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A dispersion-theoretic treatment of the amplitudes describing photomagnetic disintegration of the deu-
teron at energies very near threshold has been developed. The effects of meson exchange currents in the
photodisintegration or equivalent n-p capture process are calculated. At threshold the photomagnetic
transition is dominant. This transition is essentially the isovector 3Sp ~ Sp transition. A fixed-angle disper-
sion relation for the dipole amplitude describing this transition can be written in terms of the related co-
variant amplitudes. Solutions to the dispersion relation are found using several different approximations.
First, one may neglect all high-order effects which serve to define the unphysical cut, and consider only the
contribution from the Born poles. Next, one may condense all the higher-order effects into a single inter-
action pole. The single experimental cross section value for thermal neutrons may be used to relate the
position and residue of this pole in a single functional relationship by recalculating the solution to the dis-
persion relation with this pole included. Finally one may treat the contribution of the pion exchange currents
using the Mandelstam representation, and recalculate the dispersion relations once again. This latter treat-
ment is based upon the approximation that only the anomalous tip of the spectral function is effective in pro-
viding modifications in the physical region close to threshold. It is shown that the pion exchange terms are the
dominant contributors to the spectral function in the anomalous region. The solution obtained in this approx-
imation yields a cross section which is in agreement with the experimental value.

1. INTRODUCTION In a calculation designed to clarify the role of exchange
currents, we utilize the electromagnetically indicative
properties of the pion current in as simple as possible
a scattering process involving two or more nucleons.

In this eBort we note that magnetic transitions should
be more strongly affected by exchange effects than
electric ones, since average meson velocities are higher
than nucleon velocities and magnetic transitions depend
on current distributions, whereas electric transitions
depend on charge distributions. '

We also rely on experimental evidence and other
corroborative calculations. In this light we suggest that
a study of the photomagnetic n —p capture process
noted above may prove useful. This process or its
inverse —deuteron photodisintegration —seems to in-

volve all the elements and relations we have cited as
useful in the study of exchange currents and the modifi-

cations imposed by nucleon proximities.
We have calculated deuteron photodisintegration, or

the equivalent inverse reaction, n —p capture, by apply-
ing dispersion relations to the process. There have been
several efforts made to provide a covariant description
of the deuteron photodisintegration process. 4 ' We
follow the earlier definitive work of Sakita and Goebel
(henceforth referred to as SG), who established much of
the formalism appropriate to this problem. It is adapted
from the covariant formalism as developed by Mandel-
stam et u/. The theory is relativistic in nature, but has
the advantage that some of the kinematics can be ap-

S TUDY of the electromagnetic structure of ele-
mentary particles has developed useful techniques

applicable in the study of strong interactions. In ex-
amining photon or electron scattering with large mo-
mentum transfers from an otherwise strongly interacting
particle, it should be possible to probe the electromag-
netic structure of this particle, and learn something
about the strong interactions that produce it. '

One may utilize the observed static moments of
nucleons in scattering calculations and thus provide a
partial account of exchange current effects. However,
there is evidence that this partial explanation of ex-
change effects is not even qualitatively good enough.
This could be foreseen if one would conjecture that the
meson current associated with free nucleons is modi6ed
in an important way by the proximity of other nucleons.
Some of these modifications are to be found in observa-
tions of the magnetic moments of two- and three-body
nuclei. The magnetic moments of such nuclei are not
equal to the sum of the static (free) moments of the
constituent nucleons. The magnetic moments of H' and
He' differ from what may be calculated when one
neglects exchange interaction effects, and they exhibit
a symmetry that is suggestive of exchange currents. '
Also, the n pphoto—magnetic capture cross section at
threshold shows a 10'%%uo discrepancy between the experi-
mental and theoretical values.
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The framework allows incorporation of much experi-
mental detail in calculation of the singularity structure
that is difficult to accommodate in a simply related
context in potential theory.

Briefly, the procedure is such that one associates the
external particles involved in the process with local 6elds
in the conventional sense. One then constructs or re-
constructs trilinear interactions describing each vertex.
These interactions are constrained to obey all the known
applicable symmetry requirements and conservation
rules. The resulting vertex functions may be related to
coupling constants or form factors which one knows or
can determine in principle from experiment. One also
requires that all particles, external and internal, be
placed upon the mass shell. Experimental values of
masses, cha, rges spins, vertex functions, and anomalous
moments may thus be incorporated into a perturbation
theory calculation in which the absorptive part of the
amplitude is investigated.

In order to utilize the Mandelstam representation and
accompanying formalism we must treat the deuteron
as an "elementary" particle. We shall later explain our
definition of "elementary" as compared to "composite. "

In our treatment we neglect deuteron recoil. Because
of the deuteron's large rest mass this is not a critical
assumption. In the context of the theory, it involves
approximating a very short branch cut by a pole.

Aside from these approximations the theory admits
of more generality from the outset. The constraints
which are applied to determine the analytic structure
are the generalized Pauli principle, I orentz a,nd gauge
inval iance, invariance under spatial inversion, and
unitarity. One very important result of this structure is
the fact that one can separate and examine individually
the roles of the various interactions and higher-order
corrections such as meson exchange and 6nal state
nucleon rescattering. This possibility is developed from
observations of the explicit influence of the cross
channels in the scattering process. It will be seen that
the exchange current contributions are inherently cross-
channel effects. Indeed, it is just this property which
impels us to imbed photodisintegration at threshold-
an essentially nonrelativistic problem —into a relativistic
framework. We expect mesonic effects to be relativistic.
We hope to capitalize on the essential property of the
Mandelstarn representation which displays the rela-
tivistic character of the cross-channel eRects.

The Details of the Calculation

For completeness„ in Sec. 2, we summarize some of the
results of SG, and provide definitions for the kinematical
quantities a,ppearing in the problem. We a.so discuss the
reaction matrix which is linearly related to the 5 matrix
and is composed of the sum of twelve invariant ampli-
tudes defined by "vectors" spanning the transition spa, ce
of spin and isospin. This space has dimensions defined

by the internal degrees of freedom determined by the

scattering process. In Sec. 3 we display the fixed-angle
dispersion rela, tions for the M1 dipole amplitude in
terms of the relativistic invariant amplitudes.

The dispersion relation for the photomagnetic ampli-
tude may be separated into three distinct terms. These
are an integral over the left-hand (unphysical) cuts, the
Born term, and an integral over the right-hand (physical)
cut. In Sec. 4 we obtain the solution to this dispersion
rela, tion in several approximations.

On the right-hand cut we use an approximate form
of unitarity to relate the real and imaginary parts of the
amplitude. The phase shift in this relation is approxi-
mated using the eRect range formula. The integral
relations that result from this treatment of the right-
hand cut are of the Omnes type.

The solutions are gained by foll.owing this procedure:

First, we exhibit the solution of the integral equation
obtained by neglecting all contributions except those of
the Born terms. This duplicates the results obtained in
SG as well as some older nonrelativistic calculations.

Next, we parametrize the contributions made by all
the left-hand singularities by condensing them into a
6 function. The residue and position of this pole are
fixed in functional form by a comparison with the
experimental data.

Finally, we calculate the contributions made by the
one-pion exchange current and final nucleon rescatter-
ing. These processes exhibit anomalous thresholds which
determine branch cuts whose origins are much closer
to the physical region than any other higher-order
processes. The sum of the contributions from these cuts
is approximated by another 8 function which is com-
pared with the one produced in the second step above.
This direct comparison shows that addition of the ex-
change current contribution essentially eliminates the
discrepancy between the experimental and the calcu-
lated cross sections.

Because the distances to singularities other than the
one-pion exchange cut are quite large, the use of
"polology", that is, the approximation of the cut struc-
ture by the condensation of its eRects into poles, is a
useful approximation in this low-energy application.
Throughout this work we hold that local variation of the
amplitude in the complex plane shouM be largely
attributable to local singularities. Dista, nt singularities

may have a large absolute eRect on the amplitude, but
probably do not produce appreciable relative change in

small regions distant from the singularity. YVe shall see
that the important aspects of the integral representation
are retained despite several nonrelativistic approxima-
tions. In the framework of the constraints we have
outlined, we have used the increased facility in computa-
tion a,ssociated with pole approximations, combined
with the dear indications of cross-channel effects, to
affirm the cause for magnetic anomalies and resolve a
discrepancy between theory and experiment.
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There are several appendices which contain details
supporting arguments in the main body of the paper. Fro. 1. Deuteron photodisintegration

or the inverse process I-p capture.

I y+d ~ p+n: s=(k+d)'=(p+n)'
II d+n~ y+p: t=(k —p)'=(d —n)'

III p+n ~ d+p: u= (k —n)'= (d —p)'.
(2 1)

Energy and momentum conservation require that

(2.2)

Only three of these four momenta may be independent.
The particle masses are introduced by requiring the
four mass-shell constraints

k2 0 p2 —M2 d2 —D2 n2 M2 (2.3)

(We use units A=c=m =1.Scalar products are defined
as p„p& =po' —p'. ) The invariants satisfy the relationship

s+3+u= 2M'+D'= IC . (2.4)

The mass-shell constraint imposes the restriction that
only two of the invariants s, t, or u may be taken as
independent.

The three independent momenta will be taken as
k, q, and Q. Here

2. KINEMATICS

Considering the deuteron as an ordinary spin-one
elementary particle one may treat photodisintegration
or the equivalent inverse process., n pcap—ture, as one
channel of the three scattering processes represented
ln Fig. 1.

Let k, d, p, and n be the four-rnornenta of the photon,
deuteron„proton, and neutron, respectively. We define
the scattering channels and the associated invariants as

From Eqs. (2.6) and (2.8) we find

v= (s D')/—4M, $= (u t)/4—M. (2.10)

We take D=23f—8, where 8 is the deuteron binding
energy. Let D'~4(M' —y'), where y'=MB. Thus

v = (p'+y')/M (2.11)

3. THE DISPERSION RELATIONS

Location of the Physical Region and Singularities

For photodisintegration or n pc—apture, the transi-
tion matrix is defined as

~"(p)~"'(p) =8„' (3.2)

It is convenient to reorder the spinors so that we may
consider the matrix elen1ent taken between them. We
may accomplish this by treating one of the outgoing
nucleons as an incoming antinucleon. The reordered
T matrix may be written as (apart from the 6 function
and constants)

(~ T~ ) e."(p)M.p "(p n; kd)happ iitp "'e„(k)f/(d). (33)

(p;;n ~T~k, e;d, U)
= (2m.)'8'(n+ p —k —d) LM'/(2n. )"2(o2DE„E~]'

Xie (p)ep" (n)M p&"(p, nk, d)e„(k) U„(d), (3.1)

where co and D are the initial photon and deuteron
energies, E„and E„are the energies of the 6nal nucleons,
w "(p) is a spinor satisfying the Dirac equation and is
normalized

Q = (p+n)/2, q= (p —n)/2. (2 5)
Here we have

e=i~,C, (3.4)

Q = (E 0) q = (0 p) (2.6)

The photon and deuteron polarizations are e„and U„.
We impose the Lorentz and gauge conditions

e &=0,
U d=0, U U= —1. (2.7)

In terms of the center-of-mass (c.m.) three-momenta k
and p, and scattering angle 8 defined by k p= kp cos8,
the invariants s, t, and I become

s =4(M2+ p')
t= M' —2kEL1 —(p/E) cos8],
u= M' 2kEL1+(p/E) cos8], —

(2.8)

In the barycentric system we find for equal mass
nucleons

M-p""= Z I-p""(i)&'(~ 5) (3.5)

where C is the charge conjugation Dirac matrix.
Apart from Lorentz covariance, the transition matrix

elements are subject to the restrictions of the generalized
Pauli principle, gauge invariance, and invariance under
space inversion. For a given charge state, the Lorentz
and gauge conditions on the polarizations, the require-
ment that the spinors satisfy the Dirac equation and the
restrictions cited above determine the number of possible
transitions which may occur from a given value of
orbital momentum. There are twelve such transitions in
this problem. Thus there are twelve independent co-
variant forms which describe the transition. Following
SG we write

12

where E= (M'+p')'~'. We construct the scalars

v=k Q/M, $=k.q/M.

Here the IZ; are scalar functions of the variables v and
$. The covariant forms which are listed in Table I in

(2.9) SG are constructed from the independent vectors q&,
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Q", k", and y matrices. Note that Table I in SG is
presented in the form I&"e„U„In. the above, n and P
are isotopic indices.

We may consider the twelve independent covariant
forms of II""as vectors in a particular separable Hilbert
space. As we have seen, the dimensions in this transition
space are determined by the internal degrees of freedom
of the scattering process. It is useful to note that an
orthonormal base for this space may be found. If we
examine the SPAVT character of the covariant forms,
we see that I» is the only pseudovector form. We define
scalar products as

I; I;=4i Tr[I;t I,]. (3.6)

Thus I&~ is orthogonal to all the other forms; since

I» I,=O for all j~0, (3 7)

the transition matrix is linearly related to the scattering
matrix. In our usage, S=1+2iT.We wish to exploit the
unitarity of the 5 matrix and its particular implications
in the photodisintegration process, namely, that the
phase of the production amplitude in a single partial
wave is the same as the scattering phase shift of the
two-nucleon final state.

To apply unitarity it is necessary to relate the rela-
tivistically invariant amplitudes, H;(v, $), to the partial
wave eigenamplitudes. This is accomplished in two
steps. First, reduce the relativistic amplitudes to non-
relativistic amplitudes by writing the matrix elements
in terms of Pauli instead of Dirac spinors. Then establish
the relations connecting the nonrelativistic amplitudes
to the dipole amplitudes by transforming the matrix
element from its linear momentum representation to its
equivalent angular momentum representation. The two
sets of linear equations relating the eigenamplitudes to
the relativistically invariant amplitudes have been
formulated and solved in SG. These solutions are ob-
tained for )=constant, and are simplest for j=0.

An alternative procedure to the SG for establishing
the connections between the H; and the dipole ampli-
tudes has been provided by Bellac et u/. ' They relate the
relativistically invariant amplitudes to the helicity
amplitudes, which are then related to the multipole
amplitudes.

In deuteron photodisintegration, the dominant
process at threshold is the magnetic dipole spin-flip
transition~ 9

'Si+'Di ~ 'Sp+'Ds (3.8)

The D-state contribution is proportional to the square
of the center-of-mass momentum, and thus the transi-
tion to the 'D2 state is negligible in the threshold region.
We may approximate the transition with an 5 wave and

7 J. Blatt and V. Weisskopf, Theoretical Egclear Physics (John
Wiley Bz Sons, Inc. , New York, 1952).

J. S. Levinger, lVNclear Photodisirltegratiorl, (Oxford Library of
Physical Science, Oxford University Press, New York, 1960).

~ H. Bethe and P. Morrison, Elementary nuclear Theory (John
Wiley R Sons, Inc., New York, 1956).

(b) (c)

utilize the result that the transition amplitude is then
independent of angle. This result enables us to write a
fixed-angle dispersion relation for the amplitude. The
correct choice of scattering angle allows simplification
of the calculation.

We set )=0.This implies that k y=0, which in turn
specifies scattering at 90' in the barycentric system. It
will be shown that the physical region for channel I and
the Mandelstam spectral functions are symmetric about
the line )=0 in the (v plane.

The magnetic dipole spin-flip amplitude designated as
Mi('Sp) may be found from Eqs. (2.15) and (2.16) in
SG. We write

1 &v( 2p'
m, ('S,) = —

~

H„+- H„~
16pr L~k 3M'

(3.9)

Here, a& is the photon energy, L~' and p are the nucleon

energy and momentum in the c.m. system. At threshold
in the limit p —+ 0 we have

co

3IIi('Sp) = —PH, sly p.
16m I;

(3.10)

To write meaningful integral relations for the invari-
ant amplitudes, we must assume that the H s are
analytic functions of the variables f and v except for
isolated cuts and poles on the axis defined by &=0. We
also assume that for fixed f

limII, ~O for all j.
y F00

(3.11)

We may then apply the Cauchy theorem to write

" ImH(), v')dv'
(3.12)ReH($, v) = P—

Here, Pj' denotes the principal value of the integral.
The path of integration will be defined when we have
located the relevant singularities. This may be accom-
plished by examining the appropriate low-order graphs
of the photodisintegration process. Some of these are
shown in Figs. 2 and 3.

Mandelstam' has conjectured that all the diagrams
associated with four leg processes like the one shown in
Fig. 1 may be represented as analytic functions with
"S. Mandelstam, Phys. Rev. 112, 1344 l1958l.

(e)

FIG. 2. Feynman diagrams of processes contributing the nearest
singularities to e+p ~7+4 at threshold. Wavy lines are photons,
solid single lines nucleons, solid double lines deuterons, and
dashed lines pions.
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poles corresponding to single-particle propagators and
branch cuts describing multiparticle intermediate states.
The amplitudes represented must be analytic in both
energy and momentum transfer simultaneously.

In order to have all the poles appear explicitly in the
dispersion relation, SG used a dispersion relation in the
energy variable at a 6xed difference of momentum trans-
fer. This dispersion relation is equally valid as a fixed-
momentum-transfer dispersion relation if the Mandel-
stam representation for this process is valid.

To utilize Eq. (3.12) in the context of the Mandelstam
representation, we must locate the branch points and
poles on the axis )=0 and thus define the regions where
ImH exists. There are three such regions. They are the
left-hand or unphysical cut, the Born poles, and the
right-hand or physical cut.

The Physical Region

Fin. 4. (a) Singu-
larity structure of
the P, y plane. (b)
Migration of the
anomalous part of
the left-hand cut.

«(raaaagxxxrrvrxxw—

Qv~
Production
processes

v=0 ~ v=e
Lef hond

singulority
structure

(a)

Movement of the end point
of the integrotion in
ImH os 8 becomes comporoble to M

I

IR
C„ t vlR denotes the

Poth of IA I regulor threshold

integrotion ,
'for t,.ntgM+m)~

In general the physical region for a scattering process
is defined in terms of the s, t, and I variables, so that the
total energy in the center-of-mass system for a particular
channel is greater than some threshold value, and the
scattering angle is real. The details are clear when s, t,
and u are depicted on a two-dimensional plot. The
general prescription for constructing such a plot has
been given by Kibble. "

A summary statement of the requirement for a real
scattering angle may be put in the form of a homo-
geneous inequality in s, t, and I:

(b)

We may write Eq. (3.13) in terms of $ and s as

4M'(' —f(s) (0, (3.15)
where

f(s) = 4s' ', sK+ K'—(~—+b a) (K'b—/s) .—(3.16)

The energy inequalities are determined from the lowest-
mass intermediate states appearing in channel I. These
states are shown in Figs. 2(d)—(f). The lowest threshold
is associated with the diagram in Fig. 2(d). In this
instance

stu) (s+t+ u) '(as+ bt+ cu),

where a, b, and c are de6ned in the relations

(3.13) S&4M' or v& 8.
From Eq. (3.15) we find

(3.17)

K'a = (23P D')cV'—
E'b =3II'D4,

E'c= M'D4,

K=s+t+u= 2M'+D' fasymp )&/4~ ~ (3.19)

I&I &Lf()/2~3'" (3.18)

As s becomes large, the leading term in f(s) of 0(s')
(3 14) dominates, and we find

h)p

P, R

(o)

Pro. 3. Peynman dia-
grams of processes contri-
buting the nearest singu-
larities of the left-hand cut.

(c)

gA, P

+t'7r-'o
I

(e)

' 'L W. B. Kibble, Phys. Rev. 117, 1159 (1960).

R, p

(b)

A„g"'

Higher mass intermediate states, such as those accom-
panying production of additional particles, induce addi-
tional singularity structure at higher values of the
energy variable. Some of this structure is indicated in
Fig. 4(a). The boundaries of the physical region may be
calculated using Eq. (3.16) and are shown in Fig. 7.

The cuts for the processes shown in Figs. 2(e) and 2(f)
begin far to the right of thrshold and occur at a value of
s= (m+2'')' or v= 145 MeV. Here we have taken m as
the pion mass. This is almost 75 times the distance to
the Born poles and 6ve times the distance to the singu-
larities in the left-hand cut. Consistent with the hy-
pothesis that in any local region of the P, y plane only
the nearest singularities aGect variation, we neglect the
cuts from higher mass processes.

The limits of integration over the right-hand cut are
8(p& ~. To set the limits on the left-hand cuts we
must examine the thresholds of the diagrams represent-
ing the crossed t and I cuts. These are shown in Fig. 3.
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I

z
e Fic. 5. The rescat-

tering diagrams.

Figure 3(a) denotes the next lowest-mass intermediate
states in channel II. This graph may be expanded into
the vertex graphs seen in Figs. 3(b)—3(d) and the
Landau diagrams seen in Figs. 3(e) and 3(f). These
diagrams represent the left-hand singularity structure
whose branch points are closest to the physical region.
Figures 3(b) and 3(c) represent exchange and nucleon
current contributions to the nucleon electromagnetic
vertex. Figure 3(d) represents the deuteron structure
due to the long-range part of the n-p potential, and
indicates some of the properties of the d-np vertex.
These three diagrams may not be considered regular
I.andau diagrams because the intermediate states indi-
cated by 1 and 2 cannot both be the mass shell. "As
shown, these are vertex diagrams and do not depend on
s. The combination of diagrams indicated by Fig. 3(e)
represents the structure of the final n-p state due to the
long-range one-pion part of the n-p potential. We will
refer to the two diagrams pictured in Fig. 3(e) as the
rescattering diagrams. These diagrams are shown in
more detail in Figs. 5(a) and 5(b). Figures 6(a) and 6(b)
are the diagrams indicated by Fig. 3(f). These diagrams
represent a part of the deuteron's structure due to
mesonic exchange curren I;s.

sr~ ———4y(y+ 2nz) . (3.21)

This point should not be confused with the regular
threshold in s which is s)4M'. In terms of the variable
v this becomes

z, g = —nz(zn+2y)/M . (3.22)

This is the left-hand branch point nearest to the physical
region. The notation is meant to indicate the single pion

"J.L. Morrison (private communication).
"V.Alfaro and C. Rossetti, Nuovo Cimento 18, 783 (1960).' R. Karplus, C. M. Sommer6eld, and E. H. Wichmann, Phys.

Rev. 111, 1187 (1958).

The Left-Hand. Cuts. Anomalous Thresholds

The small size of the deuteron's binding energy com-
pared to its rest mass produces anomalies in the
thresholds in Landau diagrams in which the d np vertex-
is a factor.

The threshold values of s, t, and I for the diagrams
in Figs. 3(e) and 3(f) have been calculated by Alfaro
and Rosetti" using the construction developed by
Karplus et ul."They find that an anomalous threshold
occurs for

t= N&M'+2nz'+4nzy (3.20)

To find the branch point of the left-hand cuts on the
axis /=0, we use the invariant sum cited in Eq. (2.'4).
The value of s corresponding to the values of t and u
given in Eq. (3.20) is

exchanged and the anomaly. A qualitative representa-
tion of the cut z -plane is given in Fig. 4(a). The contribu-
tions of Figs. 3(b)—3(d) to the discontinuity structure of
the left-hand cuts will be discussed at a later stage of
this paper.

Anomalous thresholds appear in a dispersion-theoreti-
cal formalism when, because of certain mass ratios of
participating particles, a cut migrates from the second
sheet to the first, or when it becomes necessary to con-
tinue' an amplitude from the first sheet to the second.
The former view is more meaningful in our calculation.

One can actually follow the end point of the integra-
tion in ImII as it moves subject to a variation in the
masses. Since this end point is a branch point in ImH,
the path of the line integral in Eq. (3.12) must be de-
formed to avoid it. Stated another way, we may deform
the line integral's path at will as long as we cross no
branch points in the integrand ImB. Starting at a point
where the deuteron binding energy is enough to give a
"regular" threshold (albeit on the second sheet), we
deform the path in such a way so that, when we decrease
binding and the branch point moves, it will not cross
the path of integration.

ith either technique we produce the path shown in
Fig. 4(b). The dotted line is the path of the branch point
starting from its anomalous position and receding back
to the second sheet as binding is increased.

If we neglect the cuts associated with higher-order
processes, we see that the line integral over the left-hand
cuts on the line ]=0 is defined for —~ & r (i i~.

As an example of the formahsm and to establish a
scale for comparing the locations of the bra, nch points
associated with higher mass intermediate states, we
calculate the threshold of a process in which a particle
more massive than the pion is exchanged. A simple
choice for the mass of this fictitious particle might be
just double the pion mass. Inclusion of this mass value
in the fourth-order exchange or rescattering diagrams
LFigs. 3(e) and 3(f)] leads to the anomalous threshold
values

t = zz& M'+Snz'+gznq (3.23)

The point on the axis /=0 defined by this threshold is
designated as v2g and is shown in I'ig. 7. Reference to
this double pion mass singularity will show that branch
points corresponding to exchange of anything as massive
as, for example, a p meson are very far from the secton
of the physical region being studied.

Fzo. 6. The exchange
diagrams.

The Born Poles

We have described the singularity structure asso-
ciated with the multiparticle intermediate states. The



DEUTERON PHOTO 0 IS I N TEGRATI ON. D IS PE RS ION THEORY 8 $499

FrG. 7. Spectral functions and the
physical region of channel I.
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remainder of this structure —the single-particle inter-
mediate states or Born poles —must now be discussed.
These are represented by the diagrams shown in Figs.
2(a)—2(c). The poles associated with these diagrams
have the forms p,/s D', p, /t 3—f', and p„—/u M' —The.
quantities p, , p&, and p„which are the residues of these
poles may be calculated explicitly. '""' In SG it is
shown that the residue of the pole in s, derived from the
intermediate deuteron state LFig. 2(a) j, is proportional
to Lpv+p„—(D/2')p~j. Here, pv, p„, and pd are the
nucleon and deuteron magnetic moments. The deuteron
intermediate state requires a spin t;riplet, isoscalar final
state. The poles in t and u associated with the inter-
mediate nucleon states LFigs. 2(b) and 2(c)j have
residues corresponding to both spin triplet isoscalar and
to spin singlet isovector states. The isovector residues
are proportional to (pv —p„).

We neglect the D-wave amplitudes, since they are
proportional to p' and are negligible at threshold. ""
Comparing the factors of proportionality, we see that
the isovector ('Sp) Born term is approximately a factor
of 500 larger than the isoscalar ('S~) term. These poles
are the closest singularities to the threshold of the physi-
cal region. This proximity makes them the dominant

~s L. Dnrand III, Phys. Rev. 123, 1393 (1961).
' R. Slankenbecler, M. L. Goldberger, and F. R. Halpern,

Nucl. Phys. 12, 629 (1959); M. L. Goldberger, Y. Nambu, and
R. Oehme, Ann. Phys. 2, 226 (1959);R. Blankenbecler and L. F.
Cook, Phys. Rev. 119, 1745 (1960).

"This point should not be construed as neglect of the per-
centage D-state of the deuteron. Although the D-wave transitions
are negligible, there is a reduction of the initial 'SI wave function
when the 'DI state is included in the description of the deuteron
(Ref. 18). The deuteron description used in this calculation is
obtained by matching the ratio of the asymptotic D and S wave
functions to the deuteron quadrapole moment (Ref. 19).

"H. P. Noyes (private communication).

factors in determining the amplitudes in this region.
This fact strengthens our earlier statement about the
dominance of the M~('Sp) amplitude.

Incorporating the details of the cuts and poles, the
integral in Eq. (3.12) may be written in terms of the $,
v variables as

ReH(v) =—P
"» ImH(v')dv' p, p„

+ +
v' —v v+$ v —$

1 "ImH(v') dv'

+ I'—(3.24)

(3.25)

since at threshold we may disregard the dependence
of L~' on v. For convenience we represent the M&('Sp)
amplitude as A.

The proportionality of A to v requires that one modify
the Cauchy integral formula to construct dispersion
relations for A, or else that one write a dispersion rela-
tion for 8 where A = I 0,.

If A (v) is analytic at the point v =0, then we may apply
the Cauchy formula to the function LA(v) —A(0) j/v.
The dispersion relation takes the form

v ImA (v') dv'
Red (v) = Red (0)+—P . (3.26)

7I P P P

The Disyersion Relation for the
W ('&p) Amplitude

Following SG, we may transform the integral equa-
tion in Eq. (3.24) to our relating the real and imaginary
parts of the M~('Sp) amplitude.

From Eq. (2.11) we see v~&p. We may rewrite Eq.
(3.10) to read

M g('Sp) = (v/16mM)Hgs,
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We may identify ReA(0) with the residues of the Born
poles taken at )=v =Of' '

where

and

sx(y/M)I'=
(1+26-') (1—r,y)

(3.28)

6= (1/&2) tan&
~
v~, ~~(1—r,y) Qy'. (3.29)

Here ri is the triplet effective range, Q is the deuteron
quadrapole moment, and tane is the Blatt and Bieden-
harn" parametrization of the ratio of the asymptotic
scattering wave functions 'D to '5. We shall neglect
terms in ReA(0) which are proportional to 5 and to
p'. Let

(3.30)b=e(v, „p,„)r.—

ImA (v) = ReA (v) tan5(v) . (3.31)

The contribution to the dispersion relation from the
singularities associated with the opening of the higher
mass channels should be negligible in the threshold
region. We use the relation stated in Eq. (3.31) every-
where on the right-hand cut. Using Eqs. (3.30) and
(3.31) we may rewrite Eq. (3.26) as

v "» IrnA (v')dv'
ReA(v) =b+

v'(v' —v)

v
"ReA (v') tanb(v')dv'

(3.32)
P P —

V

There is one additional argument we wish to introduce
to form the dispersion relation. By unitarity the phase
of the 3fi('So) amplitude from the onset of the physical
cut to the point where higher mass channels are opened
is the phase shift of the 'So e-p scattering state. In the
region 8&v&140 MeV we may state

Finally we calculate Imd in the region of the anoma-
lous part of the left-hand cuts. We find that ImA which
is essentially LA(v+ie) —A(v —ie)j—that is, the jump
across the cut—is much larger in the region of the
anomalous threshoM than at more distant locations on
the cut. Therefore, we fit the portion of the left-hand
integral, whose limits are determined by the anomalous
part of the cut, to another pole. The parameters of this
pole are found to agree very nearly with their analogs
associated with the "phenomenological" ploe mentioned
above. This agreement indicates that inclusion of some
of the left-hand singularity structure does yield a cross
section in closer agreement with experiment.

co b( I)d
D(v) =exp'

7I g P P —P
(4.1)

which is normalized to unity at the Born pole is real
on the negative axis, cut along the positive axis for
B(v'( ~ where it has the phase —8(v').

Define the numerator function 1V(v) as

The Born Amplitude

The solution of equations like Eq. (3.32) without the
left-hand integral has been developed by Omnes. o A
statement of this method may be found in Appendix A.
We shall provide an alternative treatment for the Born
amplitude which is somewhat simpler and illustrates
some of the analytic properties of the amplitude in the
cut energy plane.

First, we suppose that the whole amplitude is de-
scribed by the '50 partial wave behavior, and is thus
subject to a partial wave treatment. In this instance the
E/D method can be very useful. Following Omnes, "
define the denominator function D(v) as

The solutions of this equation for several approxima- or
tions are provided in Sec. 4.

lV(v) = D(v)A (v)

A (v) =1V(v)/D(v) .

(4.2)

(43)

4. SOLUTION OF THE DISPERSION RELATION

We shall provide separate solutions to Eq. (3.32)
using three approximations. The 6rst and most simple
solution results from solving the equation neglecting the
left-hand cuts. This procedure yields the Born ampli-
tude. This amplitude yields a cross section some 5~~
lower than the experimental cross section obtained for
thermal neutron capture.

In the next step we condense the left-hand singu-
larities into a single pole. The dispersion relation is
solved using this pole as additional input. The residue
and position of this additional pole are adjusted so that
the resulting cross section agrees with the experimental
value.

~9 L. Biedenharn and J. 31att, Phys. Rev. 93, 1387 {1954}.

or
N(v) =E(0)=A(0)

D(v)A(v) =D(0)A(0)
A(v) = LD(0)/D(v)7A(0) =bkD(0)/D(v)3 (4.4)

'0 R. Omnes, Nuovo Cimento 8, 316 (1958).
2' B.Sosco, Xuovo Cimento 26, 342 {1962).

From Eq. (4.3) one sees that iV(v) has the same left-hand.
cut properties as A(v) but no right-hand cut.

Note that the magnetic dipole matrix element has the
property that at &=0 then A~&= constant, since all 3f1
matrix elements contain a factor v and only the Born
term has a denominator which vanishes at &=0. With
this as a guide, we observe that if we neglect the left-
hand cuts and. suppose the pole terms determine E(v),
we may write for behavior near threshold"
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TABLE I. Effective range parameters (HS, Ref. 22).

Triplet

ag =5.39&0.03 F
r~ ——1.704&0.028 F
n+&0
o. (0

Singlet

a,—23.74&0.09 F
r, 2.67&0.028 F
o,+&0
a &0

This same result may be obtained using arguments
provided by MacDowelP' for a more general case.

We may exploit the approximate form of unitarity
we have stated to obtain an analytic form for D(v), and
thus obtain an explicit solution for Eq. (4.4). We have
identified the phase on the physical cut as that of the
'So phase of the 6nal nucleon system. We shall utilize
the effective range approximation to provide an analytic
form for the phase shift. This approximation should be
very accurate at threshold.

The "rescattering" amplitude for S waves may be
written as

A s ——e'so sinbs/P = (P cot5s —iP)-', (4 5)

and for S waves the effective range approximation has
the form

p cotta ———1/u+ ,'rp'+- (4.6)

As ——(-', rp' ip 1/a) '. — — (4.7)

Observe that the amplitude As and 1/D have the same
phase but not the same left-hand singularity structure.
If we neglect all left-hand singularities except the Born
poles, we may set 4 = 1/D. One sees that the quadratic
form of the denominator in Eq. (4.7) will yield two poles
in the amplitude in the complex p plane, or one pole on
one of the two sheets in the complex ps plane. Observe

In the above, p is the c.m. momentum, 8s is the phase
shift, a is the scattering length, and r is the pertinent
(singlet or triplet) range. Using (4.5), the amplitude
can be written

1 2 p+in+)

D(p) r p+in 1

It can be shown that substitution of

8 =cot—'[—1/up+' ,rpj-
(4.10)

(4.11)

into Eq. (4.1) yields a D(v) equivalent to that in Eq.
(4.10).

We may now evaluate Eq. (4.4) as

(4 12)

Note p=iy at v=0.
If we write A (p) in the form

Noyes'4 has given another set of values for the effective
range parameters which are supposedly more consistent
for ts-p scattering. They are calculated from the existing
rs-p scattering data below 20 MeV. These are cited in
Table II.The second error quoted for r, is a conservative
estimate of the uncertainty due to departures from the
shape-independent approximation.

From the values of n+ listed in Table I, we see that
in the triplet case the pole is on the physical sheet of the
p' plane. This is the deuteron pole corresponding to the
bound state. For the singlet case, the pole is on the un-

physical sheet near the onset of the physical branch cut.
This corresponds to the deuteron virtual singlet state.
Eden" has given a more detailed argument about the
effective range poles in the content of the X/D formalism.

To complete the transition from effective range ampli-
tude to denominator function, we manipulate the poles
in the following way. Since 1/D has the same phase as
A but not the same left-hand singularities, for each pole
of A on the real energy sheet we replace the singularity
but do not change the phase. For instance, if A has a
pole at p=ia, replace 1/(p ia) —by (p+ia), thus re-
moving the singularity but keeping the phase the same. "
Use this procedure and see that

A=2[r(p —in+)(p —in )j ', (4.8) A(p) =e"&"'A(0)A(p) (4.13)

where

n~ = [(1 2r—/a) '"—a1j. (4.9)

we may manipulate the expression in Eq. (4.12), resue
the effective range formula, and find

Table I lists the relevant triplet and singlet data from
Hulthen and Sugawara" (henceforth referred to as HS)
and the location of the poles in the p' plane.

TABLE II. Effective range parameters (Noyes, Ref. 23).

—sin8(p)
— (p'+y') a

1—ya ——,'rap'+
~p — (V+n+)

2(1—2r/a)'"-—2hp (4.14)

a]——5.396+0.011 F;
rg ——1.726+0.014 F;

a, = —23.678&0.028 F;
r, =2.51%0.11&0.0435 F

A(p) =
—sinb(p)

— (p'+y') a-
1 ya ', rap'+- ——

~p — (V+n+)—

"S.W. MacDowell, Phys. Rev. Letters 6, 385 (1961).
~ L. Hulthdn and M. Sugawara, in HarIdbuch der Ihysik, edited

by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 129.

'4 H. P. Noyes, Phys. Rev. 130, 2025 (1963).
"R.J. Eden, Brarldeis Summer Lectures irl, Theoretical Physics

(W. A. Benjamin Company, New York, 1962).
"B.Sakita and C. Goebel (unpublished).
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We have chosen p=+iy for consistency on the physical
sheet. A solution identical to Eq. (4.14) is obtained by
using the analytic form of the effective range phase
shift in the integral equation.

Calculation of the Born Capture Gross Section

The total cross section for photomagnetic disintegra-
tion of the deuteron at threshold may be calculated
using the amplitude as stated above; and following
Eqs. (4.10) and (2.13) in SG we find

2s- 1 tre' py
I

—( v ~-)' ~'(p) (4 15)
3 Ms (47r (1—r,y)(P'+y')

We have neglected terms proportional to the D state.
In the zero-range approximation where r& and r,

approach zero, Eq. (4.15) reduces to

2~ 1 (e' py (1—ya, )'
I

—( .—~.)' (4.16)
p'+~'1+(pa. )'

The expression shows agreement with the standard
result as derived, for instance, by Blatt and Weisskopf. ~

To 6nd the cross section for the inverse process of
photodisintegration, namely, rs pcapture, on-e utilizes
the principle of detailed balance. Then

~
t

e'y (q (p'+q')
I

—
I( v

—~-)'I —— ~'(p) (417)
M'(4s. J kM (1—rgb)(pM)

The "Born" capture cross section is the one computed
using the form of A(p) given in Eq. (4.14). The other
constants used are

M=938 MeV=4. 754 F ', e'/47r=1/137,

y=45.68 MeV=0. 2315 F ', (ii„—p„)=4.706, (4.18)

a „„(experimental) =0.3315+0.0017 barns. 'r»
The singlet and triplet ranges r, and r& have been cited
in Tables I and II. In the above, we have taken
p=1.743X10' cm ', since for thermal neutrons the
c.m. velocity is 1100 m/sec. The kinetic energy of
nucleons associated with this value is much less than
any other energetic quantity used. Thus the thermal
cross section accurately describes threshold behavior.

Using a calculation of the thermal ri-p capture cross
section by Austern and Rost,"Noyes notes that use
of the smaller value of the singlet range given in Table II
in this cross section makes the discrepancy between the
computed and observed value nearly disappear. This is
not quite accurate.

27R. W. Stooksbury and M. F. Crouch, Phys. Rev. 114, 1561
(&959).' In a private communication, Noyes has mentioned a measure-
ment of this cross section by S. Wychank. The value reported is
0.=0.3342&0.0005 barns. This value increases the discrepancy
between theory and experiment. We have based the remainder of
our work on the value for the cross section stated in Kq. (4.18),
since Wychank's result is unpublished.

ss N. Anstern and E. Rost, Phys. Rev. 117, 1506 l1959}.

Austern and Rost describe the capture process in
terms of a "reduced", nonmesonic matrix element.
They write

1—ya, r,+r,
OR= — —— (in fermis, F),

4—pa,
(4.19)

BR@„„——4.18. (4.22)

The larger errors in the values for the effective ranges
given by Noyes will not allow the conclusion that use
of these phase parameters will eliminate the discrepancy
between calculation and experiment. In the remainder
of the calculation we shall use the HS parameters. The
algebra will be complete enough so that anyone who
wishes to check the results by injecting Noyes' param-
eters may do so.

Substituting the values in Eq. (4.18) into Eq. (4.17),
we find the Born capture cross section is

O.i3„=0.323 barns. (4.23)

Parametrization of the Remaining
Left-Hand Structure

We shall show that the remainder of the left-hand
singularity structure can be electively condensed into a
pole with an appropriately chosen location and residue.
For both v and v, &v~g, let

ImA = —zRbI v —(v,)$. (4.24)

This approximation of the imaginary part of the ampli-
tude yields a bounded integrand for the principal part
of the left-hand integral. The dispersion relation becomes

v "A(v') tanb( )dv'v
+d(p) +- —.. . (4.25)

7l

A(v) =b-
~v+vc

where
R=e(p„Is )I'R=bR, —

d(p) = 1—26(1+p'/y') .

(4.26)

(4.27)

The details of the solution of Eq. (4.25) are given in
Appendix A. In the following let

8 BM BM
——r

v+v ps+ p 2+2~2 ps+) s
(4.28)

Upon changing to momentum variables, Eq. (4.25)

OR =5.1056—1.0935=4.0121 (using &IS),
OR=5. 1077—1.0590=4.0487 (4.20)

(using Noyes),

ORn„= 5.1056—0.9799=4.1258 (using HS),
ORs.,„——5.1077—0.9359=4.1718 (4.21)

(using Noyes) .

The experimental value is
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becomes

~(P) =b[r(p)+d(p)]

(q) q
4.29

(q'+v')(q' P' —se)—

p'+y' " A( ) tanb d '

A(p) =e"&»b[r(p)+d(p)] cosb(p)+e'&v' '&"&

Ps+ps
Xcosb(~ )2A(1+p'/y')+ [D(p)]—'P

From Appendix A one sees that the solution takes the
form

-~c Me V

-SO -70 "60 "50 -40 -30 -20 -lO
I I I I I I I I

-O. I

- -0.2
- -0.3
--o.e
- -o.s
- -0.6
- -0.7
a«0

-«0$
-- I.O

Here

" [r(q)+d(q)] sinb(q)D(q)dqs
X

(q'+v') (q' —p')

R Mev

(4.30) Fio. 8. Placement and residue of the pole to approximate the
left-hand cut. The point indicated represents the pole properties
calculated from the fourth-order exchange contribution.

D(p) = e—~(vl (4.31)

D(p) = exp
dq'b(q)—

o q'(q' —P')-
(4.32)

The integrand in Eq. (4.30) is the sum of two parts-
the Born part and that part coming from the new pole.
%'e already have the part of the amplitude generated

by the Born term. This was the amplitude given in

Eq. (4.14).We refer to this amplitude as As(p). We can
thus rewrite Eq. (4.30) as

where D(p) is the Omnes denominator function of
Eq. (4.1) written in p'

Q'e shall use the experimental value of the cross section
to see what A„,i„.must be. Then we shall obtain a func-
tion of residue 8 versus position v, . This approach is the
only one available because there is only one energy for
which a value of the capture cross section has been ob-
tained experimentally. It would be extremely useful if
the cross section could be evaluated at another energy
energy close to threshold. If this were the case, then the
first pole's residue and position couM be evaluated inde-

pendently. In this instance use of the pole as a standard
for comparison would be more meaningful. Until such
experiments are performed we must rely on the single
cross section datum.

%e write the reduced matriy element as
A (p) =- e"~v'bus(p)+r(p)

ps+ n» ~s ps+ps+—
(~s ~ s) ps+~ 2 f 2 ~ sps+~ 2

We find
~ (p) =~s(p)+~ "i=(p) .

Ass ——27.55 (using HS) .

(4.37)

(4.38)

C (y2—n+2) From Eq. (4.33)
+— (4.33)

(p 2+~2)(ps+) 2) p '&+~2

To evaluate cosb(p), we used the Levinson theorem"'
Ap, i,=

BM 28M p'+n ' '" p'+y'

ps+(s r(~s ~ s) ps+~ s )s ~ s

b(0) —b(~ )=em, (4.34)

where m is the number of bound states created by
the potential in the particular angular momentum state.
We have made assumptions that require b(~)=0.
Hence, b(0) =0. This is verified if one notes that the
deuteron singlet state is virtually bound. Thus b(0) =0,
cosh(0) =cos5(p) = i.

%e write the experimental cross section as

l,(y'- —a+')
X

ps+~ 2 (p 2+~2)(P2+$ 2) p s+p2
(439)

A v.i.———JtlMa(v. ) . (4.40)

Using Eq. (4.40) and. letting p' —& 0, we write

From Eq. (4.28) we see that Mv, =P.'+y', /. '=Mv„+y'.
Define

Here
o,.v ——c[A ...(p)]'. .

c= 1.172 F' 3 '= 28.3i. .

(4.35) a(v.)=

(4.36)

~N. Levinson, Kgl.. Danske Videnskab. Selskab, Mat. Fys.
Medd. 25, 9 (1949).

1 7'
+K

v.+8 v,+L/M

L/M
(4.41)

v.(Mv, +ps)'" v,
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P,n

FIG. 9. The Feynman diagrams representing exchange correc-
tions. We have here indicated exchange of 6nal nucleons and the
accompanying exchange of both charged mesons. For graphical
simplicity we have uncrossed the photon and nucleon lines as
they appeared in Figs. 7(a) and 7(b).

where

(4.42)

From our de6nition

o'= JcAp —28M'tt(o )A p+Pc APE (o )] (4 43)

Ap —(o. o/c]'"
R=

Mtt(o. )
(4 44)

where the negative sign is chosen for the radical since
the difference between (o,„o/c)'t' and Ap is required.
The consequence of this choice is that 8&0.

Figure 8 is a plot of 8 versus v, as calculated from.

Eq. (4.44) and the above. We have used both the HS
and Noyes parameters in calculating B(o,). In this
calculation note that the Noyes pole is always weaker
than the corresponding HS pole at the same location.
One sees that it is the smaller value of the Noyes singlet
range that induces this result.

Figure 8 exhibits the relation between the residue and
the placement of the pole, which, when inserted into the
calculation, improves agreement between the values of
the calculated and experimental cross sections.

This phenomenological pole may be used to test the
effects on the amplitude imposed by the higher order
corrections.

To effect this comparison the additional contributions
are cast in pole form. The departure from precision in
this approximation is not great if we confine our efforts
to short cuts which are quite distant from the region
under investigation.

The parameters of the newly calculated pole are
compared to their analogs associated with the phe-
nomenological pole. If, at a given placement, the residues

of the poles are widely different, we can see that injec-
tion of the new pole into the integral equation for the
amplitude will not produce a result that leads to a cross
section which will agree with the experimental value.

In the next section we will calculate those contribu-
tions to the amplitude which are produced by the foruth-
order (in perturbation theory) meson exchange and final

state rescattering processes [Figs. 3(e) and 3(f)]. We
shall also examine the effects derived from contributions
to the deuteron structure due to the long-range part of
the tt-p potential LFig. 3(d)J.

A More Exact Treatment of the Left-Hand
Cut Structure

The pertinent Feynman amplitudes for photodisinte-
gration have been described rather generally. Q'e now
wish to amplify some of these statements and examine
in detail the fourth-order (box) diagrams which repre-
sent the exchange and rescattering corrections.

The exchange diagram is treated first, since it proves
to be the more important in our region of interest. The
methods used to treat exchange are then applied with
minor changes to the rescattering correction.

The various external and internal four-momenta of
the exchange diagram are labeled in Fig. 9.

First note that the character of the exchange diagrams
is purely isovector. This is a consequence of the presence
of the yew vertex. "%e have already noted that only
the isovector contribution of the rescattering diagrams
will enter.

The analytic properties of Feynman amplitudes have
been studied in detail and the criteria for location of
various singularities have been established. "Vfe shall
continue along lines suggested by Cutkosky" and
Mandelstam'4 to find the discontinuity across the
fourth-order exchange and rescattering cut beginning at
the anomalous branch points. The singularities of the
discontinuity functions may then be found and related
to the appropriate spectral functions.

Heretofore, spectral functions have been computed
using their topological properties and the mass ratios
of member particles. Most workers have treated all
particles as scalar in character. In this approach one
utilizes the relations between the invariants (s, t, and tt),
the masses of the incoming and outgoing particles, and
the mass shell properties of the internal propagators.
Much can be learned from this alone. Ke have exhibited
threshold placement cut structure, and the relative
inhuence of the several higher-order corrections using
the limits indicated by the "scalar" theory outlined
above. If, however, we wish to obtain quantitative
results, we must reconsider particle properties and
account for spinor, pseudoscalar, etc., as well as kine-
matical factors.

This presents an additional difficulty. In the scalar
case we sought to hnd the Lorentz invariants which de-
scribed the scattering process and were free of kine-
matical singularities. %hen all spins are accounted for,
we still hope to 6nd invariant amplitudes with the same
dynamical singularity structure exhibited in the scalar
case. A procedure for generating these invariants, free
of kinematical singularities, has been proposed by
Hearn" for all processes except those involving one

"W. R. I7razer, Electromagnetic Strttctlre of the pioms and
37Ncleons, Scottish Universities Summer School 1960, edited by
G. R. Screaton (Interscience Publishers, Inc. , New York, 1961).' L. D. Landau, Nucl. Phys. 13, 181 (1959).

3' R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
~ S. Mandelstam, Phys. Rev. 115, 1742 (1959).
3' A. C. Hearn, Nuovo Cimento 21, 333 (1961).
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F4 5(e+p ———k —d)
(2m) "2(u2DE„E„

8G'eM

d4&V

(4.45)
'(t"— ")

S=@(p)s„(l,s+l,~)qs(ts+ M)

6
&& FU+ (ls U)—ys(t4+—M)w~(e)

M

photon. We have found that in these one-photon proc-
esses the use of gauge invariance to construct the in-
variants invariably leads to the injection of kinematical
singularities in some of them. Yet, these selfsame gauge
requirements can be used to calculate the residues of the
injected singularities. One may then follow a subtraction
procedure enunciated by Ball" to remove these effects."
O'Donnell" has shown that the covariant forms pro-
vided by SG are superior to those provided by
Donnachie' since the former do not contain "unneces-
sary" singularities. In any case we note that there are
no kinematical singularities generated in the construc-
tion of I~2I'".

The complete I'eynman amplitude is obtained by
summing the contributions from both exchange dia-
grams implied by Fig. 9. Using Schweber's" rubric for
displaying the various factors, we find

8G'eM
F4——R()

(2~)4 g, (/;s —m;s)

- 1/2

(4.50)

R()——(2s.)'b(m+ p —k —d)
(2s-)"2a)2DE~E„

. (4.51)

We have seen that each T-matrix element may be
represented as a 12-fold sum of Lorentz covariants
multiplied by the invariant amplitudes. The quantity 1V

de6ned in Eq. (4.46) contains this summed structure
intrinsically. Cutkosky has shown that the integral in
Eq. (4.50) gives the discontinuity function from which
the Mandelstam spectral functions are obtained. The
discontinuities of this function occur when all the
(4s—m, s) vanish. " '4 These properties, derived from the
common denominator, are juxtaposed onto all the in-
variants appearing in the amplitude. We must therefore
find a way to discriminate in X and select those elements
of the polynomial which correspond to the amplitude
for which we are writing dispersion relations. Recall
that this is the amplitude associated with the invariant
l~2 for the photomagneI;ic disintegration process at
threshold. Using Eqs. (3.6) and (3.7), we may find the
amplitude by evaluating the quantity

be retained in calculations where the energy is above
threshold but not necessarily in the relativistic region. "

Let us separate the common factors of the R matrix
from the rest and write

;(/p —mp) C=Iis cV/~Eis~' (452)

—(l 2 ~2)() 2 ~2)(t 2 ~2)(t 2 ~2) (4 46) on the mass shell. The details of this procedure are
provided in Appendix B.We find that

The quantities P and G are defined as C= —2m'3EF(X+6) . (4.53)

8s-(y/M) -i 1/2

-(1+»')(1—r v)-

F=3(M'/y') AI'.

(4.47)

(4.48)

The details of the d ep vertex -used above are provided

by Durand" and Blankenbecler" and elaborated by SG.
In this vertex we have assumed we couM replace the
outgoing nucleons with the mass sheH nucleon propa-
gators, and that the proper normalization could be
provided. Thus one finds that the d ep vertex p-art of
the fourth-order diagram contributes a factor

(1/(2s-) '2D]'"L—yp2MF+ls, G]U". (4.49)

We have neglected the "relativistic" invariants in the
d-mp vertex description. This is a reasonable approxima-
tion at the threshold energies we are considering. How-
ever, there are indications that these invariants should

3' J. Ball, Phys. Rev. 124, 2014 (1961).
'7 J. Morrison (private communication)."P. O'Donnell (private communication).
3~ S. Schweber, Ae Introdlctiori to Relativistic E''ield Theory

{Row, Peterson, and Company, Elmsford, New York, 1961).

We shall henceforth neglect h.
We have operated on a vector sum in the integrand

and projected out the coeScient of a particular vector
in which we are interested. Examination of Eq. (4.53)
indicates that this expression involves no kinematical
factors when evaluated on the mass shell, and thus Inay
be taken outside the integral.

If one constructs the second-order Born amplitudes
using the d-mp vertex as cited above and employs the
same projection technique, the residues which are ob-
tained agree with those obtained by SG.

To relate the amplitude given in Eq. (4.50) to the one
for which v~e write dispersion relations, we inject the
factor (16'-)—' consistent with Eq. (3.25). The amplitude
now takes the form

d4/'e~'m'I'
34= —Rg)—

(2s.)4s- g(l, s—m,')
(4.54)

The discontinuity in this function which occurs when all
the factors (E;s—m;s) vanish may be computed by taking

4s F. Gross, Phys. Rev. 134, B405 (1964).
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the difference when each mass has a small positive, then
a small negative, imaginary part. This is equivalent to
replacing t l,2—m, 2) by imb(l, 2—m,'), The discontinuity
of the discontinuity function is written as

so that
J=2'Ldetl„ l (4.61)

We delete the common R-matrix factors and write the
spectral function in the form

E G'eM'm'F
A4=- d 418(lP—m') —e62~2m2 f

LJ 'j~ =-, -. (4.62)

)& b(lg' —m-') b(l3' —M') b(t4' —M') . (4.55)
We shall obtain the mass shell values for t„l" by evalu
ating the quantities

(l„&l,)'= X',

2l„l"=X'%(l„'+l„').

(4.63)
so that

(4.56)d4/8(lg' —m') (4.64)

In the scalar case, the Mandelstam spectral function is,
apart from a factor of 4, given by

Mandelstam's result can be obtained using Cutkosky's
transformation

d4~ ~ dl 2dl22dl 2dl, 2 (4.57)

The Jacobian of this transformation is

When l'„and l„meet at a common vertex, X' is the square
of the external particle mass entering that vertex. When
l„and l, are not adjacent, then )2 will be one of the
scalar invariants s, 3, or u.

Since the cross term in the quadratic in Eq. (4.64)
contains a factor of 2, it is convenient to calculateJ= det(8l, '/8l„) = 2' detl;„.

The integral in Eq. (4.56) becomes

(4 5g)
detl„l"= 2—' det(2l l") (4.65)

[detl;„j'= detl„ l„

The value for this is resolved explicitly by using the
relation

(4.60)

The topologv represented in Fig. 9 and the masses
of the particles involved are put into the determinant
indicated above. Note that Fig. 9 represents both ampli-
tudes depicted in Figs. 6(a) and 6(b). The determinant
has the form

3f2'

4 2'—Ddet.~= (2
—') M,+

m2

m2

M'+m' —u
2m2

2m2

2M' —O' M2+m' t-
2M2 m2

m2 2m2

M'+m' —u 2m'

(4.66)

where the subscript "ex" means "exchange. " Hence-
forth, the pion mass will be taken equal to one, but in
some cases we will retain powers of m to denote units.
All other energies are to be considered in pion units.
After suitable change of variables and manipulations in
the determinant, one finds

where

and

det„(t,u) = (m'/16)B (t,u),

B.„(t,u) —+ B (y,z)

(4.67)

(y &) = L(y+z —ys)' —48ys —4M'(y'+s') 7. (4.68)

In the above we have used

y= t M', s= u —M' 8= 2.—M' D'. (4.69)—
Insertion of (4.67) into Eq. (4.62) yields

p«= —(eI'G't64~)(M'/m')/B. .(t u)$ '". (4.70)

Calculation of the rescattering spectral functions may
be completed using a similar procedure. Write the
fourth-order amplitudes corresponding to the processes
depicted in Figs. 5(a) and 5(b). Use the equivalent

projection technique to isolate that part of the ampli-
tude associated with I». The only differences that arise
are due to the inclusion of the nucleon electromagnetic
vertex and the fact that both neutral and charged pions
are exchanged.

The integration over four-momenta is transformed in
the same way, and the determinants are found to be

det„(s,v) = (m'/16) B„(s,n), (4.71)

Here
x=s D' b.=x—(1—v)8+m,

a„=x+2M'v, c.=2x+v.

The spectral functions are

(4.73)

p. ..= —(u.—u.)( I' '/ 4~)(M'/m')
y I B„(sp)$-'", (4.74)

where v=] or u.

where v = t or u, and the subscript "rs"means "rescatter-
ing. "Note that for t —+ u det„(s,t) —+ det„(s,u). Now

B„(xp))=v(b. 8—2M'a„) —xL2M'c„+ b„(~—1)j
for e=y or s. (4.72)
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D-' =4M' —4y', (4.75)

whereas the exact relation is

D2 —4~2 4~2+ Il2 (4.76)

If one recalculates the zero of the spectral function and
the anomalous threshold using the exact relation Eq.
(4.76), one finds that the two points do not coincide.
The threshold occurs closer to the physical region. If
this were not the case—if the zero of the spectral func-
tion "preceded" the anomalous threshold —it would
indicate that the singularity function is complex. In this
instance the spectral function has a cusp, i.e., a dis-
continuity in the slope of the Landau curve. When this
condition holds, the Mandelstam representation is
invalid.

Several differences are observed in a comparison of
the exchange and rescattering spectral functions. One
sees that p, , , and p, , contain a factor (p~ —p„) which

p&, „does not. Also, the rescattering diagrams with an
internal structure'of three nucleons and a pion generate
spectral functions with a factor (M'm)/m'. The ex-
change diagrams with an internal structure of two
nucleons and two pions produce spectral functions with
a factor (M2m2)/m4.

Perhaps the simplest physical argument for this
difference is prompted by consideration of the relative
momenta of. mesons and nucleons involved in the photo-
disintegration process. The magnitudes of the quantities
HEI'm' and 3Pm should be taken as indicative of the
qualitative behavior of the propagator-derived deeomi-
nofor in the amplitude. The mesons should reQect their
lighter mass properties in the accornpnaying momentum
space description of the amplitude. The above behavior
confirms an earlier hypothesis about the exchange
current effects in photomagnetic amplitudes.

We may now locate the region in which the spectral
functions do not vanish. These regions are defined by
setting the quadratic forms 8 equal to zero.

Observe that p&,„ is symmetric about the line y=2'
(L=N), and that p, & and p, „are niirrored about the
same line. Secondly, one may see that for increasing
values of the magnitude of s, the boundaries of all the
spectral functions are asymptotic to lines in $ and I
which correspond to the regular threshold, i.e., for
t=u=(M+1)2.

We solve the biquadratic forms for one invariant in
terms of the other to learn the details of the boundary.
We And that p& „has a zero on the 3=u line at
3=3II2+2+4y. We also find that p, & and p, „are tan-
gential to this line. If we recall the results of the calcula-
tion of the anomalous threshold in t and I, we note a
discrepancy. It appears that the zero of the spectral
function and the anomalous threshold coincide on the
line t= N. However, we must remark that the zero of the
spectral function was calculated using the deuteron
mass as

All three spectral functions are tangential to the lines
t=u, =3I2+2+4y. As we let 3 and I increase, we find
that the spectral functions' boundaries are asymptotic
to those values for t and I defined by the regular thresh-
old, i.e, , i= I= (M+1)'.

The boundaries of the fourth-order spectral functions
for exchange and rescattering are shown in Fig. 7
together with other features of the scattering process,
which we have discussed previously. In addition we have
pictured the results of a similar calculation to find
spectral functions for processes with intermediate states
featuring exchange particles of double the pion mass.
This device serves to show details of the scale we have
chosen and to emphasize that section of the left-hand
cut which is closest to the physical region and upon
which the one-pion processes alone are important. We
shall henceforth confine our interest to this portion of
the cut, which is the section between the one-pion
anomalous and regular thresholds.

The remaining contribution to the left-hand cut which
we wish to treat is that due to the deuteron vertex
properties depicted in Fig. 3(d). This graph is the means

by which the nonasymptotic shape of the deuteron wave
function is introduced nonrelativistically. One might
treat such contributions in a consistent way by using the
correct form factors in the description of the Born
amplitudes depicted in Figs. 2(b) and 2(c).

However, we may estimate the contribution of these
properties in a way compatible with the treatment of the
exchange and rescattering corrections. The procedure is
as follows: Write the Feynman amplitudes for the proc-
esses indicated by Fig. 3(d). Vtilize the projection tech-
nique and the mass shell properties of the vertices to
isolate the part of the amplitude associated with Ii..
Calculate the discontinuity function of the third-order
vertex using external rnomenta as d&, p&, or 22&, and t or
N. This function is

2 2~(D2+ilII2)+ (D2 ~2)2)—1 2

for v=3 or N. (4.77)

For t=N, , the factor projected out of the amplitude is

LbG2 (M'/m2))/642r.
Our approximation will be to treat the amplitudes

with the expanded deuteron vertex on the mass shell„

but multiplied by a discontinuity function which

partially accounts for the inhuence of the intermediate
nucleon off the mass shell and the expanded vertex. Let

pi = (pz —p„)(eFG2/642r) (iM 2/m2) LB2(~))
for r=t=N. (4.78)

We shall use this as an approximation to a single spectral
function to calculate the contribution of the expanded
deuteron vertex to the imaginary part of the amplitude
on the region of interest in the left-hand cut.

We may now use the spectral functions to derive the
imaginary part of the amplitude on the left-hand cut.
This will be used to modify the input of the integral
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equation derived from the photomagnetic dispersion
relation. The new contributions to the input will be
denoted by A, ) 2„,and Az. It is the imaginary parts
of these that enter the dispersion relation. As before,
we shall treat the exchange contribution in considerable
detail and draw upon the method to describe the corre-
sponding properties of the rescattering and vertex
contributions.

Within the framework of the Mandelstam representa-
tion, we write

1
ImA, „(s)= Im—

pt'u'Q$ dg
(4.79)

(t' —t —ip) (u' —u —ip)

~tu ~Ptu ~~tu~ex (4.80)

The limits of integration in Eq. (4.79) are defined by
the boundaries of the spectral functions. We denote
them as t+ and I+.

We see that ImA - is a function of s (or v) because we

integrate along lines of constant t and I which specify
the limits and define the location on the cut across which
we calculate the discontinuity. Since s+t+u =constant,
a choice of t and I specifies the value of s for which
ImA, is calculated (See Fig. 10). In terms of t and u
we may write

where we have scaled the amplitude by removing
the factor E=~c(ttv —tt„)1' in order to achieve a result
consistent with Eqs. (4.13), (4.24), and (4.26). Using
pt„as defined in Eq. (4.62), we wsite

1—= I'——vixen(x' —x) .
x' —(xW ip) x' —x

(4.87)

We transform the variables using Eq. (4.69) and setting

y —
yp

——P, and s—sp
——Z.

Vje set yp
——sp= constant= D' —s= —2&v fixed.

Thus)

(4.88)

2~tu
Im, A, (s)=

Z[ci+cpZ+cpZ']'"

2~tu 2ci+cpZ

where

sinh ' — — for ci)0, (4.89)
jr Z[4cicp —cp']'"

ci ——16IP[(1+II)'—4y"-]

cp
———8H[(1+H) (1+2H) —4y']

cp
——[(1+2H) '—4M'],

(4.90)

H=Mv=(s —D')/4. (4.91)

Since the principal part of the sinh ' may be repre-
sented as

sinh —'A =ln[(1+A')'"+A], (4.92)

where we have expanded the complex denominators in

Eq. (4.79) using the relation

B~(t u) = [t+u —2M' —(t+M')(u+M')]'
—40(t—M') (u —M')
—4M'[(t —M')'+ (u —M')']. (4.81)

we find

where

2r„, -(T '+1)'"+T:
Im.4, = ln-

xci (T+'+1)'"+T+
(4.93)

Observe the symInetries T~= [2ci+cpZ~][(Z~')(4cicp —c2')] '". (4.94)

B, (t,u)=B. (u, t) Evaluating (T +1)'tP we can show

B (tg,ug)=0, (4.84)

t~ u~ ——M'+2+——ky (pion units) . (4.85)

Using Eqs. (4.80), (4.82), and (4.83) in Eq. (4.79),
we find

2f tu
ImA, (s) =

u (s, t0)+
(4.86)

t. , to& (u —uo)[B.-]'"

t+(s up) =uy(s tp) t (s up) =u (s, tp) . (4.83)

To find the limits explicitly, set B,.(t,up) =0 and solve
for t+(up). Similarly, one may set B, (t,,u) =0 and solve
for uy(tp) Another im.portant feature of the spectral
function is that

4ci +4cicpZy+cp Zy +Zy (4cicp cP)
=4ci[ci+cpZg+cpZg']. (4.95)

But Z~ are roots of the quadratic form in Eq. (4.95);
so we find that the argument of the radical is zero.
More simply then,

2rt«Z+ 2cl+ c2Z—
ImA, (s) =- ln

m'ci Z 2ci+ cpZ~
(4.96)

In the argument of the logarithm in Eq. (4.93), reduce
the common factors, and multiply the numerator and
denominator by c3. The rseult is

where

2rt«Z+ (1+H)'-—4y'(1+2H)' —4M'+Z (1+H)(1+2H)—4y'
ImA, (H)= ln

oreg Z 1+H '—4y' 1 2H '—435' Z+ 1 H 1 2H —4y'

(40—1—2II)&2M [4H'+ 48H+ 48M'y 24]'" [(1+2H) ' —4M']-
Z+ = —2H

[(1+2H) '—4M']

(4.97)

(4.98)
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and
Z~(cg/4EE) Zg . (4.99)

From this form of the argument of the logarithm, one
can clearly see that the exchange contribution to the
imaginary part of the amplitude vanishes at the
anomalous and regular thresholds.

We now account for the rescattering contributions to
the discontinuity function in this region. We begin by
stating

ImA„= Im-
7r2

Ps't'ds'dt'

(s' —s) (t' —t)

Again,

(4.100)
(s' —s) (t' —t)

p, g Ep, g
—E—r, ([B——„(s,t)] '". (4.101) FIG. 10. Integration in the anomalous tip.

From Eq. (4.74) we note that p, , ~ p, ,„, if t —+ u, i.e.,
the rescattering or cross channel spectral functions have
the same functional form in t and N. They are symmetric
about the line de6ned by the condition t= N. The limits
of integration are determined in the same way as in the
exchange calculation. One may note a qualitative differ-
ence in the exchange and rescattering contributions. The
ordering of the analogous limits, that is, those denoted
by "+"or "—", is reversed. The result is that the ex-
change and rescattering contributions are of opposite
sign and tend to cancel.

Having established this qualitative difference, let us
now find the magnitude of the rescattering contribution.
As before

has been discussed. The differences in form result be-
cause the "constant term" in the quadratic form in the
integrand of Eq. (4.103) is (0. In Eq. (4.104) we
have used

dy(H) = 16H'd (EE) = 16H'[4H'+4Ei(HM' 2p')—
+1—4y'(HM' —2y') ],

d2(H) = 8Hd~(H) =8HL4H'+2H(2+M' —2y') (4 105)

+ (1—2M' —2y') ]
d3(H) = (1+2H) '—43P) =C (EE) Lsee Eq. (5.89)],
and

M V= 2M'LH'+ 2+ (1—4y')]'t'. (4.106)

pe'td8' pgt'dt'—+P
(s' —s) (t' —t)

IrnA„= —P

pa'udge'

+P — +P
(s —s)

pau'dtt'

(I'—n)
(4.107)ImA„—10 ' ImA, „.

Note that the integrals in which s is constant will
vanish in the region of interest, since here s&0 and the
denominators LB„.(s= const. , t' or I')]'~' do not vanish.
Then, due to the t, I symmetry,

In similar fashion we define

1
ImA y ——Im— (4.108)

Examination of the argument of the logarithm in Eq.
(4.104) shows that ImA „also vanishes at the anomalous
and regular thresholds. We may now neglect ImA„ in
Fig. 10 because calculation demonstrates that in the

(4.102) region H &Mv~~

2
ImA„= —.—rstP where

p.=Pp. =Pr.LB3(~)] '" (4.109)

ImA„(H) =—

We have taken the variable e as representative of both
t and u, and indicative of the fact that p, represents
contributions from both diagrams implied by Fig. 3(d).
We utilized the equality of t and I to produce the
similarity in the electromagnetic factors appearing in
Eq. (4.74). This is not possible if tAu.

We 6nd

ds

(s' s) $8„(s', t =e= const)]—'"
(4.103)

2r, g 1 d2+MV)
!

—ln
m d~ d2 —MV)

(dqdq d2'+d~M V)—
x!

~dhda —dp —d2M Ul

(4.110)ImA„(e) =r„PB3(v)] '".
(4.104)

For those values of v=t=e for which H&Mv~g, we
6nd that

The difference in sign between Eqs. (4.104) and (4.93) ImA, 10 ' ImA„, (4.111)



MALCOLM H. SKOLN I CK

and thus the contribution from the expanded deuteron
vertex may be neglected in this region.

Comparison of the magnitudes in Eq. (4.107) allows
us to set

ImA ~,
.
p =ImA, . (4.112)

It is possible to treat this approximation of the integral
of I~h, exactly using Spence functions. " However, we
have indicated that because the one-pion exchange
section of the cut is fairly short, we can approximate the
above modification of the input function of the integra
equation derived from I»„. by a 8 function. To fit the

in the "anomalous tip. "
For the integral over the left-hand cut we now take

1 "~ ImA (v')dv' 1 "'" ImA (v')—=In.(v) =— (4.113)
v —v m ~ra v —v

residue and position of the pole yielding this 6 function,
we set

I .()=R/(+")
I,„.'(v) = R!—(v+v )' (4.114)

Here, 3 is the residue and v„ the location of the pole.
Consistent with this approximation, we calculate

Iih, (v) and Iu„'(v) for v=constant. The value of this
constant is physically significant inasmuch as it serves
to locate the interaction pole and should coincide with
the region where the exchange current is important. We
choose v =8 to locate the pole at threshold. This energy
is within a few keV of the energy corresponding to
thermal neutron capture. It can be shown that variation
of v over an interval as large as 1 MeV around threshold
will have virtually no effect on the ultimate location
of the pole.

Equa, tion (4.113) takes the form

I(~)=
P+VP

2r,„'"»dv' in[(Z+/Z )(2ci+c2Z )/(2ci+c~Z+)) R

&RI (v v)4MP $(1+M )v4p $
(4.115)

Taking the derivative indicated in Eq. (4.14) produces

2rfg i+ dv' in[(Z+/Z )(2c,+c~Z )/(2c, +c2Z+)] R—I(v) =I'(v) =—
dv ir' ~ (v' —v)'L(1+Mv')' —4y']'"4Mv' (v+v )'

{4.116)

2~tu =0.556.
7r' 32vr'(pv —p )

(4.119)

Here we have taken G'=16vrM'f' when f' is the re-
normalized coupling constant. We find 6'=180. Thus

R= (v+v„)I= —0.68 MeV. (4.120)

This point is shown in Fig. 9. It is seen from a com-
parison of the residues of the exchange pole and the
correction pole at the energy fixed in Eq. (4.113), that
the exchange pole, when substituted into the integral

4' K. Mitchell, Phil. Mag. 40, 351 (1949).

The integrals are scaled using Eq. (4.91) and calculated
numerically. The results of the integration are

I=(2r /~')(2. 533&&10 ')
(4.117)I'=(2r /~')(7. 134)&10 ')~n '

In the above, all energetic quantities are in pion units.
The first result we wish to exploit is that the position

of the pole is fixed by the ratio of I and I'. We see

v„=—t I/I')+v j=—0.371 (pion units) = —50.5 MeV.

(4.118)

Next, note g has the same sign as v„. This indicates an
enhancement of the amplitude and an increase in the
cross section.

Using Eq. (4.80) to define ri„, we find

equation, will indeed resolve the existing discrepancy
between the Born cross section and the experimental
value. Furthermore, the arguments we have presented
lead us to state that the exchange contribution is the
only correction required in the threshold region. The
rescattering is too small to affect the threshold values
and we have utilized the effective range approximation
for the 'So phase shift. The usage insures a description
of the over-all rescattering effects.

Conclusions

The development has shown that the inclusion of
higher-order corrections associated with the meson ex-
change current improves the agreement between the
experimental and theoretical values of the photodis-
integration cross section near threshold.

The deuteron's unique parity, spin, and isospin rela-
tions are antecedents of the particular momentum de-
pendence of the M1 and E1 amplitudes. The pre-
dominance of the 3II1 amplitude at threshold, coupled
with the proximity of the exchange singularities and
magnitude of the corrections attributable to them, is
vital to the result. This proximity was found to be the
result of the very small binding energy of the deuteron,
which promotes an anomalous threshold. This correction
was found by calculating the difference in the exchange
discontinuity function across the cut only in the anoma-
lous tip region of the exchange spectral function. We
also found the contributions from the rescattering and
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d-ep vertex. These were negligible compared to the
exchange contributions.

The cross channel structure of the Mandelstam repre-
sentation which leads to the construction of the ex-
change spectral function, from which the information
about the imaginary part of the amplitude in the un-
physical region was derived, provides a format for the
calculation of the relativistic meson exchange effects in
an otherwise nonrelativistic problem.

We stated that the general 7-matrix element, a 12-fold
sum of Lorentz covariants, must be gauge and spatially
invariant and must obey the generalized Pauli prinicple.
Since we have treated the twelve Lorentz covariants as
independent, we have required that each individual
invariant obey the spatial, gauge, and Pauli restrictions.

Our efforts were confined to a claculation of the ampli-
tude very close to the physical threshold. We saw that
in this region 'D~ amplitude could be neglected. This
approximation provides a great simplification in the
form of the dispersion relation. A similar simplification
was made when we showed the '5~ amplitude must be
much smaller than the '50.

To obtain solutions to the integral equation, we as-
sumed that the amplitude and the 6nal n-p phase shift
were bounded at large energies as one proceeded in any
radial direction in the complex p' plane. In this light it
might seem inconsistent to use the effective range
approximation for the phase shift, since it does not have
the high-energy boundedness properties. However, the
subtracted form of the dispersion relation features a
denominator that seems to provide rapid enough growth
to compensate for the more slowly increasing approxi-
mation to the phase shift. In further calculations we

might suggest that one use an analytic approximation
to one of the experimental phase-shift solutions, for
instance, the YLAM solution of Breit et al.4'

Finally, we comment about our use of the d-N p vertex
function in the composition of the fourth-order ampli-
tude. We have relied heavily on mass shell restrictions
to convert the outgoing nucleons defined in this vertex
to intermediate propagators. Thus, with a suitable
change of normalization, the deuteron form factors may
be utilized as vertex functions. We noted that this usage
seemed reasonable, since it is really just an extension
of the method used to compose the Born amplitudes.
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APPENDIX A. THE SOLUTION OF THE
INTEGRAL EQUATIONS

We wish to solve an integral equation of the form

R x+y' "tanh(x')A (x')dx'
A(x) = —+n+Px+——,(A1)

x+xy o (x'+y')(x' —x)

where x„,R, n, P, and y."are real, and both y' and x„)0.
Proper boundary conditions are A(~) =constant, 6(~ )
= constant, and 8(0) =0. Let

Now

0(s)=(&/ s+ .s)+ o+0 s+~( )s,

0 (s) =f (s)+&(s)/D(s) .

lim y(x+ie) =A(x),

(A2)

(A3)

(A4)

so that

Here,
y(x+i e) = LI(x+ is)+F(x+is) $8x.

0(x) = 1 if 0(x; 8(x)=0 if x&0.

(A5)

Rewrite Eq. (AS) as

g(x+i e) = I(x+ie)+ $)V(x+ie)/D(x+i e)) (A6).

and see

s+7'
D(s) = exp ———

ds'b(s')

o (s'+V')(s' —s)
(A7)

x+y +'lc
D(x+ie) = exp ——

b(s') ds'
X — . (AS)

( +sy') (s' saic)—

We expand Eq. (AS) using Eq. (4.87) and write

x+7'
D(xaie) = exp—

x'+7'

De6ne the real, analytic Omnes function (the denomi-
nator function) as

The author would like to thank Professor Philip
Morrison for introducing him to the subject, and to
acknowledge stimulating discussions with J.L. Morrison
and Professor W. Bertozzi and his experimental group.
The author would also like to thank Professor H. P.
Noyes for several useful communications, Professor P.
T. Demos for the hospitality extended by him at the
laboratory of Nuclear Science at MIT, and Professor

G. Breit, M. H. Hull, Jr., K. E. Lassila, and K. D. Pyatt, Jr.,
Phys. Rev. 120, 2227 (j.960).

Now

x+y'

1
X ai~b(x' x)+P

~

dx' —. (A9)
x' —xi

dx'~(x')P-——= r(x) . (A10)
(x'+y') (x'—x)
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»nd (A10) o"' ~nd'F„m Eqs. (

,(g)~ 5(x)jD(grip) ="1'L

rompts u writejs resul

(A2), we hav

I e .-(~'&I(x')sin6 x e
dx

(*'+v')

(~) gg(x)( +,,) ~ I(x)+e'(A11)

(A18)
~(x—ip)e1l&'(x+i«

D(D(x+ip)

from which we see

a,n
x—z~

+e e"

(*)
~

e
—~&~'&I(x')x 7 zx2 is' sin~(g )

(*+&')
- .inde-'I(") dg

cV(x+ic)—iV(x —ip

—r(zi &+pgy=2i sin e (A13) (A19)

t Ã(—y') =0.It must

functiont' across a cut f, for exa

is

iV+ X=f(s)—,

X(s) =
f(s')ds'

e
'

d for our subtrac
'

ction aswhich may be ge
'

oreneralize or

e terms and simp i y'lif ing yieldsCombining the terms(A14)

. —"&'&I(x) cosh(x)A(x) =e'

s&nbe
—"I(x')dx

x'- 7' x' —x

Ix+7'
+e~(~) p

tan8(x') A (x')

(x'+y') (x'—x)
Ap(x) =

. Tot still be matche .nditions must sti
tion of the

Th
dd lthis end we note a

s e uationhomogeneous q(A15)
x+y'

p

Thus

f(s')ds'

( '+v')( '—f)27ri S
(A16)

u g method outlinecf.using the met oh solution
h "d ' t

h instance since
the

'
ht-hg s n

must be duplicated. s e

1
1V(s) =—(s+y')

7r

r(z')sin8(s')e "&
1Vp(s) s+y'

Dp(s)

tan 8A (s')ds

s' ' s' —s

R
X n+Ps'+— ds'. (A17)

'lA'e now show

lim Xp(x+ie) —cVp x—ip =0. (A22)

Inano v'b ious notations), namely Eq.ori inal definition of g s,Now from the origina e

V —lVo ——Fo+ oo-= Do -~o Do~ o+
—

o—=

"I"p e"Iip]-=e 'e "o+—'

" tan&(x')dg'-x+7' " a
=e 'e " itanb(x)Ap(x)+ P

g+7'—e" i tan8Ap—(x)+ P
" tan5A(x')dx'—

p (x'+y')(x' —x)

x+7'
x —2z sing — P=e ' 2icos5 tan6Ap(x) —i ' — P

tan 53 (x')dx'—

p (x'+y') (x'—x)
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But

Thus

'+7'
A p(x) = I'

tanhA (x')dx'

(x'+y') (x'—x) 1
I»———~„k~~'~'e~U ——

2M
tp ppek p e U (B2)2'

'The invariant involved in the dispersion relation for
the M1 singlet amplitude has the form

sV(s) P(s+y')
4'( )=I( )+ +

D(s) D(s)
(A23)

cVp~ —A p = e '2iAp(sinh —sinh) =0. Q.E.D.

9'e may state that /0 is a whole analytic function in the.-plane except where singularities may occur at zero
or infinity.

The most general solution is given by

This can be rewritten in a more useful form if one em-

polys the identity

7&py~u&7 re&vn gv&vn+gvu7 g&evs'

For a discussion of the tensor operators, g„„, 0-„„, and
e„„„,see Schweber. "Applying (B3) we find

1——~pe„„p.k&y'e&U"=eUk —(e U)k —(k U)e, (B4)2'
where I'(s) is a polynomial to be determined. The solu-
tion can be put into the form

+'Y
A(x) =e" I(x) cos8+e — I'

so that
1

I» ———[Uek+(k U)e (e U—)k].
235

Now A(x) must be bounded as x-+pp, and since we
have required 8(x) —+ 0 as x ~pp, we find

Here [[y . ]] means 4 Trace [y. ]. Using this
representation, we can show

lim P(x+y') e'&~&

Uek = [[Ueky, ]7y,+[[Ueky„y p])gpss„(B7)

Our next step is to note that any product of p
tan bA (x')dx' matrices may be represented in the SPAVT form as

X — +e'I'(x+y') . (A24)
(x'+y') (x'—x) [y 'r]=[['r . y]]I+[[y . yy, ]7y,

+[[v v~,.ll~"+Lb v»7]vp
+[[7' ' 'vn"vp]7&7. 74 (B6)

R
+I — +n+Px cosh(x) ~ constant, (A25)

kx+x„

so that

lim P(x+y')

and that

I»=—([[Ue&v.vp]7)
2M

1
[Uek+(U k)e —(U')k]. (B8)2'

= [constant —(n+Px) cosh(x)]e '&*'. (A26) If one examines Table I of the Lorentz invariants in SG,
one finds that I» is the only pseudovector invariant.
From this alone it is easy to see that

This solution with a more explicit statement of param-
eters is the one found in Eq. (4.30). From the statements
in the body of the paper, we see I$Q Ij 0 for all g / 12,

I. I =[LI' I.l].
where again

&(x+y') ~ —(n+Px) cosine '&*& ~ 0. (A27)

APPENDIX B. PROJECTION OF A PARTICULAR
INVARIANT AMPLITUDE OUT OF THE

TOTAL FEYNMAN AMPLITUDE

%e shall find the following relations useful:

q=(p n)/2, Q—=(p+44)/2, A=q„A~=q A

q=M, Q=O, ypq=0, (BI)
n= —3II.

Here, the symbol = means equality in the Dirac sense,
that is, equality between the spinors.

In taking these traces, one should inject the appropriate
positive energy projection operators to eliminate the
contribution of the negative energy spinor components.
Alternatively, one could decompose the spinors to the
nonrelative Pauli spinors and follow an analogous
procedure.

%e have not followed this procedure because it would
seem that at threshold, i.e., when p ~ 0, we will see the
correct kinematical behavior even when projection
operators are not included. 4' We can use (B8) to show

4'I am grateful to J. L. Morrison for bringing this to my
attention.
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I»2=e'(U k)'/4M'= (U—k)'/4M'.
We devide Eq. (816) by the normalization factor I»'

(89) to find

We utilize this orthogonality by adapting I» as a pro-
jection operator which will, when applied to the Feyn-
man amplitude, project out the invariant amplitude
which is the coeScient of I&~ in the summed representa-
tion of the transition matrix element.

The numerator of the Feynman amplitude in which
we are interested is given in Eq. (4.46). It is

1V= —e (/i+/g)y5(/3+M)
X [FU+(G/M)(l3 U)]yg(/4+M) . (810)

To simplify this we employ some of the relations of
constraint enjoined by the four-momenta conserving
6 functions operating at every vertex in Fig. 9. We find

d=-l, +l4, /3 —n=/~, /2+k ll /i+/4 P. (811)

We may also derive some additional quantities which
will prove useful.

——= —4M(e /, )'I'(1+6) . (817)

We need now only calculate the quantity (e li)' on the
mass shell to completely evaluate the invariant ampli-
tude corresponding to I&2.

A straightforward but somewhat tedious method for
evaluating scalar products is to expand them in terms
of four orthonormal four-vectors which one can con-
struct from the external independent four-vectors in-
volved in the problem, i.e., d&, k&, n&, and p". However,
only three of these may be taken as independent, so one
must use the antisymmetric tensor to construct the
fourth.

Yet, when one deals with the photon's polarization
vector there is a considerable simplification. The polari-
zation vector is spacelike and transverse. It can be
written as

e li ek+e l——2 e l2——
U d=O=p U+n U

k li ——k 4+k k=k l2

and
e= (equi en)//K2; e'= 1— (81g)

(819)

The quantity described in Eq. (810) may be simplified

by observing that the definition for a product in our
invariant space calls for taking traces. The trace of the
product of an odd number of y matrices is zero. We
need consider only those parts of Ã which when multi-
plied by I» will combine to yield an even number of

p matrices. We may also take advantage of the simplifi. —

cations present in Eq. (812) to write

V= —2(e li) [F/i U/& —(6/2M)(l3 U) 2Ml27. (813)
Then

1
Ii2 1V=—2(& /i)[[{&eU+(U k)e (U t)A}—

2M
X {F/i U/2 —G(4 U)/2}]]. (814)

Manipulation of the y matrices leads to the result

1
Ii2 X=—(e l,)F(U k)

M

(e /, )'= ',nz'- (820)

This same result is obtained when one chooses to
perform the operation with the orthonormal base which
we have outlined above.

The basis vectors are constructed as

QwA&=; B&= ;C&=; D—&=~„„„A"B~C,(821)
fQI

and r"=k" ~= —k. These are demonstrably ortho-
normal. By using the factorizztion (e l) =(e A)(/ A)
+(e B)(/ B)+,one finds

(e li)'= (eo'/ic'+e~'/ic') = ——,'(/ic'+/ n') (822)

But on the mass shell /&' ——m' it must be that
—(/a'+4') =m', since C and D denote spacelike com-
ponents. Thus we may conclude

X[(e l,)(U /g) —(e l,)(U li)]. (815)

Using Eqs. (812) and (811) again, we find

I,'X=(1/M)(e l,)'(—k U)F
= (1/M)(e li)'(U k)'I'(1+6) .

I,g. Q/Ii2' —2m, 'MI'(1+ 6)——.
(816) This is the expression found in Eq. (4.53).

(823)

and indeed the analysis projected above is veri6ed. %'e
do find m'= —(/, c'+/, ii') Thus Eq. (817) reduces to


