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Binding Energy of a a Particle in Nuclear Matter
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The binding energy of a A particle in nuclear matter, Ba( ~), is calculated using a A.-nucleon two-body po-
tential with a hard core, which reproduces the binding energies of light hypernuclei and the h.-nucleon scat-
tering at intermediate energies. The simpliaed version of the Brueckner theory used in previous calculations
is applied. The effective mass of the A particle, Mg, is estimated to be about 0.9 MA. The rearrange-
ment energy is included in the calculation. The result obtained, 8&( oo) =31 MeV, is in good agreement with
the measured value.

I. INTROQUCTION Hence, —U is equal to Btt(~), the binding energy of a
A. particle in nuclear matter. "

(ii) One can simply extrapolate the measured values
of Bg(A) for A -+~.s

Both of the methods give the result'

Bq(~)=30 MeV.

Several calculations of Bt,(~) have been pub-
lished. ' ' We shall concentrate our attention on I
and II which seem to be the most reliable calculations. "
The A-nucleon potential considered in I and II is as-
sumed to have a hard core. Hence, one applies the
Brueckner theory in calculating U. In I and II, the
simplest version of the Brueckner theory has been ap-
plied, namely that of Gomes, Walecka, and Weisskopf"
This seems to be well justified because up to now we
know very little about the details of A-nucleon inter-
action and it would be premature to get involved in any
more extensive computations. Furthermore, in a calcula-
tion of the binding energy of a pure nuclear matter, one
needs a high degree of accuracy because the potential
part of the energy is nearly cancelled by the kinetic
part. However, in the case of the single-particle energy
of a A particle in its lowest state in nuclear matter, the
kinetic energy of the A particle is zero. Therefore, a less
accurate calculation of the potential part seems to be
justified.

The results of I and II are as follows: If one fixes the
parameters of the A-nucleon potential in the S state to
get the proper binding of the light hypernuclei, and
assumes that the same potential acts in higher angular

' J. D. Walecka, Nuovo Cimento 16, 342 (1960).' J. W. alley, Australian J. Phys. 14, 313 (1961).
~ D. H. Davis, R. Levi Setti, M. Raymund, T. Skjeggestad,

G. Tomasini et a/. , Phys. Rev. Letters 9, 464 (1962).' A full discussion of the empirical estimates of Bg(ao) is given
in Refs. 9 and 10.

7 M. Taherzadeh, S. A. Moszkowski, and P. C. Sood, Nuovo
Cimento 23, 168 (1962).' A. R. Bodmer and S. Sampanthar, Nucl. Phys. 31, 251 (1962).' B.W. Downs and W. E. Ware, Phys. Rev. 133, B134 (1964);
hereafter referred to as I.

'e B. Ram and B. W. Downs, Phys. Rev. 133, B420 (1964);
hereafter referred to as II."We shall not discuss here the perturbation treatment of Ref. 8
which cannot be applied in the case of realistic h.-nucleon inter-
action containing a hard core.

"L.C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. Phys.
(N. Y.) 3, 241 (1958).
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U=lim~ „Ep(A,U) = —limp „Bg(A).

*On leave of absence from the Institute for Nuclear Research
and the Warsaw University, Warsaw, Poland.' M. Danysz and J. Pniewski, Phil. Mag. 44, 348 (1953).

~ R. H. Dalitz, in Proceedings of the Rutherford Jubilee Inter-
national Conference, Manchester, 1961, edited by J. B. Birks
(Heywood and Company, Ltd. , London, 1961), p. 103.
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S INCE the first observation of a hyperfragment by
Danysz and Pniewski, ' there have been many

attempts to determine the parameters of the A-nucleon
interaction from the measured binding energies of
hyperfragments. In most of these attempts the A-nucleon
interaction represented by an effective two-body central
potential has been used in variational calculations of the
binding energies of light hypernuclei. These energies,
however, are determined primarily by the S-wave inter-
action. Hence, these calculations led to specification of
the A-nucleon potential in S state only (see, for example,
the report by Dalitz').

Information about the A-nucleon interaction in higher
angular momentum states can be obtained by analyzing
the binding energies of heavy hypernuclei which do
depend on the interaction in these states.

Instead of calculating the binding energy of a A

particle in a heavy but 6nite nucleus, it is easier to
calculate the binding energy in an infinite nuclear
medium, i.e., in nuclear matter. To determine empiri-
cally the binding energy of a A. particle in nuclear
matter, one can procede in one of the following two
ways:

(i) One represents the zZ~ hypernucleus (A =total
mass number which includes the one A particle) by a
single-particle potential N(r) in which the A particle
moves. This potential contains two parameters: the
radius R=rs(A —1)"' (rs is known, e.g., from electron
scattering experiments) and the depth U (U(0). For a
given analytical form of I, one solves the Schrodinger
equation for the A particle moving in the potential tt(r)
and determines the lowest energy eigenvalue Eo
=Ep(A, U). By comparing Es(A, U) with the measured
binding energies, B+(A), for different hypernuclei &Z,
one can determine the value of U which gives the best
over-all agreement between Es(A, U) and Bt, (A). —
Obviously, we have
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momentum states one gets B~(oo) 4—0 Mev. This result
is too big compared to the experimental value (around
30 MeV). As a possible explanation of this discrepancy,
a suppression of the interaction in higher l states has
been suggested in an early paper by Walecka. 3

Obviously, the best direct source of information about
the A.-nucleon interaction would be A-nucleon scattering.
The few available experimental data on A-nucleon scat-
tering cross section have been analyzed in II with the
help of a A.-nucleon potential with a fiexible suppression
of the interaction in higher / states. The results show
that one gets clearly the best agreement with the ex-
perimental scattering data in the case of no suppression
of the A.-nucleon interaction in higher / states. The
problem then arises of how to explain the discrepancy
between the calculated and measured value of B~(~).
As a possible explanation, the role of many-body forces
is mentioned in II.

However, even in the simplified version of the
Brueckner theory applied in I and II, there are two
effects which should be considered: (1) the fact that the
effective mass 3I~~ of the A particle is smaller than its
real mass Mq, (2) the rearrangement effects.

In all the previous calculations the assumption
M~*——M~ has been made. Two reasons for this as-
sumption have been given': First, there are no exchange
integrals arising from the Pauli principle and, second,
the A-nucleon interaction assumed does not contain
space exchange force. However, one of the causes for
M~* being smaller than 3f~ is the repulsive core in the
A-nucleon interaction. A simple estimate of the reduc-
tion of Hfdf* caused by the repulsive core leads to a
reduced value of Bq(~).

Most important, however, is the rearrangement effect.
In all the previous calculations, the single-particle model
potential V has been identified with Bq(~) T—he.
single-particle model potential V is introduced in the
Brueckner theory for the sole purpose of calculating the
total energy of the system (to cancel higher order

graphs) and is not equal to the potential part of the
separation energy. "Let us consider the case of a particle
at the bottom of the Fermi sea which then does not have
any kinetic energy. To separate this particle from the
system we first have to perform the work equal to —V.
However, the system left with the hole at the bottom
of the Fermi sea has now the possibility to rearrange
itself to an energetically more favorable state, and while

doing it releases the rearrangement energy Vz. Hence,
the separation (or binding) energy B=—(V+ Vir)
= —U& —V.

The problem of the rearrangement energy has been
recognized for a long time in the theory of nuclear
matter. " In particular, Brueckner and his collabo-

'3 K. A. Srueckner, Phys. Rev. 110, 597 {1958);¹ M. Hugen-
holtz and L. Van Hove, Physics 24, 363 (1958).

p =2/Qv =0.172 nucleons/F'. (3)

The corresponding values of the Fermi momentum
&kg and the parameter rp, connected with p by the
equation

p = (-,'z.ro') —'= 2k ps/3z-'

kg= 1.366 F, rp= 1.113 F.
In all our calculations, we assume the A.-nucleon

potential ~~~ to be spin-independent and to be the same
in all angular momentum states.

where
&~w r =&xt." r

for r(c,
&A|. r—

0 for r&c,
(6a)

0 for roc,
s~~(r) = —Uo for c&r&c+fi, (6b).—W exp[—2(r —c)/R] for r)c+fi,

'4 K. A. Brueckner and D. T. Goldman, Phys. Rev. 117„207
(1960l.' K. A. Brueckner, J. L. Gammel, and J.Y. Kubis, Phys. Rev.
118, 1438 {1960)."H. S. Kohler, Nucl. Phys. 38, 661 (1962).

rators" "have calculated Vg splitting it into two parts.
One is the exclusion contribution, Vii(exclusion), con-
nected with the change in the operation of the Pauli
principle when a hole is created by removing a nucleon.
This part is absent in the case of a A particle in nuclear
matter as h. is not an identical particle with nucleons.
The other part, the effective-mass contribution Vii(M*),
is connected with the change in the single-particle model
energies (or equivalently, in the effective mass M*)
caused by the removal of one particle from the system.
In the case of a nucleon in nuclear matter removed from
the bottom of the Fermi sea, the calculation of Ref. 15
gave Vn(M*) —10 MeV. An effect of the same order of
magnitude should be expected also in the case of a
A particle.

In the present paper we calculate the binding energy
of a A particle in nuclear matter. We apply the ap-
proximate procedure of I and II but include the change
in the effective mass of the A particle M~* and the
rearrangement effect. We find that these two effects
reduce the calculated value of B~(~) to a value which
lies within the range of the experimental estimates,

It should be noticed that from the point of view of the
many-body theory, the case of a A. particle in nuclear
matter presents an interesting case in which only one
part of the rearrangement energy, namely Vn(M*),
appears Also, .the simple method of calculating Vn(M*)
presented in this paper is not quite standard. It has been
first applied in Ref. 16 in connection with the theory of a
finite nucleus.

All the calculations of the present paper assume the
following value for the density of nuclear matter:
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with

c=0.4 F, 8=0.847 F, 8'=150 MeV.

The following values of 6 and Up are considered:

0.7 51.3

b= ~ 1.1 ~ F, Up ——& 27.6 ~ MeV. —BII(~)= U=E(A+1g) E(A) —. (13)
(8c).16.1..1.5.

Both the energies E(A+iq) and E(A) consist of a
potential and a kinetic part. In the ground state of the
nuclear matter +A-particle system, the A particle
occupies the state with zero momentum. Hence, we have

The potential given by Eqs. (6)—(8) has been con-
sidered in II. It gives a reasonable agreement with the
few measured A-nucleon scattering cross sections and its
S-wave part reproduces the binding energies of the light
hyperfragments. Actually, the values of Uo, Eq. (4), are
the spin-averaged values. Instead of considering diRer-
ent values of Up in the singlet and triplet state of the
A-nucleon system, it is simpler to deal with a spin-
independent potential with a properly averaged value
of Up. The result is the same since in our calculations we
shall restrict ourselves to terms linear in the attractive
part of v~~.

As in I and II, we shall use the following simplified
form of the nucleon-nucleon interaction used in Ref. 12:

EpoT(A+1K) Epo'r(A) . (14)

According to the Brueckner theory, we have

EpoT(A) = P., P.,P, P, (2Syi)(2T+ 1)
&kJ &kJ

X (m, m, I E(A)
~
m, m, ), (15)

where E(A) is the reaction matrix for nucleon-nucleon
interaction in nuclear matter, 5 is the total spin, and T
the total isospin of the two interacting nucleons. The
momenta of the two nucleons are Am& and Am2. The
usual factor —', is cancelled in Eq. (15) by the factor 2

introduced by the exchange term.
For our simplified nucleon-nucleon potential, Eq. (9),

E(A) is spin-independent. Furthermore, since the po-
tential acts only in even / states, the total isotopic spin
T is determined by S (T=O for S=1, and T=1 for
S=O). Hence, we have

p~~= p~(r) (1+P„)/2, (9)

where P„ is the space exchange operator, and

(10a)&m ~ =&xe ~

and where

for r&c~,

0 for r& c~
(10b)&wc~ =

EPoT(A)=6 p, g, (mIm2~E(A) ~mIm2). (16)

the same as the number of protons (neutrons) with spin
down.

By E(A) we denote the ground-state energy of
nuclear matter, and by E(A+1&), the ground-state
energy of the system: nuclear matter +A particle.

The binding energy of the A particle BII,(~) is given

(8b) by

i0 for r&c~,
&kg &k~

Similarly, we have
Il~~(r) = ~ —V~ for cd &r& b~+c~, (10c)

with

for b~+c~&r,

VN =A2Ir'/4M ~b~'

b~=1.9 F, c~=c=0.4 F.

POT(A+ 1II) =6 2, Z, (mIm2
~

g (A pi~)
~
mIm2)

&ky &ky

+4 p, (mImg~ X
~
mImg), (17)

&ky

The nucleon-nucleon interaction, Eqs. (9)—(11), en-
ters into our calculations in two ways. Firstly, the
eRective nucleon mass M&* is determined by v». Its
value at the density given by Eq. (3) has been calcu-
lated in I to be

M N*= 0.735M~. (12)

Secondly, v» enters explicitly into the expression of
the rearrangement energy.

where E(A+iq) is the reaction matrix for nucleon-
nucleon interaction in the nuclear matter +A-particle
system, and where X is the reaction matrix for A-

nucleon interaction which is assumed to have the simple
form (6) . The wave vector of the A particle is denoted by
mq (in our case m~ ——0).

Inserting Eqs. (16) and (17) into Eq. (14) we get

(18)

vrhere the single-particle model potential V is given by

II. GENERAL EXPRESSION FOR THE BINDING
ENERGY OF A A PARTICLE IN

NUCLEAR MATTER

V= 4 p, (mImg
~

X
t mImp), (19)

We shaH consider a nuclear matter with equal number
of protons and neutrons (Z=E=-A/2). We also assume V„6g p (m,m,

~

ft(A+1 ) ~(A)
~
m,m, ) (20)

that the number of protons (neutrons) with spin up is &Ir &Lr



BINDING ENERGY OF 4 PARTICLE IN NUCLEAR MATTER

A. Expression for V obtains after some algebra,

p1
(kiks

I
K(A+ lq)

I
mims), (26)

ke

5(1/e) = [eq(mi)+eii(ms) —eq(ki) —
equi(ks) 1 '

—[e(m,)+e(ms) —e(ki) —e(ks) j '
——[e(mi)+e(ms) —e(ki) —e(k2) j

X {[ex(mi)—e(mi)]+[es(ms) —e(ms) j
—[e~(ki) —e(ki) j—[e~(ks) —e(ks)g}, (27)

p* ky /M~+

dk dr exp( —skr)V= [4/(2~)'j(~~*/u*)'

X [v~c(r)+ vs~ (r)j4'~(r), (21)

Let us now describe briefly the approximate calcula- (m,m, l&(A+1&)—1t(A) lmim&)
tion of V presented in I. First, one goes over to the
relative coordinates since the X matrix depends weakly = 2» Z»(mimsII~(A) Ikiks)
on the center-of-mass momentum of the nucleon, and
the A. particle one uses the value of the X matrix for zero
center-of-mass momentum.

By introducing the wave function for the relative
motion of the nucleon and the A particle %q (k is the
relative momentum), one obtains for V

where the reduced eGective mass p* is given by

1/Ii*=1/M~*+

1/cubi,

*, (22)

and where 3f~*, M~* are the effective masses of the
nucleon and the A particle, respectively.

The main approximation consists in replacing 4'q(r)
in Eq. (21) by the wave function for a pure hard-core
interaction. Its S-wave part is the known solution of the
Bethe-Goldstone' equation:

[@s(r)]e—+no(k, r)

= [A(k)/kr] sink(r —c)

where e(k) and es(k) are the single-particle model
energies of a nucleon with momentum IEk in nuclear
rnatter and in the nuclear matter +i1-particle system,
respectively.

Now we introduce the following approximations dis-
cussed in detail by Brueckner et al.'4" First, we apply
the first iteration to Eq. (26), i.e., replace E(A+1&) by
E(A) on the right-hand side of this equation. Second,
we approximate the differences in the single-particle
energies by

es(m;) —e(m, )—(m;mal Xl m; s), (28)

eii(k~) —e(k,)=(k;mz I Xi I k|mii), (29)

where i =1, 2. The contribution of the A-nucleon inter-
action to the single-particle energy of a nucleon below
the Fermi surface, Eq. (28), is determined by the on-
energy-shell X matrix. However, for nucleon in excited
states (k;)k&), one has to use the off-energy-shell
reaction matrix denoted in Eq. (29) by X,. This well-
known point of the Brueckner theory is discussed, e.g.,
in Refs. 14 and 19.

The two approximations inserted into Eq. (26) allow
rite Vii, Eq. (20), in the form

+(1/v)l dr' sink(r —r')

sink~(r'+c) sinks(r' —g)

)X
r' c r' —c

(23)

where

(30)Vn=Vaa+ Vz„
1/A (k) =coskc+ (1/ir) {sinkc(Ci[c(kr+k) ) us tow

—Ci[c(kr —k)])—coskc(Si[c(kr+k) j
+Si[c(kp —k)])}, (24)

where Si and Ci are defined as in Jahnke-Emde. '
The S-wave part contribution to V can be easily

calculated. In evaluating the hard-core part, one uses the
relation

rvsc(r)@no(k, r)—(k'/2iu*)A (k) 5(r—c) . (25)

An approximate calculation of the higher l contribu-
tions to V is discussed in detail in I.

B. Expression for Vg

From the equations for E(A) and E(A +1&), one

"H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1957).

'8 E. Jahnke and F. Emde, Tables of Functions mith Formulas
and Curves (Dover Publications, New York, 1945), 4th ed.

Vn. = —12 2,2-, E., Z»{(mims
I
& lkiks)

X (kiks I
E

I mims)/[e(mi)+ e(ms)
—e(ki) —e(ks)$'} (mimii

I
X

I mims), (31)

Vn =12 2-, &,&„,&„,{(m,mslI~
I
kiks)

X (kiks IE I
m,m&)/[e(m, )+e(ms)

—e(ki) —e(ks)y}(kim~ I xilkim~), (32)

where nz~&k~, m2&k~, k~)k~, k2)kg, and where E
stands for E(A) (we shall use this simplified notation
throughout the following considerations).

These are the hole (Vite) and particle (Viii, ) rear-
rangement energies of third order. In the case of a pure

"H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963).
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convenient to use the relation

dr(X ~(r) (2= (1/22r)2 dk(X ~(k) (2, (46)

K

kl,

lm, m2112 O—P
m„

k
m~

k'
k

~w oo
g

se eagre] ss s
~+ +n k~ 'kl '

m1 1'&a'tkz

where x ~(k) is the Fourier transform of X ~(r).

1 1—g„'v(k) =— dre '""X„~(r)= (k~0&—1~m). (47)
Qv nv

By writing Eq. (33) in the relative coordinates and
applying the effective-mass approximation to the single-
particle energies e, we find

MN*
y ~(k)=— dre '"'v»+„~(r)/(m2 —k') . (48)

In applying Eq. (48) we shall approximate 4' ~ by
the wave function for the pure hard-core interaction
v~c, acting in S state only. LThe last approximation
neglects the D-state interaction, since our v», Eq. (9),
acts in even E states only. 7 This means we put

FIG, 2. Diagramatic representation of the equation for X1.

this section, we shall calculate X1 in an approximate way
applied in the pure nuclear case by Bethe and his
collaborators. "

The matrix element (k1mq~X1~k1mq) entered into
Eq. (32) as the contribution of 11-nucleon interaction to
the single-particle energy of a nucleon in an excited
virtual state of momentum k1. This matrix element
contains the sum of all the corresponding ladder dia-
grams and the appropriate equation for (k1mz

~
X1~k1mz)

is shown diagrammatically in Fig. 2. This diagrammatic
equation takes the following analytical form:

X1
~

k1m~)

—»lk1m~)+Z. E., "~Ik1k~)

(r)—4'ljQ (m, r), (49) X
e(k1)+e(m11)—e(k1') —e(k+) —A(k1k2 m1m2)

where 4'gG is the Bethe-Goldstone wave function intro-
duced in Sec. IIA. Notice that Qpo depends only on the
hard-core radius and hence is the same in the nucleon-
nucleon as in the A-nucleon case. The only difference
between the two cases consists in replacing Eq. (25) by

)& (k,'kp
~
X1~ k1mp), (54)

where

~(klk2 mlm2) e(kl)+e(k2) e(ml) e(m2) (55)
r

with e and e denoting the single-particle energies of
nucleons and A particle, respectively. The energy de-
nominator in Eq. (54) is equal to the negative excitation
energy of the system in the intermediate state indicated
in Fig. 2 by the dotted line.

The sum over k1' in Eq. (54) is restricted by the
exclusion principle to k1') k~. However, the range of k1
is k1)k p and within this range the exclusion principle is
less effective compared to the off-energy-shell effect
represented by h. Hence, we shall ignore the exclusion
principle in Kq. (35), i.e., we shall consider the k1 sum
to be extended over the whole momentum space.

With the help of the wave-function operator 01
defined by

rv~c(r)+so(m, r) (A'/M&*)A (m—)b(r —c) . (50)

With the help of Kq. (50) we finally get

kr MN~
x ~(k)——A(m) sinkc+

k A.2

X drr sinkrv~~(r)+so(m, r) (m' —k'). (51)

Let us notice that, similar to Eq. (43), we can intro-
duce an average value of

~

X ~(k)
~

' over the Fermi sea.

3 m)
dmm2 1——

~

2 k,)
@I &NhQ1 y(

gN(k) ~2

kg'

and combine Eqs. (43) and (46) to

we can rewrite Eq. (54) in the form
1 m

~x ~(k) ~. (52)™2 = (k1'4
~
vx~il1

~
k1m~)/

t e(k,)+e(mq) —e(k, )—e(kq) —6(k1k2,m, m2)7. (57)

dr[x (r) ~'=(1/22r)2 dk~x (k) ~'

IV. CALCULATION OF Vg„

The main problem here is to determine the off-energy-
shell A-nucleon reaction matrix X1. In the first part of

For the single-particle energies we shall apply the
effective-mass approximation

e(k)—(k2/23IIq*) k'+ const,

e(k)~ (k2/2M12 *)k'+const.
(58)

With the Pauli principle being ignored and with the
approximation (58), the center-of-mass motion can be
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separated. Let us introduce the center-of-mass and
relative momenta

With the help of Eq. (67) one can easily derive (see
Ref. 19 for a detailed derivation) the relation

K= kt+mg,
I'= kt'+kg,
k = (p, */M~*)k 1

—(p*/3'")ma,
k'= (p*/M *)l,' —(&ajm, a)k, .

Actually, we ha, ve m+= 0 and

k= p*kt/Mp *.
For the energy denominator in Eq. (57) we get

(59)

(60)

drr'j z, (kr) v&zzRL

A2 C

(k2+72) dyytyL(ky)2
2p 0

t'd
+c'j z, (kc)( Rz,' —

[ + drr2RL'v1t&RL, (73)

k2 ——m, +m2 —k, .
We shall approximate 6 by its angle average.

A(klk2 mlm2) (hkl) /zlzz zz

Let us now introduce the wave function

(kz'kg ~01
~
kzmg) = tax. , x(k'~ +1 k)

and

(63)

(64)

(65)

e(ki)+e(m~) —e(ki') —e(k2, )= (h2/2p*)(k' —k") (61)

6(ktk2, mtm2)

(h /~zy )Lkl +mlm2 mtk1 m2klf ~ (62)

In the last equation we have used the momentum
conservation

where the function EI, ,

jL(kc)
Rz, (r) =j L(kr) — hL&'i(iver),

hL&'i (A c)

with

Xl(k) —Xl(k)core+ Xi(k)attractive q (75)

X1(k).o„—42r(h2/2p*) (-2, (k2+y2)c'

is the EJ. function for a pure hard-core interaction.
As is shown in Ref. 19, after inserting (73) into Eq.

(70), one can perform most of the surzmlations over L
exactly with the result

Xl, k +1,k 'Pk p (66) +cI 1+'re+2(kc)'/(1+Ye)3} (76)

(&'/2p*) (~7'—V')Xt, k(r) = 41i +1,~(r),

where r is the relative A-nucleon coordinate and

(67)

y2= (2(M~*/&11*)+1)k2. (68)

The matrix element of X1 is according to Eq. (56)
given by

(ktm1t
~
X1

~
ktm2. )= Xt(k)/fIr (69)

where tci, is a plane wave. If we transform Eq. (57) for
(54)j into configuration space and take into account
Eqs. (60), (61), (64), we finally get

Xi(k)attractive=42r QL(2L+1) drf RL 52~RL. (77)

The modified Born approximation which we want to
apply consists in replacing RL in Eq. (75) by RL'. That
means we shall use the approximation

Xz(k)attractive=42r gg(2L+1) dff RL 'vzrzzRL ~ (78)

with

Xi(k) = dre-'"tg1i (r)et, t, (r).
Equations (75), (76), (78) determine our approxima-

(70) tion to X1. With the help of Eq. (60) we finally get X1
as a function of kl.

Hence, to calculate the oG-energy-shell reaction
matrix X1 which enters into Eq. (32) for V», we have
to solve Eq. (67) for %1 t, and then calculate the integral
in Eq. (70).

Instead of solving Eq. (67) exactly we shall apply the
modiled Born approximation discussed by Bethe et al."
First we decompose 4'l, k into partial waves

%,t, (r)=QL(2L+1)i RL(r)PL(kr). (71)

This gives us a corresponding decomposition of Xl,

Xi(k) =42r QL(2L+1) drr'j L(kr)vz&RL. (72)

x1(k)= xt(p, *kt/M~*). (79)

V .=(12/0r2)2- 2 .2 2 ~x,MIX- (k)I'

XXt(p*k1/Mzy*)

Ill i+ Illl
=(12/fear')2- 2, Z. &

XX (p*k /Mzf*) . (80)

To calculate Vz2~ given by Eq. (32), we proceed in the
same way as in Sec. III. Kith the help of the ap-
proximation (37), we thus get
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Because of the Fourier transform g of the function y,
most of the contribution to Vg„comes from ki& i.5k'
where we can neglect (mr+ms)/2 compared to ki.
Hence we put in Eq. (80)

( Ill i+ms
x "I kr — =x "(ki),

2

FIG. 3. Diagramatic representa-
tion of the A-nucleon contribution
to E(A+Ill: (a) erst-order dia-
gram, (b) h self-energy diagram of
third order.

(o)

(b)

and get

v.„=(»/~, )Z„&Z., Z..IX."(k)
I &

Xxi(p*ki/~+*) (81)

As in Sec. III, we shall use the approximate equation
(51) for x ~(ki)=g ~(kr). Now the summation over
mi and ms produces the average

I
x~(kr) I' defined in

Eq. (52).

(»/&r')~-, ~-, l x-"(ki) I'= 4/'I x"(ki) I' (82)

and hence for Vg„we get finally

dkrkr'I x"(kr) I'Xr(v*k, /M„*). 83)

different values of the nucleon and A-particle momenta.
Instead of Eq. (55) the off-energy-shell shift 6 is now
given by

A(krak~., mph'~) = e(kg)+e(k~) —e(mg) —e(m~). (85)

By applying the momentum conservation

km= ms.+mar 4=m—pr kg, — (86)

(mq ——0) and the effective-mass approximation, Fq.
(58), we get

d = (k'/2@*)kz' —2(A'/2M&*)m&k&~(i'I'/2p*)k~' (87)

where in the last step we have replaced 6 by its angle
average.

Let us introduce the re1ative A-nucleon momentum

p=~'L~~'//id~* 4/~, *j. -
For big values of kq (kq))k~) we have

V. ESTIMATE OF Mp* (88)

kg'—(Mg*//i*)'p',

and we can write Eq. (87) in the form

(89)

52

(M~*/Ii*)P'.
2@*

(90)

Instead of Eqs. (69), (70) of Sec.'Iv~we introduce

(m~'kp
I
xi

I
m~'kg)

= (1/Qv) dre '&'vq~(r)%, ,r(r), (91)

and instead of Eq. (6/) we now have

(k'/2~*)(~'-v. ')(~,,—.'")=;.~, (92)
A,2k' where

+4 g (mrs'4I Xi
I
m~'4), (84)e(kg) =

2M' q,'=(2+& */M *)(M,*/~ *)p . (93)
For big values of p (or kq) we can approximate vq~ jn

Eq. (92) by its repulsive core part roc. Considering that

r) c, +&,,——0 for r(c, (94)
we get from Eq. (92)

one automatically includes into the diagram (a) in
Fig. 3 the A-particle self-energy diagrams of the type
shown in Fig. 3 (b). The off-energy-shell reaction matrix
X~ has been discussed in Sec. IV. The only difference is
that now we are interested in the diagonal matrix
element in the state in which the nucleon wave vector
m~'(kp and the A.-particle wave vector k~&0. In the
following discussion we shall restrict ourselves to big
values of k~ and accordingly we shall neglect the
exclusion principle in the equation for X~ as was also
done in Sec. IV.

One can now repeat the whole procedure of deter-
mining X& of Sec. IV taking, however, into account the

II~c%'I,&= (Ir'/2pe)(P'+y ')e'sr. (95)

By inserting (95) into Eq. (91), we get

(m~'k~
I xi I

~~'k. )
(1/Qv) (fi'/2p—*)(ps+p s) (47r/3)cs (96)

Hence, according to Eq. (58) we have for big values of kq,

g(k~)—=(k'k~'/2IlI~)+P(k'/2/ *)(p'+y ')(4~/3)c' (97)

We shall present here a simplified estimate of the
eGective mass of the A particle for high-energy excita-
tions where the hard core in the A-nucleon interaction
plays the predominant role. Our estimate differs from
that of Bethe et al."only as far as we have in our case
two diferent particles, hence, a different reduced mass
appears, and there is no exchange contribution (which
anyhow has been neglected in Ref. 19). One also has to
distinguish in our case between the nucleon-nucleon and
A-nucleon reaction matrices.

The A-nucleon contribution to the energy E(A+1&)
of the nuclear matter +/1-particle system is in the
reaction-matrix theory given by the diagram (a) in
Fig. 3. By de6ning the single-particle energy of a A
particle which enters into the reaction-matrix equation
by the equation
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A comparison with Eq. (58) gives finally

(c/r p)'(1+Ms*/M~*)+Ms*/Ma= 1. (98)

TAsr.z I. Numerical results in MeV. The vg,y potential denoted
by (a)—(c) corresponds to the values of b, Va given in Eqs. (Sa)—
(8c), respectively.

In obtaining Kq. (98) we have used Eq. (89), the
definition of 7~, Eq. (93), and the relation between rp

and p given in Eq. (4).
With the numerical values of ro, c, JI~* introduced in

Sec. I, Eq. (98) gives

Mp*/Ms= 0 887.

VI. NUMERICAL RESULTS AND DISCUSSION

0.887
(a)
(b)
(c)

i)IA/i)IA &shiv

(a)
(b)
(c)

—41.3—40.3—40.1

—38.2—37.2
—.37.0

5.7
5.5
5.5

1.2
1.0
1.1

6.9
6.5
6.6

31.3
30.7
30.4

Vza Vita Vz U= —Bx(ee)

6.2 0.7 6.9 34.4
6.0 0.6 6.6 33.7
6.0 0.7 6.7 33.4

All the numerical computations have been performed
on the CDC-1604 computer of the Computer Center of
the University of California at San Diego.

Numerical values of all the quantities (M&*,p, s&~,v»)
used in the computations are those described in Sec. I.

In our numerical calculations we have considered two
cases: 3f~*=3f~ and M~*=0.887M~.

The values of V in Table I in the case M~*=M~ have
been taken from II. Within the approximations of Sec.
IIA, only the repulsive core Ptiqo part of Eq. (21))
contribution to V depends on the value of M~*.23 Hence,
to get V in the case M~*=0.8873f~, we only have to
calculate the v~g contribution to V. This has been done
for the S state according to Eqs. (21), (23), (25). The
higher 1 contributions calculated with the help of the
approximate expressions given in I are practically the
same for both the values of M~*, and are very small
compared to the S-state contribution. Hence, the whole
diGerence between V in the case M~*=3fq and 3f~*
=0.8873Eq consists in an increased S-state contribution
of v~q in the latter case.

The calculation of Vg~ has been reduced in Sec. III
to the calculation of the correlation volume. This has
been done by first calculating X ~(k) according to
Eq. (51).Then the average

~
g~(k)

~

' has been calculated
according to Eq. (52). And finally Eq. (53) has been
used to calculate the correlation volume with the result

dr ) x~(r)
~

'=1.16, (100)

"The vpg contribution to t/ does not depend on Afar* at all if
one uses the approximate form of 4'ir given in Eq. (9) of lI.

which, multiplied by the factor —,'p, Eq. (45), gives 0.15.
This means that Vns is 15/o of —V. A comparison of
Eqs. (100) and (42) shows that the correction to the
Bethe-Goldstone wave function due to the attractive
part of v~iv, ting in Eq. (51), has little effect on the
magnitude of the correlation volume.

The particle rearrangement term V~„has been calcu-
lated according to Kq. (83). The average

~
y~(ki)

~

' has
been computed as in the case of Vgy, .The X~ matrix has
been computed according to Eqs. (76), (77). The
contribution of the attractive part of X& depends on
Mz* only very weakly through the relation (79). We

have included partial waves with L&4 in calculating
Xl(k)attractive

As an example, we give the different contributions to
Vz~ in the case of the ti» potential of Eq. (86) for
M~*=Mq. The contributions of Xi(k)att»«, ve to Va„
for different values of L, Eq. (77), are in this case

—2.6
543

L VByjattr active &. 2 9 MeV
—1.jI.

—04

1
for L=, 2.

3
(101)

The contribution of Xi(k)„„,to Vir„ is in the same case

[Vit„jcc„=12.9 MeV,

and the total V~~ is

(102)

V~~=0.6 MeV. (103)

The situation in other cases is very much the same.
To a high degree the repulsive and attractive contribu-
tions cancel each other. The net effect is a very small
positive value of V~„.This is the result of the hard core
being much more effective in the case of V~„ than in the
case of Vg~, . Namely, in the case of Vg„ the A-nucleon
interaction occurs at high energy (nucleon in an excited
state) and off the energy shell, whereas in the case of
V» the A-nucleon interaction occurs at low energy
(nucleon in a state below the Fermi level) and on the
energy shell.

The results of our numerical computations are shown
in Table I. The most important correction to V is the
rearrangement energy V&, strictly speaking its hole
rearrangement part Vz&. The rearrangement energy,
V~, is not sensitive to the value of iV~*. However, V is
reduced appreciably if M~ is replaced by 3f~*——0.887M~.

The results show that by including Vg into the
calculation of Bz(ro) and by using a reasonably esti-
mated value of 31&*&Jtlz one gets a very good agree-
ment with the experimentally estimated value of Bx(ao ).
This agreement has been obtained with the A-nucleon
potential which, used in II, gave the best 6t to the
A-nucleon scattering data.

In view of the approximations applied in the present
paper the accuracy of our results certainly does not
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exceed a few MeV. Also the calculation of V in I and II
is approximate. In particular, the main contribution to
V from the attractive part of v&~, namely that in the E'

state, has been calculated in an approximation of
uncertain accuracy.

Still our results show —at least qualitatively —that
there is no serious discrepancy between the calculated

and measured binding energy of a A-particle in heavy
hypernuclei.

ACKNOWLEDGMENTS

The authors express their gratitude to Professor K. A.
Brueckner and Professor X. Kroll for the hospitality
extended to them at the Phy'sics Department of the
University of Ca1ifornia in La tolla.

PHYSICAL REVIEW VOLUME 136, NUMBER 18 OCTOBER 19fi4

Electron Bremsstrahlung in Scattering by Nuclear Magnetic Moments'
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The cross section for electron bremsstrahlung in the presence of a magnetic dipole potential is considered
with dependence on photon polarization explicit. Modi6cations of a result due to Sarkar, to include nuclear
spin effects, are derived, and the angula»nd energy distributions of the radiated quanta are obtained. The
related process of pair production is discussed. The infrared divergence is eliminated in the same way as for
the Coulomb potential.

I. INTRODUCTION
' 'N the scattering of electrons by a nucleus, the emis-
~ - sion of photons depends on the nuclear magnetic
moment as well as on the nuclear charge. Sarkar' has
obtained the bremsstrahlung cross section correspond-
ing to a spin-independent (i.e., classical) nuclear mag-
netic moment. It is the purpose of this paper to deter-
mine the e8ects of nuclear spin on the cross section, to
obtain the angular and energy distributions of the
radiated particles, and to show that, as in the Coulomb

case, the infrared divergence is spurious.
The results presented parallel those of Bethe and

Heitler, ' and of Gluckstern, Hull, and Breit' for
bremsstrahlung in the Coulomb 6eld.

An electromagnetic potential is introduced to repre-
sent the nucleus

A„(r) = (—p & V,ieZ)r

where p, and Z are the nuclear magnetic moment and
atomic number. The relative magnitude of the magnetic
and Coulomb interactions with the electron is con-
sidered by Newton, 4 the ratio being

l [ q]/eZ= (]q] l /p~)/2mcZ, (1.2)
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ments for the degree of Doctor of Philosophy at Indiana Univer-
sity, 1963.
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' H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146,
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'R. L. Gluckstern, M. H. Hull, and G. Breit, Phys. Rev. 90,

1026 (1953).
4 R. G. Newton, Phys. Rev. 103, 385 (1956); 109, 2213 (1958);

and 110, 1483 (1958).

where jI is the mass of the nucleon, p,~ the nuclear
magneton, and g a momentum transfer characteristic
of the scattering process. Evidently, magnetic scatter-
ing is of greatest importance for high-energy electrons,
the effect decreasing with Z. Unless the momentum
transfer is comparable with the nuclear mass, the exist-
ence of magnetic properties of the nucleus is almost
completely masked by the nuclear charge.

The assumption that the nucleus does not recoil is
admittedly unrealistic for very light nuclei, since it is
necessary that the experiments be performed at high
energies. The most serious violation of this approxima-
tion, scattering from the proton, has been considered by
Berg and Lindner. '

It is interesting to note that polarized targets,
suitable for scattering experiments, are currently under
investigation. '

II. THE DIFFERENTIAL CROSS SECTION

The electromagnetic potential is treated in the 6rst
Born approximation. If (pp, iEp) denotes the four-
momentum of the incident electron, (p,iE) that of the
electron after scattering, then the cross section for
emission of a photon with momentum k and polariza-
tion direction e, is'

d = (Z'e'/8 ')(kdk/q')(P/P, ) Tr(A++8+)
)& (H+E)(A+B)(Hp+Ep)dMQs, (2.1)

~ R. A. Berg and C. N. Lindner, Phys. Rev. 112, 20'72 (1958).
'O. Chamberlain, C. D. Je8ries, C. Schultz, and G. Shapiro,

Bull. Am. Phys. Soc. 8, 38 (1963).


