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scribed in Appendix l. Since l can be any non-negative
integer, these crossing matrices correspond precisely
to the "rational" solutions LEq. (12)j for the S-matrix
elements. Note, finally, that this derivation holds for
l=0, even though one channel is a "nonsense" channel,
because the recurrence relations between the Legendre
polynomials may be formally extended to the I=0
case.

Pote added in proof A.fter this article was submitted
for publication, Professor K. Wilson directed our atten-
tion to a paper by J. Rothleitner $J. Rothleitner, Z.
Physik 177, 287 (1964)j in which general solution for
the two-channel static model is obtained by a technique
substantially different from our own. We wish to thank
Professor Wilson for informing us of Rothleitner's
interesting work.
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The energy spectrum of electrons emitted in the beta decay of hyperons is calculated on the basis of the
intermediate-boson theory of Tanikawa and Watanabe. In the bare-nucleon approximation, an appreciable
deviation of the spectrum shape from that calculated on the local limit of the universal Fermi interaction is
expected.

ECENTLY, Marshak et u/. ' proposed a scheme of
the weak interactions in which the weak boson re-

sponsible for the leptonic decay of hyperons is diferent
from that responsible for the p decay of nucleon. On the
other hand, Sato and. one of the authors (SN)' considered
a scheme in which the weak boson of the Tanikawa
type'4 (with the baryon number) is responsible for the
leptonic decay of hyperons, while both the weak boson
of the Yukawa type (without baryon number) and that
of the Tanikawa type take part in the p decay of nucleon.
These two schemes are alike in distinguishing the lep-
tonic decay of hyperons from the P-decay of nucleon by
the difference in the weak-boson channel. We shall show
that the expected energy spectrum of the electron
emitted in the leptonic decay of hyperons should differ
appreciably in these two schemes, which could therefore
be tested by precision measurements.

For the sake of simplicity let us calculate the energy
spectrum of the electrons emitted in the P decay of the
A hyperon when it is mediated by the Tanikawa boson
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by using the lowest-order perturbation. We shall limit
ourselves to the case in which the Hamiltonian for the
interaction among leptons, baryons, and boson leads to
the V&A coupling types

in the local limit.
(i) Spin-0 boson

and py (1&ps)A ey (1&ps)v

Here e and v denote the annihilation operators of
electron and neutrino, respectively. We assume that v

and its charge conjugation v' are described by the four-
component Dirac spinors.

(a) V+A

Hp= t fspX(1&ps)e+gzpp(1~vs)vj&z+H. c. (1a)

(b) V—A

Hp'= Lfgp'p(1&ps)e'+gap'X(1+ps)v'jets, +H.c. (1b)

(ii) Spin-1 boson

(a) V—A

H, =iaaf & syX(1~y )e+g& py (1~ps)vlgq +H.c. (2a)

(b) V+A

H, '=iffy, 'py. (1ays)e'
+g, 'h.~ (1~y,)v'$p '+H.c. (2b)
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1—2X&
C(X)=— dh F'

X 0 2X
&=-'(2 )'~(p.—p.—p.-p.)

Now let us evaluate the matrix element S for the where
decay process h. -+ p+e +v in each case.
(i) Spin-0 case

(a) V+A

M~MM,
M , (3)

&2p~op. op.op, o&

1 1
= ———(1—2X)' ln(1 —2X)

16 X'
1 1———(1—X)(3—6X—2X') (6)

24 X'
M = (fdog~o/2)(M*' M~' —2php—.) '&~(pnb (1+Vh)

X~ (P ) ~.(p.)v-(1~&)~(P.), (3a) f~og~o 1 f~o'g~o'

M=(—fdho'gzo'/2) (M, '—Mih' —2pgp„) 'u„(pd, ) (;.) S
Xv-(1~v ) (P ) .(P.)v-(1+~ ) .(p.) (3b)

(a) V—A
Here pq, p„, p„and p„are the four-momenta of the A,
proton, electron, and neutrino, respectively. 3' and M,
are the masses of the A and electron, respectively. The
term 2pqp, in the propagator (3) will contribute to the
deviation of the electron spectrum from the local limit.
From the matrix element (3) we can easily calculate the
decay rate I'.

(a) V+A

M = fd, gg, (M,' Mg' 2—pgp, )—
M&Mh ~ M~M~

xe,(p.) I
1+

2M, ' k 2M', '

X»(p~)~.(p.b.(1+v~)~,(p.), (»)
(b) V+A

f~o2g~ 2 & 1—2X g

I — '
p2XF, g~ F2 (4a) M= f~d'gdd.

'

(1+p,)s
' Mg' —Mg' —2p~p,

(b) V—A

1+P(1—e)

&do"g~o" ' 1 1+0(1 ~+F)I'= P'XE, de—(2+P) ln
87r' ii p'

xe,(p,) I
1+ I~.~I 1— lv.v

2M, ' k 2M '

X»(p~)& (P )&.(1~»)~ (P ).

Here we neglect the terms of the order of M,/M, . It

&(t+ ~dh~
must he noted that the weight oi the ts and st

L1+p(1 &))I 1+p(1 &+F)]) couplings is given by

where

E „„=(Mg' M')/2Mg, —
E=Ee/Emsx t

X=E /Mg,

P =2M'ihE, /(M, ' Mg'), —
F= 2Xe(1—e)/(1 —2Xe) .

E. (E, ) is the energy (maximum energy) of the elec-
tron. In the above expression, M, is neglected in com-
parison with E,.

In the local limit, the decay rates (4a) and (4b) re-
duce to the well-known result'

I'= (O'E . '/s')C(X),

' R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

( dd add i ( ddsdd)n= 1+ I: 1—
2M2& E

1.6 for M, =1.5 BeV,

1.3 for M, =1.8 BeV.

The decay rate for each case is given as follows.

(a) V—A

A1 gAl
P XEmtex

2z'

1—X
de - ——F ——F

2X

Ct'MdM '1—2Xd M' 1 —
1

+I F' F' — — —, -(10—)(2M, ' 2X 2M, ' 2X (1+Pg) '
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(b) V+A

f~t"g~t"
p'XE . de

27r3 0

1—2Xq
P2

MpM ' 1
+

[1+P(1—e))[1+P(1—,+P)) 2~ ~ P2

1+p(1 —e+F)
X (2+p) ln

1+P(1—e)

pP
(11)

1+ P (1 e+S~'—)1+P(1—e)

PF —1+
1+p

I 1+P(1—))[1+P(1—.+I"))i
3P 1 1+p(1—,+-J )

ln
2~ '&p'

foal gal

v2 M '—Mp2 M '—Mp2
(12)

In Pigs. 1(a) and 1(b) we illustrate the energy spec-

~ 2 FIG. 1. Energy
spectrum of the elec-
tron. (a) V—A case.
V+A case. The solid
line is the local limit
(M, = e) ), the dotted
line is the spin-0
case, and the dashed
line is the spin-1 case.

~ 2 .6

(b)

» the local limit, the decay rate reduces to (g), with
allowance being made for the expression of G:

trum of electrons emitted in A —& p+e +~ by assuming
M, =1.5 BeV.

The spectrum shapes expected from the Tanikawa
boson theory show appreciable deviation compared
to that expected from the theory in the local limit
(3E,= oo ); the point of maximum in the spectrum should
shift towards the higher (lower) energy side for the
cases spin-0 V+A, spin-1 V—A (spin-0 V—A, spin-1
V+A). These tendencies are the outcome of the larger
momentum transfer which is a characteristic feature of
the Tanikawa boson channel. On the other hand, it is
easily inferred that, as long as M~,)1.5 BeV, the
8'i-boson channel in the theory of Marshak et a/. will
lead to essentially the same spectrum shape with the
expected spectrum in the local limit.

In the above calculation, we did not take into account
the possible eRects of the strong interactions on the
matrix elements. We have to deal with as many as six
kinds (four kinds when we neglect the mass of electron
before the mass of baryon) of form factors in the matrix
elements even in the local limit. For the matrix elements
in the nonlocal theory of Tanikawa boson, in which a
lepton pair couples nonlocally, the eRects of the strong
interactions depend essentially on a function of two
variables besides the momentum transfer. At present we
have no clue to estimate the magnitudes of these form
factors. The present calculation should, therefore, be
regarded as an approximation which is valid when the
form factors are negligible before the eRects of the
difference in momentum transfer between the local
theory and the nonlocal theory become appreciable.


