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Neutrons scat tered through small angles by heavy nuclei are polarized by the interaction between the mag-
netic moment of the neutron and the electric Geld of the nucleus. Of the several approximate methods that
have been used to estimate the magnitude of this effect, none are suKciently general to permit the simultane-
ous consideration of a realistic nuclear potential that includes a spin-orbit interaction. Therefore such esti-
mates are valid only for small angles of scatter (&5—10'). A more nearly exact calculation based on an
optical-model potential that includes a spin-orbit term is described in this paper. The calculation is based on a
generalization of the usual Born approximation. This "generalized" method can be applied to a variety of
problems in which the scattering potential is separable into a strong short-range term and a relatively weak
long-range one. The results of this calculation are compared with data that originally indicated the possi-
bility of an extranuclear contribution to the polarization of ~1.0-MeV neutrons scattered through an angle
of 24'. This comparison indicates that the electromagnetic interaction can account for a substantial part of
the polarization observed at this "large" angle —even for neutrons scattered from nuclei with moderate
charge (Z&40).

I. INTRODUCTION

'HE polarization of neutrons scattered from nuclei
through "large" angles can be explained by the

inclusion of an effective spin-orbit interaction in an
optical-model potential. On the other hand, Schwinger'
has shown that the polarization of neutrons scattered
through small angles (&5—10') is caused principally
by the interaction that arises from the motion of the
neutron magnetic moment in the nuclear Coulomb 6eld.

To date this interaction has been considered mainly
as a possible mechanism for the production of polarized
neutrons. Consequently, Schwinger, in his original
calculation of the polarization that results from this
electromagnetic interaction, as well as Sample' and
Baz,' in subsequent calculations, are concerned only
with small angles of scattering. However, recent meas-
urements4 of 1.0-MeV neutrons scattered from several
nuclei with charge numbers in the neighborhood of
Z=40 indicate that this interaction may contribute to
the polarization at a scattering angle of 24'. In these
measurements the corresponding differential scattering
cross sections did not exhibit any anomalous behavior
at 24' nor did the polarizations observed at the other
angles (56', 86', 118', and 150'). When we attempted
to investigate the possibility that the interaction
between the magnetic moment of the neutron and the
Coulomb 6eld of the nucleus is responsible for the
abnormal polarization observed at 24', we found that
none of the approximate methods' ' used previously to
estimate the magnitude of this effect could be extended
meaningfully to scattering angles greater than 5—10 .

For larger scattering angles it is necessary to consider
simultaneously the polarization that arises from
speci6cally nuclear forces. The details and results of
such a calculation are presented in this paper.

The present calculation is based on a generalization
of the usual Born approximation. This "generalized"
approximation is applicable to any scattering problem
in which the interaction potential can be separated
into a short-range plus a relatively weak long-range
term. This approximation is described in Sec. II. In
Sec. III the method is used to calculate the polarization
of neutrons scattered from an optical-model potential
(that may include a spin-orbit term) plus the potential
that describes the interaction between the magnetic
moment of the neutron and the Coulomb Geld of the
target nucleus. In Sec. IV the results of this calculation
are compared with the polarization data of Ref. 4. This
comparison shows that the electromagnetic interaction
can account for a substantial part of the polarization
observed at angles as "large" as 24'—even for neutrons
scattered from nuclei with moderate charge.

where

and

V(r) = V (r)+ V (r),

V, (r) =0 for r)~ r„
Vs(r) =0 for r&r,

(1a)

(1b)

(1c)

II. THE BORN APPROXIMATION

We consider the scattering of neutrons from a
spherically symmetric potential V(r) that can be
written in the form

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' Julian Schwinger, Phys. Rev. 73, 407 (1948).

2 J. T. Sample, Can. J. Phys. 34, 36 (1956).
s A. 1. Baz, Zh. Eksperim. i Teor. Fiz., 31, 831 (1956) LEnglish

transl. : Soviet Phys. —JETP 4, 704 (1957)j.
4 A. J. Klwyn, R. O. Lane, A. Langsdorf, Jr., and J.K. Monahan,

Phys. Rev. 133, 880 (1964).

Both V&(r) and Vs(r) may contain a spin-orbit term.
It is assumed that the "cutoff" radius r, in Eqs. (1)
can be chosen such that Vs(r) can be treated as a
perturbation.

The usual generalization of the Born approximation
consists in the following. The scattering problem is
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where
Xj,(kx&)k, oI(kx)), (3)

kioI (kr) =j I(kr)+inI(kr) . (4)

Here j& and e& are the usual spherical Bessel and
Neumann functions, respectively; U&; is the potential
that results from the operation of 2nIV/Pi' on the spin
and angular part of the /,, jth wave function; k'=2nIE/
fi', where E is the center-of-mass energy of the incident
neutrons; x& is the lesser of x and r; and x& is the

solved exactly for some neighboring potential U'(r) and
the difference d, V(r), where

~V(r) = U(r) -U'(r), (2)

is treated as a perturbation. To evaluate the integrals
in the resulting Born expansion for the perturbed wave
function, it is necessary that the unperturbed wave
function be known at all points in space. In practice
this usually means that a potential V'(r) is chosen such
that the corresponding stationary-state wave function
can be expressed in terms of elementary functions.
This procedure seldom leads to a potential DV(r) that
can be treated. as a perturbation.

In the method described below this difhculty can
be avoided provided that the values of the phase shifts
for scattering from the potential VI(r) are known. In
the general case, these phase shifts can be evaluated
only by a numerical integration of the wave equation
with potential VI(r) so that the question naturally
arises: "Why not solve the entire problem numeri-
cally?" For the type of problem we have in mind, the
magnitude of the radius r, in Eqs. (1b) and (1c) is of
the order of the range of nuclear forces whereas the
potential V2(r) extends to distances of the order of the
radius of electronic orbits. In this case the usual partial-
wave expansion, which for short-range potentials is
ideally suited to numerical techniques, is much less
appropriate. The inclusion of a potential U2(r) that
extends to atomic dimensions has the effect that the
interval over which the radial equation for each partial
wave must be integrated is increased by several orders
of magnitude. Furthermore, the number of partial
waves that contribute significantly to the scattering is
greatly increased. Und. er these conditions, rather elabo-
rate provisions to avoid round-off errors in a numerical
calculation are often necessary. Thus a numerical
solution of the entire problem may be considerably
more dificult than the numerical solution for the
short-range potential VI(r) alone.

We now consider a Born expansion that is con-
siderably better suited to scattering problems of the
type described above. Let fI; (r) denote the l, jth radial
function in a partial-wave expansion of the solution of
the Schrodinger equation with a potential V(r) as
defined in Eqs. (1). This function satisfies the integral
equation

PI, (r) = jI(kr) —ik dx x'U&, (x)PI, (x)

greater of x and r. If the value of f I; at the radius r = r,
is expressed as

if&; (r,) =A I; (r,)jI(kr,)+BI;(r.)nI(kr, ),
the integral equation (3) can be written in the form

r
—k dx x'UI, (x)nI(kx)I/I, (x) +nI(kr)

rc

r

BI;(r,)+k dx x'UI;(x) jI(kx)PI;(x) . (6)

Substitution of the approximation

PIi (r) =A II(r,)jI(kr)+BI;(r.)nI(kr), r ~& r„(7)
for fq;(r) in the integrands on the right-hand side of
Eq. (6) gives the first term of the solution of Eq. (3)
expressed as a series in powers of the interaction UI;(r)
in the region r ~&r,. From Eqs. (1b) and (1c) it follows
that this is a series in powers of the strength of the
interaction U2 (r).

In a scattering problem it is the asymptotic behavior
of the partial wave ItI;(r) that is of interest. To first
order this is given as

fI;(r) ji(kr) {(1—bI,)A I;(r,)—ci;BI;(r.))
+nI(kr) {uI;AI;(r,)+(1+bI;)BI,(r,)), (8)

where

rc

dx x'UII (x)$jI(kx)]'.

The coeKcients b&; and c&, are de6ned by replacing

Pjig' in Eq. (9) with LjInij and Lnig', respectively. The
corresponding first-order phase shifts 8~, are obtained,
from Eq. (8) as

where

(1+bI;) tan)I; —aI;
tan5i;=

1—b Ii+c I& tang Iz'

tan/I, = BI;(r,)/AI; (r,) —.

(10)

The phase shifts gi, describe the scattering from the
short-range potential VI(r). We assume that the values
of these phase shifts have been obtained —if necessary,
by a numerical integration of the Schrodinger equation
with interaction potential V, (r). It is worth noting that,
since the coefIIcients ai;, bI;, and cI; in Eq. (10) depend
only on the interaction V2(r), the phase shifts $I; con.-

tain all the information about the scattering from Vi(r)
that is necessary to the solution of the present problem.
This is true also for all higher order approximations
obtained by iteration of Eq. (6).

Frequently the long-range potential Vz(r) has a
simple radial dependence. For the special case

U2(r) ~ UI;(r) ~r ", n&~3—(12)
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and the entire potential energy of interaction is re-
garded as a perturbation. In this limit, Eq. (10)
reduces to

(16)t»5ij —— a—i;/(1 l—i&s)

III. THE POLARIZATION CALCULATION

A Born approximation identical to Eq. (16) has been
obtained, by Brysk. 6 It has been shown by Falk~ that
this result is also obtained from the Grst-order Fredholm
determinantal solution of the integral equation (3).

FIG. 1. A comparison of various calculations of the polarization
of 1.0-MeV neutrons scattered from Pb as a function of the
scattering angle. The respective strengths of the real and imagi-
nary parts of the potential V associated with each calculation are
denoted by V and 5'. The parameters for the equivalent local
potential were obtained by the method discussed in Ref. 4. The
Schwinger and Baz calculations are described in Refs. 1 and 3,
respectively. For the hard-sphere calculation, Eq. (10) was used
with r, equal to the nuclear radius (8 F) and with the h&; equal
to the phase shifts for scattering from an impenetrable sphere of
this radius.

the coeKcients a~;, b~, , and c~; for /&~ 1 can be evaluated
by use of the relation'

We now consider a calculation of the polarization of
neutrons scattered from an optical-model potential
V (r), which may include a spin-orbit term, plus a
potential V.(r) that describes the interaction between
the magnetic moment of the neutron and the electric
Geld of a charge Zt, distributed uniformly over a sphere
of radius r, . The electromagnetic potential has the form

V, (r) = t Ze ha~le„~/(2«»sacs))g(r)1 u, (17a)

where p„ is the neutron magnetic moment (—1.9135
nuclear magnetons) and

Q(r)=r, S fOr r~&rsr

=r ' for r~&r, . (17b)

= (2l+1—«s) dx x'—"fi i(x)gi, (x)

+r ' "Efi(r )gi(» )+fi-i(r.)gi-i(r )j, (13)

where fi and gi are spherical Bessel functions, either

j~ or eg.
Since the phase shifts $i; correspond to a potential

of limited, range, they become vanishingly small for

sufficiently large values of l. Also, since b&,+&1 for large
l, there exists an lo such that for l~& ls the 8i; PEq. (10)j
approach the ordinary Born-approximation phase
shifts 5~,&, where

tanbg;~ = —a);.

This result is of considerable practical value since it
permits the use of the plane-wave Born approximation
for the scattering amplitude as a device for summing
the partial-wave series for large values of l, An example
of the use of this device may be found in Ref. 2.

The fact that the phase shifts 8~; must be independent
of the value of the "cutoff" radius r, provides a partial
test of the accuracy of the approximation (10). For
example, the values of the polarization calculated at
any given angle by use of Eq. (10) (as discussed in
Sec. III and IV) differ by less than two parts in 10e

when r, is changed from 15 to 25 F.
In the limit r,=0, Eq. (1) becomes

' G. N. Watson, Theory of Bessd Fgsieteo»is (Cambridge Uni-
versity Press, London, 1944), 2nd ed. , p. 136.

The present calculations are found, to be insensitive to
the value of the radius r, of the nuclear charge dis-
tribution. The "cuto6" radius r, is chosen suKciently
large that V (r) is negligibly small for r&~r, . The
potentials Vi(r) and Vs(r) in Eqs. (1) then become

Vi(r) = V (r)+ V, (r) for r(r, , (18a)
and

Vs(r) = V, (r) for r&~r, &r, . (18b)

e H. Brysk, Phys. Rev. 126, 1589 (1962); 133, B1625 (1964).
r D. S. Fail, Phys. Rev. 129, 2340 (1963).
E. H. Auerbach, Brookhaven National Laboratory Report

BNL-6562, 1962 (unpublished).

By definition V, (r) vanishes for r ~& r. and Vs(r)
vanishes for r &r,.

In the calculations reported here, the phase shifts $i;
for scattering from the potential Vi(r) were evaluated
by use of the ABACUS —2 program modiGed to include
the potential U, (r) in addition to the optical-model
potential V (r). The phase shifts bi; for scattering from
the potential Ui(r)+Vs(r) were then calculated by
use of Eq. (10). Since Us(r) has the radial dependence
given by Eq. (12) with «s=3, the coefIicients a&;, b&;,

and ci;in Eq. (10) can be evaluated by use of Eq. (13).
For scattering angles much less than 1' the electron
screening of the nuclear Coulomb Geld must be taken
into account. This screening can be approximated by
requiring finite values for the upper limit of the integrals
that define these coefficients LEq. (9)j.The necessary
modification of Eq. (11) for this case can be obtained
from Ref. 5.
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Once the values of the phase shifts bgy have been
obtained, the polarization is calculated by means of
the usual partial-wave series in terms of the associated
Legendre polynomials E&'. We have used the relations
given by Sample' to sum this series for large values of l.

Several calculations of the polarization of 1.0-MeV
neutrons scattered from Pb through small angles are
compared in Fig. 1. The open circles represent values
calculated by use of Eq. (10) for an optical-model
potential

V (r) =—(Vs+iWs) (1+exp L(r—rs)/u]} ', (19)

0
4 r zs)» s

p -Q2-
I-
N 0
IL -0.l—
O
n. -0.2—

0
-O.l-'

I i I ( 1

0.2 0.4 Q6 0.8

I
l

I
l

l

8086

-p--;, -V —-B-

0,2 0.4 0.6 OA3

En(MeV)

l
' T

8=I l8

I

~ Moj.

1 i I i I

0,2 0.4 08 08

where Vs+iWp= (40 0+.0 4i) . MeV, re= 8 F, and
@=0.5 F. These points should be compared with the
polarizations calculated by Baz' (solid triangles) for
the same optical-model potential. These calculations
diGer only in that Baz's results are based on the usual
generalization of the Born approximation discussed at
the beginning of Sec. II. Baz takes the neighboring
potential V'(r) $Eq. (2)j to be a square well. No nuclear
spin-orbit interaction is included in any of the calcu-
lations shown in Fig. 1.

The dependence of the calculated polarization on the
parameters chosen for the optical-model potential has
been investigated (at least in a preliminary way). We
consider the case of 1.0-MeV neutrons scattered from
Pb and assume the optical potential to be of the Saxon-
Woods form. For a surface absorption of strength
S'p=3.2 MeV the polarization at angles less than 10'
is increased by about 10%over values obtained for the
volume absorption, Eq. (19), with Ws ——0.4 MeV. An
increase in the strength of the surface absorption (to
10 MeV) causes a further increase (by about 10'%%uo) in
the polarization. The shape of the polarization curve
as a function of scattering angle is not chaDged ma-
terially by these variations in the imaginary part of
the optical-model potential. In fact, the angular de-
pendence of the polarization seems to depend sensitively
only on the value of rs in Eq. (19).An increase in the
value of rp shifts the peak value of the polarization to
smaller angles and also narrows the peak. For angles
less than 10' the polarization is not sensitive to a
variation of Up.

IV. COMPARISON WITH POLARIZATION DATA

Figure 2 compares the results of the present calcu-
lation with the data of Elwyn et c/. 4 In that work the
magnitudes of the polarizations measured for 0.3- to
0.9-MeV neutrons scattered from Zr, Nb, Mo, and Cd
through a laboratory angle of 24' were observed to be
systematically larger than could be understood in terms
of an optical-model potential alone, even after some
parameter variation was attempted, . The d,ashed curves
in Fig. 2 represent calculations based on a potential
equivalent to the nonlocal potential of Percy and Buck'

' F. Percy and B.Buck, Nucl. Phys. 32, 353 (1962).

FIG. 2. A comparison of measured and calculated polarizations
of neutrons scattered from four nuclei at three scattering angles
as a function of neutron energy. The dashed curves represent
optical-model calculations for a potential equivalent to the non-
local potential of Percy and Suck plus a spin-orbit term of strength
predicted by the shell model. The solid curve (at 24') includes, in
addition, the electromagnetic interaction V, (r). This latter inter-
action has a negligible eBect on the polarization at the larger
angles.

plus a spin-orbit potential of strength predicted, by the
shell model. The radial dependence assumed for the
equivalent local potential is

V (r) = —Vzf, (r) iWr, fD—(r)jV, (A/m c)'e l(1/r) (d/dr) f,(r), (20a)
where

f.(r) = L1+exp((r —R)/a, )j ' (20b)

)r Rq
— —)r—R -'

fD(r) =4 exp] [ 1+exp( ~ (20c)
4 an ) 4 ao

The values of the equivalent local parameters are given
as a function of neutron energy in Table I of Ref. 4.

The polarizations calculated by use of the optical-
model potential alone (the dashed curves in Fig. 2) are
in quite good agreement with the values measured at
86 and 118' (as well as with the polarizations measured'
at other angles), but the polarizations observed at 24'
are consistently more negative than the calculated
values. The solid curve in Fig. 2 represents a calculation
in which the electromagnetic potential V, (r) is included
in the total interaction. This calculation is based on
Eq. (10).The total interaction potential is that de6ned
by Eqs. (18), (17), and (20). In this latter calculation
the agreement with measured values is systematically
improved, and, as shown, the electromagnetic inter-
action accounts for a substantial part of the polari-
zations measured at 24'.

The interaction that results from the electric polari-
zability of the neutron can be included without difBculty
in the approximation (10). This interaction, gives an
additional contribution to the differential cross section
at small scattering angles. Calculations including this
interaction are in progress.


