slm of the nuclear
and Coulomb amplitudes, since qe'& '" is proportional
to the megatiee of the Coulomb amplitude. Even without
knowing the exact variation of 8 with E, just from the
knowledge that the nuclear and Coulomb points are
moving in opposite directions it is clear that there will

be an energy at which the two points will 'pass by' each
other, giving a minimum in the total amplitude. If this
occurs at a small value of q then 8=g at the minimum.
This result has been known for a long time."'

One can refine this estimate by examining the geom-
etry of Fig. 9 more closely, but the result will be altered
when vacuum polarization is included. The analysis
given in the body of the paper shows that at the mini-

mum of the 90' cross section (0.3824 MeV), rt =0.2557
and 5p~=0.2550. These two points have been connected
on Fig. 9 with a straight line segment which is labeled
with the energy. The same thing has beeIi done for the
four Wisconsin energies, and the resulting picture of
how the tota, l 90 amplitude varies with energy, pro-
vides a somewhat deeper understanding of the variation
of the 90' cross section shown on Fig. 1.


