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An iteration method is formulated for the determination of the partial-wave scattering amplitude on the
basis of analyticity and unitarity postulates. The analytic properties in the physical and unphysical sheets
are considered simultaneously in a study of the logarithmic S function in Sg (s). The usual X/D approach and
some of its associated drawbacks are avoided. A relationship between the total number of composite particles
and the phase change of S&(s) along the left-hand cut is derived; this may be regarded as a generalization of
Levinson's theorem. The use of this relationship in the iteration method is discussed.

I. INTRODUCTION

S0 far in the development of the analytic S-matrix
theory, calculations of the partial-wave scattering

amplitudes have been based almost exclusively on the
1V/D method. ' Its advantage lies in the fact that the
nonlinear integral equation of a scattering amplitude
satisfying analyticity and unitarity postulates can be
reduced by this method. to a set of two coupled linear
integral equations. However, it is marred by the dis-
advantages associated inherently with the definition of
a function as a quotient of two functions. Given a
particular left-hand cut representing the dynamical
force operating in a channel, it is not impossible that
the D function has zeros in the complex energy plane.
Since causality forbids the amplitude to have poles in
the complex plane of the physical sheet, this implies
either that the E function must have zeros there also
or that the input force is unrealistic. In either case some
remedy seems necessary, which is to be imposed to meet
an extra condition not already contained in the postu-
lates of analyticity and unitarity, contrary to the
philosophy of the S-matrix theory. It is therefore
desirable to have a method which is free of this short-
coming, that is, a method in which analyticity and
unitarity automatically guarantee that all the complex
poles of the amplitude are in the unphysical sheet.

Another drawback of the X/D method is that the
analytic property which is to be assigned to D is not
unambiguous. It can have the entire right-hand
unitarity cut or just the elastic section of this cut or
the entire right-hand cut with only the elastic discon-
tinuity. One must examine whether this freedom is
consistent with the one-to-one correspondence between
a pole of the scattering amplitude and a zero of D,
which is generally assumed unless proven inadmissible
a posteriori on the grounds of other consistency require-
ments. If D is required to have only the elastic cut,
then special care must be taken to ensure that the
amplitude does not acquire an artificial singularity at
the inelastic threshold. ' In so doing an integral equation
of the Wiener-Hopf form must be solved. It is not

*Present address: Institute for Advanced Study, Princeton,
New Jersey.' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).' G. F. Chew, Phys. Rev. 130, 1264 (1963).

apparent, however, that the complications involved in
solving that equation all have physical content.

Finally, we note that the N and D functions are
associated with the scattering amplitude defined on the
physical sheet only. Although it is not difEicult to
construct the amplitude on the unphysical sheet
(reached by continuation across the elastic unitarity
cut) in terms of E and D, there is no reason to prejudice
one sheet against the other, when resonances and bound
states are regarded as generically the same.

We propose here a method for determining the
partial-wave scattering amplitude without recourse to
the factorization of the amplitude into two analytic
functions, thus avoiding some of the drawbacks of the
X/D procedure. In our approach the physical and
unphysical"' sheets are explicitly put on the same footing.
This is accomplished by utilizing the fact that the S
function on the unphysical sheet S is the inverse of S
on the physical sheet; thus, the function 1nS(s) is
singular at all the positions in the complex s plane
where either S(s) or S„(s) is singular. Our principal
dynamical equation is a dispersion relation of this
logarithmic function. It is supplemented by a number
of subsidiary equations. This system of equations is
then to be solved by an iteration procedure.

We shall derive a generalized form of the Levinson's
theorem, which relates the phase change of S(s) along
the left-hand cut to the total number of composite
particles —resonances and bound states —in the channel
under consideration. The iteration method shows how
the pole positions of these composite states move as a
result of the unitarity correction, which, for potentials
not too singular, never increases the number of such
states. Thus, even before a calculation is attempted,
one can predict on the basis of the nature of the input
dynamical force whether a certain number of composite
states in a particular partial wave is possible.

The movements of the poles in the complex s plane
can also be studied as a function of the interaction
strength or the angular momentum. The pole positions
can be complex only in the unphysical sheet; any one
emerging into the physical sheet through the elastic

' Here and in the following, the unphysical sheet shall always
refer to the one reached by continuation across the elastic unitarity
cut.
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cut must stay on the real axis below the elastic
threshold. An inversion of the dependence of the pole
positions on angular momentum gives, of course, the
Regge trajectories.

In the itera, tion method there are no integral equa-
tions to be solved. One simply evaluates integrals over
known integrands at each stage of the iteration. The
only reservation one may have about such a procedure
is that in the initial stage of the iteration the results
may oscillate so much as to render the method difficult.
However, such difFiculty, if it exists, can easily be
eliminated by proper numerical programming, which
turns on the interaction adiabatically.

Section II contains the description of the iteration
method for physical partial waves; the consideration
needed for the extension to nonintegral values of l is
discussed in Sec. IV. In Sec. III is given a generalization
of Levinson's theorem and its application.

where
Si($)= 1+2ip($)A (($), (2 &)

p($) = P/$'~'= L($—4y')/4$]'" (2.2)

We assume tha, t A&($) satisfies the analyticity and
unitarity postulates so that it is a meromorphic func-
tion in the cut s plane. The branch cuts are on the real
axis running from s= —~ to 0 and from s~ ——4p, ' to
-}-~.If $2 (assumed to be greater than si) is the in-

elastic threshold, then by means of the unitarity con-
dition on S&(s) between si and s& plus real analyticity-
i.e., 2 i($) =A i*($*)—or on the basis of the discontinuity
equation for the two-particle branch cut, the scattering
amplitude can be continued' across the elastic unitarity
cut into the unphysical sheet I, and one obtains

5 ($)=5—'(s). (2.3)

Here and in the following the partial-wave index l will

be suppressed until Sec. IV, where the problem for
noninteger / will be considered.

It is clear from (2.3) that the elastic cut connects
only two sheets. The zeros of 5($) correspond to the
poles of 5„($).Thus, the singularities of the 5 function
on both sheets are present in the logarithmic function

K($)—= lnS($) . (2.4)

Poles of S($) and S (s) both appear as logarithmic
singularities of E($), differing only in the sign factor.

We assume in this work that 5($) tends to unity as
s —+ ~. This has been shown by Omnes" to be true if

4R. C. Hwa and D. Feldman, Ann. Phys. (N. V.) 21, 453
(1963); for earlier work see references cited therein.

~ R. Omnes, Phys. Rev. 133, B1543 (1964).

IL DYNAMICAL EQUATIONS

Ke consider the scattering of two neutral spinless
particles of equal mass p. Let s be the total c.m. energy
squared, and the 5-matrix element for a given partial
wave 1 be written as

CL S)

FIG. 1. Contours Cl, and Cg in the s plane.

the asymptotic behavior is dominated by one Regge
pole in the cross channel, which has the properties that
its trajectory in the complex angular-momentum plane
satisfies the Froissart limit and that it loops back to
the left of Rel=i at large momentum transfer. The
same result holds if a finite number of Regge poles of
such chara, cter contributes to the asymptotic behavior,
but it is not yet known whether the conclusion is to be
altered when an infinite number of poles or a cut in the
/ plane governs the asymptotic behavior. With 5($)
tending to unity at infinity, E($) approaches a constant
asymptotically, and the dispersion relation for K(s)
which we shall consider exists without subtraction.

Let us consider first the situation in which 5($) has
neither zeros nor poles; this can always be made
possible by letting the interaction strength be weak
enough. In this case E($) is analytic in the s plane cut
from —~ to 0 and from si to +~. We choose the
branch of the logarithm in which E($) is pure real on
the real axis between 0 and s&. Because of unitarity,
E($) is pure imaginary between si and $2, having
opposite signs on the two sides of the real axis. Thus,
if (s—si)'" is defined in the s plane cut from si to +~,
then E($)/($ —si)'I' is regular at s=si and has cuts in
the s plane from —~ to 0 and from $2 to +~. By
Cauchy's theorem we have

E($) 1

(s—si)'i' 2m-i

I (s')ds'
, (2.5)

(s' —s) (s' —s,)'i'

5($)=g($)e"'i' s) si.

' Cf. M. Froissart, Nuovo Cimento 22, 191 (1961).

where CI, and Cg are contours shown in Fig. 1. Along
the left-hand cut it is the ima, ginary part of K that
contributes to the discontinuity, and ImE($) is just
the phase of S($). In the integral over the inelastic cut'
the contribution comes from ReK($), which is in'(s),
where g is the absorption coefficient defined by
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We thus obtain'

(s—s1)'/' s ImE(s')ds'
E(s)=

„(s'—s) (s' —s,) '/'

(S S )1/2

lnr/(s') ds'
(2.7)„(s'—s) (s' —S1)1/2

From (2.1) and (2.4) we have

E( ) 1( rn x( )L1 2 ( ) I~ ( )q) (2 8)
FIG. 3. Distorted contour Cz,

' (a) and its image in the S plane (b).

In solving the present problem the inelasticity function
2/(s), s&s2, and the left-hand discontinuity 2i ImA (s),
s(0, are the input information that is assumed known.
Thus (2.7) and (2.8) constitute a closed set of equations
which can be solved by successive iteration. Let An(s)
denote the Born term that gives rise to the left-hand
cut and the right-hand inelastic cut, and En(s)
=—ln(1+2ipA~). Then the iteration procedure involves
first putting ImE and lng in the first and second
integrals of (2.7), evaluating the two integrals, and
obtaining the once-iterated E(s) for any value of s in
the entire cut plane. The real part of this result along
the negative real axis is used in (2.8) to give an im-
proved ImE(s), and the iteration is repeated. An
important point to note is that in this method the
iteration is done only along the left-hand cut where
ReS(s) is known exactly, so the results at each iterative
step are constrained to be partially correct at all times.
The solution is expected to converge rapidly if the
input force is weak and is such that S(s) has no zeros
or poles in the cut s plane.

Consider now the situation that 5(s) can have zeros
or poles. We shall show in the next section how the
total number of poles in the two-sheeted Riemann
surface is related to the phase change of 5(s) along the
boundary of this surface. It sufFices to remark here
that if when the interaction strength is initially weak
S(s) has no zeros or poles, then as the interaction is
strengthened, zeros of $(s) may emerge into the com-
plex plane of the physical sheet from the left-hand cut

FIG. 2. Example of
the images of the
upper half of CL,
under the mapping
S=S(s).

or the right-hand inelastic cut. So long as none of these
zeros crosses the elastic cut at s=s1, no poles of S(s)
can enter into the complex s plane; not from infinity,
since 5(s) is constrained to unity there at all times; not
from the right-hand cut, on account of the restriction
r/(s)(1; and not from the left-hand cut because, for
any negative value of s, ReS(s) = 1—2p(s) ImA (s) is a,

continuous and monotonic function of the interaction
strength —a property which forbids the emergence of a
pole of S(s) through this cut.

To see how a zero of S(s) can enter into the complex
plane, let us suppose that for some weak coupling the
image of the upper half contour of Cl, under the mapping
S=S(s) is as shown in Fig. 2 by the solid line. As the
interaction strength is increased, the image may move
to the dashed line in the same figure. If such is the case,
then in the process of the change a zero of 5(s) moves
through C~ as it emerges from the left-hand cut. Notice
that the phase difference of S(s=O) in the two cases
is 2s.. Since a zero of S(s) corresponds to a logarithmic
branch point of E(s), the contour Cr, of the Cauchy
integral in (2.5) must be distorted to avoid the ad-
vancing singularity of the integrand. If we place the
logarithmic branch cut of E(s) along the image of the
negative real axis of the S plane under the inverse
mapping s=S '(S), the distorted. contour Cr, ' may
appear as shown in Fig. 3 (a); the mapping of the upper
half of CI, into the S plane is then as indicated in Fig.
3(b).

Similar considerations can be made for. zeros coming
out from the right-hand inelastic cut. This occurs
when the coupling to other channels is strong enough
tha, t resonances in those channels induce poles in 5„(s).

Consider the modification needed for the dispersion
relation for E(s) when the left-hand cut is such as to
provide a pair of zeros of 5(s) in the complex s plane.
The Cauchy integral along Cl.' may be separated into
several terms:

E(s')ds'

oz (s' —s) (s' —s1)'"

hE (s')ds'

~ A discussion of the measures to guarantee proper threshold
behavior is deferred until the end of this section.

E(s')ds'
+ (2 9)

"+.—(s' —s) (s' —»)'"
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where the dots symbolize similar terms corresponding
to integration along the lower half of Cl,'. The limits of
integration, o and a', are defined by S(o)=0 a,nd
ImS(o.') =0, ReS(o')(0. The discontinuity AE across
the complex logarithmic cut is just 22ri, since 5(s) is
assumed to have only a simple zero at s=o-. Thus the
first term on the right of (2.9) gives

22ri (o.—Sr)'"—(S—Si)'"
ln —Lo. —& o'j. (2.10)

( — )'" ( — )'"+( — )"'

The logarithm term in the square bracket cancels a
similar term in (2.9) coming from integrations ending
at o' —c and o'+e. Hence the dispersion relation for
E(s) has the form'

ImE(s') ds'(S S )1/2 0

E(s)= f(s)+ „(s'—s) (s' —si) '/'

where

(s—si)' ' lnr/(s')ds'
(2.11)„(s'—s) (s' —si)"'

(o,—si)'/' —(s—sr)'"
f(s) =Q ln

(~ —s )'"+(s—s )'" (2.12)

The summation is over the two zeros of S(s) at complex
conjugate positions 0-,, and should clearly extend to all
the zeros if there are more than one pair of them. In
(2.11) the function ImE (s') inside the integral over the
the left-hand cut is now the continuous function argS(s')
for s' running from —~ to 0 just above the real axis,
and should not contain a discontinuity 2m.i at 0-', which
has been removed by the cancellation mentioned above.
In other words we have, in deriving (2.11), moved the
complex branch cuts of E(s), originally between o.; and
o-', to positions connecting o-; and the threshold s~, as
is evidenced by the logarithm terms in (2.12).

We note that each term in (2.12) has the properties
that the argument of the logarithm has a zero at s=o.;,
but that if 0.; goes across the unitarity cut beginning at
s~, then the argument has a pole at s=o.;. This is, of
course, what is expected as a resonance becomes a
bound state. The companion pole in the pair originally
in the complex conjugate position remains' in the un-
physical sheet and gives rise to the virtual state. Because
of symmetry in reQection across the real axis, these poles
must be on the real axis below s~.

Since f(s) depends only on the positions of the poles
of the 5 function on the two sheets, (2.11) provides a
formula ideally suited for the parametrization of the
phase shift, which is E(s)/2i, s~&si. T'he last integral
can be evaluated, since 2/(s') is determined by experi-

ment, while the integral over the left-hand cut can be
approximated by some poles.

To proceed with the formulation of the iteration
method when S(s) has zeros, we note that (2.8) can
be used to improve the first integrand of (2.11) at
successive stages of the iteration, but we need another
equation to improve also the values of 0.;, lest the
iteration not converge. This equation is supplied by the
dispersion relation for S(s) itself. Since ReS(s) = 1
—2p(s) ImA(s) is a known function for s real and
negative, we apply the Cauchy theorem to S(s)/s'"
and obtain

s'" ' ReS(s') ds'

irr „(s'—s) (s')'/'

s'" " ImS(s')ds'
(2.13)„(s'—s) (s') '"

(s )"2
XII

cr,"—s
(2.13')

on the right-hand side. The pole position and residue
are determined by the zero position and the derivative
there of the inverse function 5 '(s) given by the dis-
persion relation

) 2/2 g .0 s&/2

5 '(s)=Z —
l

— +
/r 0) o,0—s i2r

' ReS '(s')ds'

-- ('—)( ')"'

"ImS '(s')ds'
(2.14)

(s' —s) (s')'

In the second integral ImS(s') is provided by the
output of (2.11) at each stage of the' iteration, so (2.13)
can be used to determine the values of o; where S(s)
vanishes. The numerical procedure involves simply the
determination of the direction, at each point, in which
dlS(s) l/dl sl is greatest and the successive progression
along the path of steepest descent toward the point
where lS(s)l =0. When o, are found, they are then
substituted in (2.12) for the next iteration. Thus Eqs.
(2.11) and (2.12), supplemented by (2.8) and (2.13),
form a closed system of equations from which a unique
solution can be sought, provided that the interaction
is such that there can be no stable particles, elementary
or composite.

To eliminate this last restriction we must have a final
equation to determine the positions of the poles of 5(s).
When there are poles Li.e., when o; in (2.12) moves to
a different branch of (o,—si)'"j, (2.13) must first be
augmented by a term

8 Cf. C. H. Albright and W. D. McGlinn, Nuovo Cimento 25,
193 (1962};T. Ogimoto, Progr. Theoret. Phys. {Kyoto) 27, 396
(1962);A. M. Bincer and B Sakita, Phys. Re. v. 129, 1905 (1963).' P. V. LandshoG, Nuovo Cimento 28, 123 {1963).

where o,o and X;0 are obtained from (2.13) plus (2.13').
For every set of discontinuities along the right- and
left-hand cuts, these two equations are iterated to give
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the best o," and. oP, which are used in (2.12) for the
next iteration of (2.11).

The numerical work involved in this iteration pro-
cedure should not be complicated, since all integrals
are straightforward evaluations. There are no difhculties
regarding the possibility of any arti6cial singularity at
s=s2, and there are no integral equations to be solved.
The stability of the iterated solution can be controlled
by adiabatic variation of the coupling strength.

As a 6nal remark of this section, we note that, for
l)~ 1, (2.7) and (2.11) do not guarantee the threshold
behavior E(s) ee (s—si)'+& as s ~ si. This can be cor-
rected if we consider the dispersion relation for E(s)/
(s—si)'+'*. The only changes that are entailed in (2.7)
and (2.11) are that all the integrands should be multi-
plied by the factor L(s—si)/(s' —si)j' and that f(s)
should be replaced by the function

ds
. (2.15)

(s' —s) (s' —s,) '+&

then we have the, identity

I= 2s-i(ep —e,) . (3 2)

8(si) —8(~)=(e„n,) s,
— (3.4)

where e„ is the total number of stable particles Land
therefore poles of S(s)] and e, is the number of ele-
mentary particles, or equivalently the number of COD
(Castillejo-Dalitz-Dyson) poles. Combining (3.3) and
(3.4), we obtain

Now, since S(s) tends to a constant at infinity, the
contribution to the integral from the integration along
the infinite part of C vanishes. Relating the integration
around the right-hand cut to the phase shift, we thus
have

E(s)
~

o,+4iP(~) —5(si) j=2~i(ep —e„), (3.3)

where the notation
~ oz implies the difference experi-

enced as s is taken along the contour Cl.. If there is no
inelastic contribution to the unitarity cut, the usual
Levinson's theorem states

All other considerations proceed as before without
alteration.

E(s) i
oz= 2si(N p+n„2N, ) . — (3.5)

I= )S'(s)/S(s)]ds, (3.1)

where S'(s) is the first derivative of S(s) and C is the
contour shown in Fig. 4. If eo and m~ are, respectively,
the total number of zeros and poles of S(s) inside C,

III. NUMBER OF COMPOSITE STATES

In the preceding section, we have anticipated the
emergence of a zero of S(s) into the complex plane from
the left-hand cut of the physical sheet, thus changing
the phase of S(s) along Cz. We now derive this result,
which may be regarded as a generalization of Levinson's
theorem"

Consider the integral

Since S(s) is constrained by kinematics to be unity
at s=s~, and is unbounded at s=0, we see that if we
introduce a pole in the gap between s=O and s~, rep-
resenting an elementary particle interacting weakly
with the system, then there must be a zero of S(s) in
the neighborhood of this elementary particle pole. As
the coupling strength is increased, or as the position of
the pole is varied, this zero moves away, either staying
on the real axis in the gap, or moving into the complex
plane together with another zero at the complex con-
jugate position, but it never disappears except through
the boundaries of the Riemann surface. We therefore
have the general formula I+pe„=2m,+n„where e,
is the total number of poles of S(s) and S„(s) corre-
sponding to composite particles (whether or not these
poles are near the physical region to give a particle
interpretation). We thus have

E(s)
~ o,=2sim, . (3 6)

Fzo. 4. Contour C
in the s plane.
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"N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 25, No. 9 (1949};S. C. Frautschi, Regge Poles and S-3fatrix
Theory (W. A. Benjamin, Inc. , New York, 1963);R. L. Warnock,
Phys. Rev. 131,&1320 (1963).

The left-hand side of this equation is just the change in
phase of S(s) as s is taken along the contour Cz. Since
the phase difference may be different if some other path
is followed, adherence to CL, is to be noted explicitly.
This formalizes our earlier surmise that all the "reso-
nance, "virtual, and bound-state poles are fed into the
two-sheeted Riemann surface through the left-hand cut
of the unphysical sheet in the case of no inelasticity.

If there is coupling to other channels through
unitarity, (3.4) must be modified and (3.6) is therefore
not valid in general. However, if the coupled channels
do not contribute to any resonance poles in S(s), as is
assumed in the ~~ problem in the strip approximation, "

' G. F. Chew, Phys. Rev. 129, 2363 (1963); G. F. Chew and
C. E. Jones, ibid 135, 8208 (1964)..
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1 "2dt f' 2t
Al(s) A (s tt)gll 1+

l
(3.7)

tr ti S—Si S—St)

where 2iA, (s,t) is the discontinuity of A (s,t) across its
t cut. Consider the force arising from the exchange of a
single particle of mass m and spin j in the t channel.
Then A, (s,t) has the form

AP(s, t) =X;P,(1+2s/(m' —ti))8(t—m'), (3.8)

where X, is a real constant proportional to the strength
of interaction, and t~ is the elastic threshold of the t
channel. Equation (3.8) is, of course, incorrect in the
asymptotic region of s, where a proper Regge formula
should be used to ensure that Al(s) is damped out
logarithmically. ' For our purpose here we assume that
in the finite part of the left-hand s cut A P(s) is deter-
mined by (3.7) and (3.8), and that some damping factor
is introduced in the asymptotic region to reduce A P(s)
to zero. Thus except in the asymptotic region we have

2X;P;(1+2S/(ms ti)) ( 2m' )—
AP(.)=

' ' '
g, l

1+ l. (3.9)
s—s,)s (S Si)

Now, SP(s) is real along the negative real s axis if
ReA P(s) vanishes; this occurs at the zeros of P;(1+2s/
(ms —ti) ) and of ReQl (z) for —1&z(+ 1, where
z= 1+2m'/(s —si).

'"Note added il proof We have subsequently .generahsed (3.6)
to the many-channel case with two particles in each channel. It
is necessary to consider all sheets connected by all sections of the
unitarity cut. See R. C. Hwa, Lawrence Radiation Laboratory
Report UCRL-11625 (to be published).

"M. Froissart, La Jolla Conference on the Theory of %eak
and Strong Interactions, 1961 (unpublished).

then (3.6) can of course still be used to determine the
total number of composite states. We have not suc-
ceeded in generalizing (3.6) to the case in which inelastic
unitarity is the source of some resonance poles, but in
such a case the wisdom of restricting ones considerations
to the study of a single channel is questionable. "

In the remainder of this section we illustrate how

e, can be estimated from an examination of the Born
term An(s), which gives rise to the left-hand cut. We
have already observed from (3.6) that I, is the number
of times S goes around the origin, where S is the image
of Cr, under the mapping S=S(s). Since S is unity at
s= —~, e, is therefore the number of times S crosses
the negative real axis with negative d(ImS) jds minus
the times it crosses with positive d(ImS)/ds, where s
has the sense of Cr, . In order that S(s) be real along the
negative real s axis, ReA(s) must vanish there. The
contribution to A(s) from the unitarity integral (and
bound-state pole if any) for negative s is always real
and positive; let us postpone for the moment the
discussion of its effects. What remains is just the
"potential" term An(s), which is presumed known.

Ignoring any particles exchanged in the I channel
for the convenience of the present discussion, we have"

In view of the relationship

Ql( z—Wie) = (—1)'+'Qt(zowie) (3.10)

s—sy
L2z li (s) I] '.

1+2S/(ms —ti)
(3.11)

At these values of s, i.e., (st —2m'/0 17)&i. e, the
derivative d(ImS)/ds along Cz, is negative. Thus, if the
interaction is attractive and strong enough that (3.11)
is satisfied, Si (s) for seCt, turns counterclockwise
around the origin twice, so it has two zeros in the cut s
plane, corresponding to one resonance state. We there-
fore see from this kind of consideration that it is possible
to attribute the existence of p in the ~x system to the
force arising from the exchange of p.

If X~ is negative, i.e., a repulsive potential, then one
can show by using (3.9) that SP is real and negative on
Cr, at s=+e, e)0, and at z= 0 83&—ie, . i.e. ,
s= (si —2ms/1. 83)Hie, provided that

L
—2lzp(s) lh '.

1+2s/(m' —ti)
(3.12)

In this case SP(s) has three zeros, one of which must
be on the real axis.

Thus far the considerations are based only on the
potential term without unitarity correction. Let Al(s)
be written as A p (s)+A l (s), where A l (s) is the unitarity
integral

1 "IrnA (s')
Ai(s) =— ds'.

s —s

For s(st, Al(s) is real and positive, and decreases
monotonically as s varies from s& to —~. Thus, the
zeros of ReAl(s) along the left-hand cut occur at the
values of s where ReA P(s) = —Al(s). Clearly if
ReA P(s) oscillates around zero, not around some value
such that two adjacent maximum and minimum
values both have the same sign (a property generally
satisfied by forces due to particles exchanged in crossed
channels), then the monotonic behavior of Al(s) im-
plies that ReA l (s) cannot have more zeros than

for integral 1 and z in the interval L
—1, +1j, we see

that ReQl(z) is symmetric (antisymmetric) if i is odd
(even); in fact, ReQl(z) has I+1 zeros in this interval.
Among all the zeros the ones corresponding to SP(s)
being negative satisfy the requirement ImAP(s+ie)
)1/2p(s+ie) =1/2lp(s) l; this puts a lower bound on

l X; l
if use is made of the property

Imgl(zowie) = W-', s Pi(z), ze(—1, +1).

Take, for example, the case of j=1 and m') t& ——s&,
and consider only the p-wave amplitude. It can be
established that, if P j)0, then the only values of s on
Cl. at which S~ ~~ is real and negative are where
Regt(zowie) =0, i.e., z=+0.83, provided that
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ReAP(s). The unitarity correction to SP(s), as is
calculated by the iteration procedure, therefore does
not introduce any additional zeros into the complex s
plane. It only moves the positions of the zeros of St(s)
away from the original positions associated with
SP(s)=0. Thus, if AP(s) has the property described
above, the number of composite states determined by
a consideration of the Born term alone is the maximum
number possible when the unitarity condition is fully
taken into account. In the cases where ReAP(s) does
have more than one extremum between two adjacent
zeros for s(0, then additional zeros of Si(s) can emerge
from the left-hand cut. However, the upper bound of
e, is still determined by the oscillatory nature of
AP(s). It is taken as understood that the above
statements apply only to the problems in which the
inelastic unitarity does not introduce any resonance
poles.

Although the unitarity correction does not generally
introduce any resonance poles, it can make some zeros
of SP(s) retreat to the left-hand cut. That occurs when

the minimum requirement on the interaction strength,
such as (3.11) or (3.12), is no longer satisfied, as the
value of s, where ReAz(s) =0, is shifted. The odd zero
of Si(s) on the real axis, which we have encountered in
the above example for X&(0, will always remain in the
interval between s=0 and s=s~, so long as the inter-
action strength is nonzero. This is because in those
cases in which an odd zero occurs, Si(+e) is large and
negative; since Si(si)=1, Si(s) must vanish on the
real axis in the interval (O,si) unless it has a pole of
positive residue (a bound state) in the same interval. "
This pole may be regarded as having moved into the
physical sheet from the unphysical one. Whichever
sheet it is on, it is an odd pole unaccompanied by any
other.

Our considerations in this section not only have led
to results of interest in their own right, viz. , Eq. (3.6)
and its usefulness in giving a quick estimate of e, on
the basis of Ap(s), but are also helpful to practical
calculations using the iteration method. It is important
that the iteration program should start oG with the
proper number of poles corresponding to the particular
A P(s) that is used, if it is decided for the sake of com-

puting speed that the interaction is not to be turned on
adiabatically. The resul'ts of this section then indicate
how many are to be found. By inspecting A P(s) along
the left-hand cut and remembering that the unitarity
contribution, A i(s), is always positive there, one knows
before the iteration process is started, whether the
unitarity correction will cause the zeros of Si(s) to move
toward the left-hand cut or away from it. The move-
ment is toward the left-hand cut if d[ImAP(s)j/
d[ReAP(s)$)0 at s where ReAP(s)=0 and ImAP(s)
)0; otherwise, they move away. Such qualitative

"R.Slankenbecler, M. L. Goldberger, S. W. MacDowell, and
S. B. Treiman, Phys. Rev. 123, 692 (1961).

knowledge is useful in giving more stability to the
iteration method.

A (l,s) = h, (l,s)+ (—1)'h, (l,s),
where

(4.1)

1 " 2dt' 2t' i
hi(l, s) =— A, (s,t')Qi 1+ i, (4.2)

g~ s—sj S—Si/

1 " 2dzt' t' 2N' )
h2(&, ~) =— A (~,zt')Qil 1+

~

. (4.3)
zl ~z S—Si S Sil

The j-parity amplitude is then defined in terms of
hi(l, s) and h2(l, s) as

F~(l,s) = (h/s't')[hi(l, s)&hz(l, s)g.

In the following we omit the signature symbol ~ for
the sake of convenience.

Now, the unitarity condition, when generalized to
complex /, has the form"

F (l, s+) F*(l*,s—+) = 2iF (l, s+)F*(l*,s+), (4.5)

where s+ implies s+ie Writ.ing F*(P,s+) as
F*(l*,s*—), we obtain from (4.5)

F@(P @ )
F(l, s+)=

1—2iF*(P, s*—)
(4.6)

Among the infinite number of sheets connected by the
cut between s~ and s2 when / is not an integer, let the
first unphysical sheet be the one reached directly from
the physical sheet by a clockwise continuation around
si. Thus, by definition F„(l,s—) =F(l, s+). Con-
tinuing the right-hand side of (4.6) to the complex s*
plane simultaneously as F„(l, s—) is continued to the
complex s plane, we obtain

(4 7)

It has been shown by Okubo" that the reality of the

'4 E. J. Squires, Nuovo Cimento 25, 242 (1962).
'~ S. Okubo, University of Rochester, NYO-10239 (to be

published).

IV. COMPLEX ANGULAR MOMENTUM

Our interest in the analytic properties of Et(s),
defined as inSi(s), is based on the fact that in the
unphysical sheet the S function is Si '(s), so that a pole
in this sheet results in a singularity of Ei(s). However,
such a relationship between the physical and unphysical
sheets has been shown to be true only for integral values
of /. An invalidation of this relationship for nonintegral
/ would necessitate the search for a new logarithmic
function E(l,s) which can put the physical and the first
unphysical sheets on the same footing explicitly.

For the purpose of continuation in / the partial-wave
amplitude is first expressed in the form
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double spectral functions implies the following reRection
relationship:

function which we should be interested in is

JC(l,s) =lnS(l, s). (4.12)
F*(l*,s*)= —F(l,s) exp( —2sil).

We now define the generalized S function to be

S(l,s) = 1+2sTi (l,s)e

(4.8)

(4.9)

To eliminate the elastic cut for nonintegral /, it is
the dispersion relation for E(l,s)/(s —st)'+& which we
must consider. The remarks at the end of Sec. II are
therefore especially relevant in the use of the iteration
method.

Its continuation to the first unphysical sheet satisfies
the property

S (l, s—) = S(l, s+) .

From (4.7) and (4.8) we thus obtain

S (l s) = (1—e '~")+S '(l s)e '~"

(4.10)

(4.11)

Clearly, when l is an integer, we regain (2.3). When l is
not an integer, the definition of S(l,s) has made possible
the association of a pole in the unphysical sheet with a
zero in S(l,s). It therefore follows that the logarithmic
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A hierarchial scheme of SU(a) symmetries among the strong interactions is proposed with the I—1 ad-
ditive quantum numbers exactly conserved. Simple dynamics as well as mass-splitting considerations are
shown to favor the assignment of the mesons to the 15-dimensional representations and the baryons and
~+ isobars to two inequivalent 20-dimensional representations of SU(4). The predictions of new particles are
discussed.

'HE experimental studies of the boson mass
spectrum in the region 400—1600 MeV' suggest a

structure far too complicated for a simple SU(3) model
to cope with. It seems worthwhile therefore to look for
supersymmetries that would have SU(3) as a subgroup
and that would also have large representations suitable
for containing, e.g. , all the known or suggested vector
mesons. SU(4) suggests itself as the most obvious
candidate for such a supersymmetry. ' In this scheme
it is also easy to formulate a baryon-lepton symmetry'
of the Cabibbo type. 4

In an earlier paper' it was suggested that SU(4)
would be physically relevant only for the vector mesons,
the reason being their property of bootstrapping them-
selves. For other multiplets the breakdown of the

* Permanent address: Physics Department, University of
Helsinki, Helsinki, Finland.

~ M. Roos, Rev. Mod. Phys. N, 314 (1963).
'P. Tarjanne and V. L. Teplitz, Phys. Rev. Letters 11, 447

(1963).' Y. Hara, Phys. Rev. 134, 8701 (1964).
4 N. Cabibbo, Phys. Rev. Letters 10, 531 (1963);12, 62 (1964).

symmetry would be catastrophic and the conservation
of the new additive quantum number Z, supercharge
(also called hyperstrangeness), would lose all meaning.

In this paper we adopt the point of view of an exactly
conserved supercharge. The mesons, both pseudoscalar
(M) and vector (V), belong to the regular (adjoint)
15-dimensional representation f,P; o;;, where-
(i=1 4) is the basic four-component quark field of
SU(4). The baryons (8) are included in ~ and the
—',+ isobars (8*) in some representation of the baryon-
meson system. We characterize the irreducible repre-
sentations by the combination (Xyv) in analogy to the
common SU(3) usage. In Table I we give the dimen-
sionalities

~= (h+ 1)(~+1)(v+1) () +~+2)
X (p+ v+2) (X+p+ v+3)/12

and SU(3)-multiplet contents of some of the repre-
sentations. Notice that there are three inequivalent
20-dimensional representations. The most interesting


