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cutoB M for the upper limit. Then we have

6= (1/2zr)[I —I ], (A4)

where
tz~= Z —Rpwir'/2 (A7)

where

The substitution

E'—E—ig

z—=8' —Evair/2

(AS)

The contours C+ are illustrated in Fig. 3.
As ~B Ev

~

—and I' become very small the points a~
approach the branch point. Only I+ becomes singular
in this case. Its singularity may be exhibited by moving
the contour up into the positive imaginary s p1ane and
keeping the residue of the pole at u+. The leading
(singular) term in I+ is

permits us to write or
I+—2' lnu+,

6——lna+. ,
(A6)

from which Eq. (4.5) follows.

(AS)

PHYSICAL REVIEW VOLUME 136, NUMBER SB 7 DECEMBER 1964

Analysis of Low-Energy X+-p Elastic Scattering*

A. D. MARnN

Department of Physics, University of Durham, Durham, England

AND

T. D. SpEsnMArrf

Department of Physics, University of Illinois, Urbana, Illinois

(Received 27 July 1964)

An analysis based on dispersion-relation techniques is applied to experimental data for E+-p elastic scat-
tering. Particular reference is made to the "force of longest range" due to the exchange of low-mass pion pairs
with isospin I=O. The effect of this exchange force can be calculated in terms of only one unknown param-
eter X which may essentially be chosen to be a linear combination of the K-2l- scattering lengths. The other
forces of shorter range are described by further undetermined parameters. The E+-p differential cross section

is calculated in terms of these parameters and a 'minimization procedure is used to obtain a fit to the experi-
mental data. A good fit is obtained for a well-defined set of values of the parameters. In particular, 'A is well

determined. A sum rule for E7I scattering is used to calculate a further relation between the E'-7I scattering
lengths so that the value of each of these is obtained.

I. INTRODUCTION

'HE data for the elastic scattering of E+ mesons on
protons' ' indicate that the interaction is domi-

nantly s wave and repulsive up to laboratory momenta
of S00 MeV/ . cTshis may be seen from the phenome-

nological, pure s wave, 6ts which accurately reproduce
the data in this energy region. ' 4 This paper is concerned

z
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Goldhaber, W. Slater, D. H. Stork, and H. K. Ticho, Phys. Rev.
Letters 7, 188 (1961).

' For convenience these data are often referred to as the "low-
energy" X+-p data in this paper.

' D. G. Ravenhall, Phys. Rev Letters 9, 5.04 (1962).

with an analysis of the experimental data using dis-
persion relation techniques. Previous analyses' ' of the
EC-E interaction along these lines took explicit account
of. the I= l, J= 1 p-meson exchange force and assumed
that this was the dominant long-range contribution.
However, since the completion of these calculations of
Ferrari et al. ' and Lee, ' the location of the p resonance
has been found to be 750 MeV, rather than the lower
value of 500 MeV that they used, and also the exist-
ence of the co resonance has been established at roughly
the same energy as the p. The EE exchange force arising
from these resonances is thus harder to separate from
other "short-range" forces, for example, those associ-
ated with hyperon and hyperon-resonance exchange.

'F. Ferrari, G. Frye, and M. Pusterla, Phys. Rev. 123, 315
(1961).

e B. W. Lee, thesis, University of Pennsylvania, 1960 (un-
published); Phys. Rev. 121, 1550 (1961).
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cut was determined explicitly; the effect of the re-
maining singularities was represented by two poles (for
each partial amplitude) whose positions were chosen by
a method due to Bala,zs," and whose residues were
unknown parameters. For each of the p-wave ampli-

tudes, one of these residues was determined by the
threshold behavior.

An estimate of the contributions to the differential
cross section from higher partial waves (l) 1) was made

by writing a dispersion relation for E+ pscat-tering in

cose and subtracting off the two lowest partial waves.

Only the two-pion exchange term was kept in this

dispersion relation, but since two subtractions had been

made, neglect of the more distant singularities should be
reasonable.

The effect of Coulomb scattering was included, and

the final parametric form of the E+ pdiffere-ntial cross
section was obtained. The differential cross section was

a function of 6ve parameters, four of which were the
arbitrary pole residues approximating the contributions
of the short-range forces to s and p waves. The re-

maining parameter appears in the description of the
long-range forces arising from the exchange of the low-

mass pion pairs. If explicit account was also taken of the

p and co exchange by separating them from the other
short-range forces, a further two parameters were

introduced. An IBM-7094 computer was used to obtain
a best fit to the data and so 6nd the optimum values of

the parameters.
The available "low-energy" E+p data consist of 52

differential cross-section measurements at nine different
K+ laboratory momenta in the range 140—810 MeV/c. ' '
The data at higher energies were not used in the present
analysis because the competition of inelastic processes
is expected to increase rapidly above 800 MeV/c. It
should be noted that the amount of information to be
obtained from the analysis of E+p scattering would be

greatly increased by measurements of the polarization
of the recoil proton at E+ incident laboratory momenta

up to 750 MeV/c. There are polarization measurements

at 910 MeV/c, "but because of the value of the incident

momentum and the large errors attached to these re-

sults, they are of little practical value in this analysis.

In Sec. II we introduce the kinematics of the EX
system and discuss the singularities of the partial wave

amplitudes in the s and u planes. In Sec. III, the proc-
esses EX—+em and Em. —+Ex are discussed. Fixed
momentum transfer dispersion relations and a sum rule

a,re obtained for the latter process. The I=0, J=0 two-

pion exchange contribution and the p and co-exchange

terms are formulated. Section IV describes the para-
metrization of the E+-p differential cross section, and

Sec. V contains a discussion of the results obtained when

this parametric form is fitted to the E+p data.

s M. M. Islam, Nuovo Cimento 20, 546 (1961);Alladi Rama-
krishnan, A. P. Salachandran, and K. Raman, Nuovo Cimento 24,
369 (1962); V. A. Lyul'ka and A. A. Startzev, Phys. Letters 4, 74
(1963); T. Ebata and A. Takahashi, Progr. Theoret. Phys.
(Kyoto) 27, 223 (1962); G. P. Singh, Progr. Theoret. Phys.
(Kyoto) 30, 327 (1963); G. Costa, R. L. Gluckstern, and A. H.
Zimerman, Proceedsmgs of the Iriterlatiorsat Conference oe High
Elergy Physics, CERN, 196Z (CERN Scientific Information
Service, Geneva, 1962), p. 361.

' E. M. Ferreira, C. G. de Oliveira, and P. P. Srivastava, Nuovo
Cimento 26, 1128 (1962).

' F. Ferrari, G. Frye, and M. Pusterla, Phys. Rev. 123, 308
(1961).

'0 L. A. P. Balazs, Phys. Rev. 125, 2179 (1962)."W. Hirsch and G. Gidal, Phys. Rev. 135, 8191 (1964).

Several calculations~ have been performed with the
assumption that the dominant exchange forces in EX
scattering arise only from the single "particle" inter-
mediate states in the crossed KK NN-and EN KN-
processes, i.e., p, co, A, Z, I'0*, V&* exchange forces. Even
with such drastic assumptions, it has been impossible to
draw any quantitive conclusions, owing to the large
number of unknown coupling constants that enter such
analyses. An analysis of ES scattering has also been
made' in which the exchange of two nonresonating
pions has been calculated in fourth order perturbation
theory.

Previous authors' ' have pointed out that in the
complex s plane, the singularity due to the EE srsr NN--
interaction extends extremely close to the physical cut;
thus, the exchange of pion pairs with energies close to
the threshold value might'„. be', expected to produce by far
the strongest energy and angle dependence in the
physical EX amplitudes. The observed isotropy of the
low-energy E+p data in both energy and angle should

imply a considerable limitation on the magnitude of
such long-range exchange forces.

In the present calculation the effect of the short-range
forces is parametrized and the long-range contribution
from the EE'-mm-EX process is calculated explicitly. It
will be seen that the contribution arising from non-
resonant pion pairs near their threshold mass, in the
latter process, may be evaluated in terms of known
quantities except for one unknown quantity which is
essentially a linear combina, tion of the E-x scattering
lengths. By performing a 7c' fit to all the available E+p-
differential cross-section measurements up to 800
MeV/c, an optimum determination of the unknown
parameters was made. A sum rule was used to determine
a different linear combination of the E-x scattering
lengths and so each of these scattering lengths was
obtained. Besides the determination of the E-z scat-
tering lengths, attempts were also made to obtain
information about the coupling of the p and co mesons to
the EK and EE systems. Unfortunately, the data is, at
present, too meager to determine the extra parameters
introduced when the p and ~ exchange is treated
explicitly.

To calculate the differential cross section, the N/D
method was used to evaluate the partial-wave ampli-
tudes for s-wave (J=-,') and P-wave (J=—', and zs)

scattering. The discontinuity across the near left-hand
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Fro. 1. E1V scattering and
related processes.

where for channel I
r f, ——u( —p2) Tu(p1),

and for channel III
(2 4)

II. THE AMPLITUDES FOR KN SCATTERING

This section is concerned with the kinematics of the
KS system. The angular momentum decompositions of
the amplitudes describing KÃ scattering and the crossed
processes are carried out and the singularities of the ES
partial-wave amplitudes are discussed.

(a) Kinematics

The three channels to be considered in a dispersion
relation treatment of EE scattering are obtained by
choosing different incident pairs of the particles shown
in Fig. 1.q1, q2, P„and P2 are the ingoing 4-moments, of
the particles shown in Fig. 1. The three reactions are

(I) K+N —+ K+N,
(II) K+N +K+N—,

(III) K+K -+ N+N.

Convenient variables for the description of this system
are the squares of the total center-of-mass energies in
the three channels; these are written s, N, and t, re-
spectively, and are given by"

s= (q1+p1)', —u= —(q1+p2)', ~= —(q1+q2)'

It can be seen that s+u+3= 2M2+22122 and thus only
two of these variables are independent. We denote the
nucleon, E-meson, and ~-meson masses by M, m, and p,
respectively.

The two independent variables may alternatively be
chosen to be the magnitude of the three-momentum and
the scattering angle in the barycentric system of any
one of the processes. For reaction I,

s=M'+212'+ 2k'+ 2[(M'+ k') (221'+k') ]'"
(2.1)

t =—2k'(1 —coso),

where k is the magnitude of the 3-momentum and 0 the
scattering angle in the barycentric ICÃ frame. For
reaction III,

rf, ——u( —p2)Tv( —p1), (2.5)

where 0 and e are positive and negative energy solutions
of the Dirac equation normalized to NN =1 and v8=1.

The customary decomposition of the matrix T into
scalar amplitudes is as follows:

T= —A+25+' (q1—q2)B,

A=A+I+A r~ rrr,

B=B+I+B re rrr.

(2.6)

(2.7)

A10=A+ —3A A1' ——A++A

Anno= 2A+, Arzr'= 2A

(2.ga)

(2.gb)

For convenience we shall omit the isospin superscripts
in the remainder of this section.

(b) Partial-Wave Decomposition

The partial-wave analysis in channel I is completely
analogous to that for pion-nucleon scattering. " For
completeness the relevant results are summarized in
Eqs. (2.9) to (2.12). Omitting the modi6cation in the
presence of a Coulomb interaction, the barycentric
kaon-nucleon differential cross section is given by

do(k, x)/dQ=
i f1(k,x)+xf2(k,x) i2

+(1—x')
~
f2(k)x) i2, (2.9)

where the variables k and x=—cos8 have been introduced
in Eqs. (2.1). The partial-wave expansions may be
written in the form

F1=f1+*f2=E [(~+1)f1+(~)+If~-(~)]&1(x)
L=O (-'1O)

J' —= f = 2 [f+(—) f —( )]& (*)
l=l

A+(s, t), B+(s,t) are the scalar invariant amplitudes
which are assumed to satisfy a Mandelstam representa-
tion. They are related to the amplitudes A», 8» for
isospin I=O, 1 in channels I and III by the relations

s =—P' —q' —2Pq cos82,
t=4(p'+M') =4(q'+m') (2 2) where v=k'. Thus, the partial-wave amplitudes are

given by
where 82 is the scattering angle and p and q are the
magnitudes of the 3-momentum of the nucleon and kaon
in the center-of-mass frame for reaction III.

For any of the three channels the S matrix may be
written in the form

e"~+ sinb~+ 1
f1+(~)—=

k 2
dx[f1 (k,x)P«(x)

+f2(k,x)P«~1(x)]. (2.11)

(22r) «Mh«(p1+ q1+p2+q2)
Sf;——bf;—i

(4P10qlOP20q20)"We use the metric pg= p q —
polyp.

8~~ is the E-nucleon phase shift for a state with orbital
angular momentum / and total angular momentum

~f&)

"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu.
Phys. Rev. 106,. 1337 (1957).
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j=l&—,'. The relation between the differential cross
section and the invariant amplitudes of Eqs. (2.6) is
obtained from the result

(W+M)' —m'
fi(h, x) =

167iW'

Fxo. 2. The singu-
larities of the XS
partial-wave ampli-
tudes in the complex
s plane.

comp!ex s-plane

KN X g ~.p ~~ KN KN~
ReS

o %so

~p~
1/2

f++= I

—
I {hip+hsq «s8s)

4s.Wi k q)
X[—A (s,t)+ (W+M)B(s,t)], (2.17)

M (p)i/s
f+ =

I

—
I hsq sin8se '~~.

47rW, E ql
with W—=Qs.

In channel III the angular momentum decomposition
is analogous to that for the process m.m —+ S¹'4In the
center-of-mass frame the EE~NN 'differential cross
section, for the production of a nucleon with helicity X

and an antinucleon with helicity )', may be written as

Comparing Eqs. (2.14) and (2.17) the following de-
composition of the invariant amplitudes in channel III
is found, with y= costs,

)&[A (s,t)+ (W—M)B (s,t)],
and X' by inserting the appropriate Pauli spinors. We

(W—M)' —ms find,
f, (h, x) =

16m''

do/dQ=
I fbi, .(8s, qs) I',

where the helicity amplitudes fbi. are given by"

1
f++(8s, rp//)

= Q(J+--', )T~+ (t)Ps(cos8s),
q

J'

1
f.-(8,~ )=- Z(J+-', )T.-'(t)

q
J

(2 13), 4a.Wi (J+-',)
A (s(y), t) = — —2 T++'(t)Ps(y)

p (pq)"

2M yPz'(y)
T+-'(t) (2.18)

W, [J(J+1)]'"
Sa (J+-';) Ps'(y)

B(s(y),t) =—2 T+-'(t)
(2 14)

q s (pq)1/2 [J(J+1)]1/2

f»'
I I X&'t[hiir ' y+ hsrr ' q]X—»

4s-Wg k q)
where

u'q.
hi ————A+B

M M+isW,

hs = —,
' (W(/M)B.

(2.16)

For comparison with the partial-wave expansions, Kqs.
(2.14), we evaluate Eq. (2.16) for specific values of }

"W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960);
see also Ref. 9."M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

e '~3sin83
X Pg'(cos8s) .

[J(J+1)]'/'

Here Tii s(t) = —i5ii J(t) and Siq. s(t) is the submatrix
of Sf; for total angular momentum J and center-of-
mass total energy W/=gt. The variables relevant to
channel III were introduced in Eq. (2.2).

Alternatively, from Eqs. (2.3) and (2.13) it can be
shown, on making a choice of phase, that

fU, = ( M/47rW g—) (p/q)i/'sr; (2.1.5)

Substituting Eq. (2.6) into (2.5) and reducing the Dirac
spinors to Pauli spinors X/„Eq. (2.15) becomes

(c) Singularities of the J N
Partial-Wave Amplitudes

The invariant amplitudes A (s,t), B(s,t) are assumed
to satisfy a Mandelstam representation and thus the
analytic properties of the partial-wave amplitudes f&~
may be obtained from Eqs. (2.11) and (2.12). The
positions of the singularities of the amplitudes f/~ in the
complex s plane corresponding to the intermediate
states of the three channels were 6rst derived by
MacDowell. "These are reproduced in Fig. 2 on which
the points labelled in the form Px refer to the branch
points, nearest the physical threshold s=ss =—(M+m)',
arising from intermediate states I' in channel X. Thus,
the interaction of longest range for EX scattering would
be expected to arise from the two-pion intermediate
state in reaction III. The branch point nearest to the
physical threshold due to the exchange of a system of
total energy 8"

& in channel III is given by

s(Wi) =M'+m' —t/2+2[(M' —t/4)(m' —t/4)]i/'

and thus we find si=—s(2//) =0.96so. Although an inter-
mediate state of definite mass in channel I is associated
with one point on the right-hand (physical) cut, the
singularities arising from such a state in channels II and
III are smeared out, owing to the partial-wave projec-

' S. W. MacDowell, Phys. Rev. 116, 774 (1959); see also J.
Kennedy and T. D. Spearman, ibid 126, 1596 (1962)..
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Fro. 3. Singularities in fi+(v) in the 1st v sheet. The arrows on
the right-hand cut indicate energies at which the E+-p differential
cross section has been measured experimentally (Refs. 1 and 2);
the numbers give the corresponding laboratory momenta of the
E+ in MeV/c.

tion, and appear over ranges of the left-hand cut, one
section always extending to —~.In the present calcula-
tion, the absorptive part of the amplitude is calculated
explicitly only over the portion of the left-hand cut from
sl to just below the threshold for the p and cv contribu-
tion. Thus, it is more convenient to work with the
variable v= 0', as the singularities in fg~(v) are all on the
real axis in the complex v plane. However, the complex
s plane is mapped into a two-sheeted v plane, "connected
by the cut —M'& v& —m'; the region of the s plane,
s(+), exterior to the circle cut, maps onto sheet I and
the interior region, s(—), maps onto sheet II of the v

plane
s(+)= L(v+M')'t'+ ( +vm')'"]'

The singularities of f~~(v) in the 1st v plane are shown
in Fig. 3. In the calculation to be described below, the
absorptive part of the amplitude is calculated explicitly
only for values of v in the range —m'& vL, & v & —p,

' and
an approximation is made to the discontinuity across
the remainder of the left-hand cut; consequently a
dispersion relation for f~~(v) can be written in the first
v sheet alone. However, if vL, were less than —m' it
would then be necessary to also write a dispersion rela-
tion in the second v sheet, because for p in the range
—M'& v& —m' it is not possible to straightforwardly
identify the discontinuity across the cut with the
absorptive part of an amplitude.

III. THE DISCONTINUITY ACROSS THE
NEARBY LEFT-HAND CUT

In this section the discontinuities in the ES partial-
wave amplitudes across the nearby cut, that is v&(v
& —p', are related to the amplitudes for the process
a.s.—vlVX and for E7r scattering. In 'subsection (a),
amplitudes for EE —+ ~~ are calculated in terms of the
E rr scattering amplitudes-. In (b), the unitarity relation
is used to evaluate the discontinuities in the EÃ
amplitudes in terms of the amplitudes for EX—+ xw and
s.m ~)VX. Finally, in (c), the contributions to the
discontinuities arising from p and co exchange are given.

(a) The X'K —& er~ Amplitudes

The three related processes" Em ~Ex, Kx —+ Ex,
and EE~ mx are labeled channels I, II, and III,

'r R. Oehme, Phys. Rev. Letters 4, 246 (1960), and Erratum:
4, 320 (1960); J. Hamilton and T. D. Spearman, Ann. Phys.
(N. Y.) 12, 172 (1961).

's One of us (A.D.M.) wishes to thank Dr. L. L. J. Vick for
useful discussions concerning the E~ system.

T=8s T++ ', [rp, r -]T (3.2)

where n, P are the isospin indices of the pions. The
amplitudes T+ are related to the amplitudes T' for
isospin I=-,', —,

' in channel I by

T'= T++2T )
T'= T+ T, — (3.3a)

and to the channel III amplitudes T for isospin 1=0,
1 by

To (6)i/sT Ti 2T (3.3b)

The partial-wave decomposition in channel I takes
the form

T"(s,t) = —Ss (s)'" Q(2l+1)Pt(cos8) fP'(s), (3.4)

where fPr(s)= (e" sin8—)/k, with

In channel III the decomposition is written

T+(~,t) =E(2l+1) (xq) 'g~+(t)~~(cos8s)

(3.5)

where the partial-wave amplitudes are thus given by

gi+(t) =-,'(xq) ' d(cos8s)T+(s, t)Pi(cos8s). (3.7)

The amplitudes g~(t) are analogous to the amplitudes
f~~(t) introduced by Frazer and Fulco" for the process
~s.—+ XX, and in particular the factor (xq) ' has simi-
larly been introduced to remove the threshold zero. The
summation in Eq. (3.6) runs over even (odd) values of
l for the + (—) amplitude due to G-parity conservation.

In order to investigate the exchange of J=0, 3=0 pion
pairs in EX scattering, the amplitude gs+(t) must be
determined for use in the unitarity relation I see Eq.
(3.16)]. The partial-wave amplitude gs+(t) is an ana-
lytic function in the t plane except for the right-hand
branch cut 4p,'&t& ~ related to channel III, and the
left-hand cut —~&t&0, arising from channels I and

"See, for example, B. W. I.ee, Phys. Rev. 120, 325 (1960); M.
Gourdin, Y. Noirot, and Ph. Salin, Nuovo Cimento 18, 651 (1960).

"Notation: In Sec. III(a), the variables s, t, 0, 0, 03 are to be
interpreted as defined in the Ex system; in the remainder of the
paper, these variables refer to the EÃ system. Throughout the
paper, the variables q, y, x refer to the E, Q, 2r 3-momenta, re-
spectively, in channel III (in either the Zftf or Zv systems).

respectively. The kinematics" are analogous to those
introduced in Sec. II(a) for the EE system. Equations
(2.1) and (2.2) are unchanged" except that 3II is re-
placed by y, and p by x, where x is the magnitude of the
pion momentum in channel III. For boson-boson scat-
tering the conventional ana, log of Eq. (2.3) is

(2~) '~'(pi+ qi+ p2+ qs)
Sf,=Sf;—i Tt;. (3.1)

(16plsqlep20q20)

The decomposition of T into scalar amplitudes is
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II, i.e., Em scattering. The application of unitarity in
channel III shows that the phase of gp+(t), for 4p, '&t
(16@,', is the phase shift for I= /= 0 vrx scattering. Thus,
the product function ago+ will not possess the cut
4p'&t&16ti' where D(v ) is the I=/=0 prs. denominator
function. "Making the "elastic" approximation, that is,
assuming the above phase relation to be valid over the
entire right-hand cut, a once-subtracted dispersion rela-
tion for ago+ gives the following expression for gp+:

Err parameters, g,+(0), may be written, using Eq. (3.'7),

(m+p, ) 2

go'(o) = T+ (s',0)ds'.
4m@ (m—p) 2

(3.12)

1
T+(s,0)= T+(sp, 0)+

VC 80

ds' ImT+(s', 0)
s —s

The amplitude T+(s',0), which corresponds to forward
scattering in channel I is evaluated in the unphysical
region by using a once-subtracted fixed t dispersion
relation

D(v ') Imgp+(t')
dt

t'(t' —t)
(3.8)

where v, =t/4 tr'=K'. —Using Eqs. (3.3), (3.4), and
(3.7), it can be shown that

sr D(v ) is given by Eq. (26) of T. D. Spearman, Phys. Rev. 129,
1847 (1963).The 7t.7t. pole parameters were taken to be I'= 16 and
y~ = —30 jn tbe present c@Iculatjon,

Imgp+(t) =4m- P I'
~ (cosg') (gs')

~ q

&& LsrIm f('(s')+ —,
' Imf('(s')]ds', (3.9)

where the limits are sp=(m+p)' and I-(t)=~'+tr'
+2s g

—t/2; and where s; = (p' —t/4)'~' and q
= (eP—t/4)'Is, the positive root being taken for t&4p'
and t(4m', respectively. A few comments should per-
haps be made about the derivation of Eq. (3.9). Equa-
tion (2.2), with p replaced by s, was used to change the
variable of integration to $'. An extra minus sign
appears from the fact that Imf ~(s) means Imf ~(s+ie),
and Imgp(t) means Imgp(t+ie); and a careful examina-
tion of Eq. (2.2) shows that, for real cosep and —1

&cos8p&1, s+ie maps onto t is Ther—e is .also a factor 2

because both channels I and II are contributing. The
channel II contribution is equal to and of the same sign
as that from channel I. In the present calculation, the
summation in Eq. (3.9) is approximated by retaining
only s-wave terms and the contribution due to E* (the
888 MeV I=—'„ t=1 Err resonance), and by using the
following expressions for these:

Imfp' (s) = (ksp/s) (a' )', (3.10)

Imf, '(s) = (2rrl' (s)'~'/k)5(s —s~), (3.11)

where a'I is the s-wave Ez scattering length for the
state of isospin I; (s~)'" aild I'ir ale the E* resonance

energy and half-width at half maximum, respectively.
The use of Eq. (3.10) is based on the assumption that a',
a' are small ( p, h/pc). The best fits to the E+ pexperi--
mental data discussed in Sec. V do give small values of
a' and a'. Equation. (3.11) follows from a Breit-Wigner
formula for a narrow resonance.

The remaining term of Eq. (3.8) to be related to the

(3.13)
s'+s —Z s' —sp s'+sp —Z

where X=2m'+2y'. From Eq. (3.4) the subtraction
constant is given by

T+(s„o)= —8 (m+&)(-;a+-;a 7. (3.14)

On the right-hand side of Eq. (3.13), ImT+(s', 0) is
evaluated using Eq. (3,4), retaining as before only the
$-wave terms and the E* contribution. Inserting the
above evaluation of Eqs. (3.9) and (3.12) into Eq. (3.8),
the amplitude gp+(t) is parameterized in terms of two
parameters, the $-wave E-m scattering lengths a', a'. The
E* resonance parameters are regarded as known.

A relation between these two parameters can be
obtained by evaluating the unsubtracted fixed t dis-

persion relation for T (s,O) at s= sp,"
T—

(sp, 0)—= —8m-(m+ti) ['pa' —-',a'j
mIJ, dS

Im1 (s',0) . (3.15)
x „$'k"

The convergence of the unsubtracted relation for T is
comparable to the once-subtracted relation for T+, Eq.
(3.13), because T is odd under crossing. As usual only
the $-wave terms and E*contribution are included on
the right-hand side of Eq. (3.15).Eliminating one of the
scattering lengths, using Eq. (3.15), the EK +rrrr-
partial-wave amplitude, gp+(t), is evaluated. as a func-

tion of one parameter X, defined to be the remaining
s-wave Em scattering length. The value of this parame-
ter is estimated from the fit to the E+ pexperimental-
data described in Sec. V.

The eRect of the inclusion of a possible resonance E'
(725-MeV Es. resonance)" on the above analysis is also
discussed in Sec. V.

(b) The Unitarity Relation for the Process
SEX-+ NN

The unitarity condition is used to determine the
discontinuity in the ESpartial-wave amplitudes across

"This is the exact analog of the 7IE sum rule, discussed previ-
ously by one of the authors: T. D. Spearman, Nucl. Phys. 16, 402
(1960)."D. H. Miller, G. Alexander, O. I. Dahl, L. Jacobs, G. R.
KalbQeisch, and G. A. Smith, Phys. Letters 5, 279 (1963).
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the cut vt.& v& —p'. Since this cut is due to two-pion
intermediate states whose mass is below the EK and
EN thresholds, this involves the application of uni-
tarity in an unphysical energy region. It is assumed that
the unitarity condition is valid in this region. "For two-
pion intermediate states, the EX—+ EX unitarity rela-
tion is as follows:

—[A (s(y), t+ip) —A (s(y), t —t'p) j
2i

1
Z(I+l)(pe*)'""' f+'(t)I'~(y)

psW

yI'~'(y) f '(t) g-~*(t),
P(I+1)1"'

(3.16)

—[B(s(y), t+ip) —B(s(y), t —ip)j
2j

Z(J+ ') (pc')""-+'
pqWt z

I'z'(y)
&&f '(t)g~*(-t)[I(I+1)1'"

where f+~(t) are the helicity amplitudes for mrs —& ÃN
introduced by Frazer and Fulco. ' The superscript
denoting isotopic spin in channel III has been omitted
from the amplitudes A, B,f~~, and gz. Equations (2.8b),
(3.3b) and the equation for s.s. —+NN analogous to
(3.3b) may be used to write the unitarity relation in
terms of the amplitudes A+, B+, f~~t+&, and gq+. With
the isospin superscript +(—) a factor 3(2) appears on
the right-hand side of Eq. (3.16).The derivation of Eqs.
(3.16) is discussed in Appendix A. In order to determine
the contribution to EÃ scattering from the exchange of
an s-wave pion pair, only the J=0 term is retained and
the discontinuity becomes

ImA +(s, t+ip) = (3K/2p'Wt) f~p(t)gp*(t),
(3.17)ImB,+(s, t+ip) =0.

As f~', gp, and D" all have the same phase for 4tt'(t
(16@',it can be shown, for t in this range, that

f~'(t)gp*(t) = —Imf+'(t)[ImD(v. )$ 'D(v )gp(t), (3.18)

where v = It'= t/4 tt' and D(r ) is —the trvr denominator
function introduced above; in terms of the parameters"
of the xm. "one-pole" approximation

ImD(v )=—21'g/W (v —v ), for v )0. (3.19)

2567i vsi 4@2

v1
dk Im f+'(t)D(v„)gp(t)

)& {[(W+M)' —m']I't (1+t/2v)

—[(W—M)' —ttts]Pt~t(1+t/2v)) . (3.20)

As v+t'p maps into t,—is', for v on the 1st sheet, a minus
sign is included in Eq. (3.20). The isospin superscript on
the left-hand side refers to the I=-1 state in channel I,
i.e., the state relevant to E+p scattering. The values for
Imf+'(t) have been obtained from an analysis of s-wave
pion-nucleon scattering. "The product Dgo is given by
Eq. (3.8) and is evaluated in terms of the properties of
the Em system using the subsequent equations in Sec.
III(a). The integrand of Eq. (3.20) can be evaluated,
using the approximations outlined above, only for t in
the range 4p, '&/&t~. The upper limit is chosen such
that at the corresponding EK—+ NX center-of-mass
energy, (ter)"', the terms arising from the higher partial
waves in Eqs. (3.16) are still expected to give a negligible
contribution, and also the "elastic" approximation used
in Eq. (3.18) is still expected to be a valid approxima-
tion. However, contributions to EX scattering from the
exchange of systems other than the pion pair will occur
for too large a value of f~, for instance, as the p- and
~-exchange contributions have been omitted from the
above scheme, t~ should not be greater than 28@'. Thus
Eq. (3.20) is used to determine the discontinuities in
EN partial-wave amplitudes (as a function of the E7r
parameter X) across the left-hand cut, for v in the range
vL, & v& —p', where v~= —4'II31. The further parameters
necessary to explicitly include the p- and co-exchange
contributions to the discontinuities in the ElV ampli-
tudes are briefly discussed in the following subsection.

(c) The Contribution from y and to Exchange

In the approximation where both the p- and co-

resonance energies are equal to (ttt)'~', it may be shown.
that their contribution to the absorptive parts of the
invariant amplitudes is

ImA»'= [gt@/23II$(s+ rst —nz' —M')5(t —t~),
(3.21)

ImBv„' ———(g&"+gts') 6 (t—ttt),

where the superscript 1 on the left-hand side refers to

for vt, & v& —p2, are obtained by inserting the results
of Eqs. (3.17) to (3.19) into Eqs. (2.11) and (2.12).

Imf t~'(v+ip)

The discontinuities in the EX partial-wave amplitudes,

24 For field-theoretical arguments in favor of this assumption
see S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).

~'T. D. Spearman (unpublished); see also J. Hamilton, P.
Menotti, G. C. Oades, and L. L. J. Vick, Phys. Rev. 128, 1881
(1962). For the purpose of evaluating the integral in Eq. (3.20) „
these results are well represented by replacing Imf+'(t) by a con-
stant, Imf+'(tl~240, in units of k=y=p=t, for 4y'&t(20''.
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isotopic spin, I=1, in channel I, and where'6

g~o =8~'{gprrggpNN&o+g~rrgg~N/v~*') ) i = 1 v2. (3.22)

X and D satisfy the following equations:

1 &' Ima(v') D(v')
X(v) =— dv'

X QQ P —V

dv' Ima(v') D(v')It (v, v'), (4.4)

v0( V&& v 1/2

E(v, v')=-
, (v"+mP) v" (v" v)—(v" v')—

GP

IV. THE PARAMETRIC FORM FOR THE X+-P
DIFFERENTIAL CROSS SECTION

In this "pole" approximation, the discontinuity in the
amplitudes f~~'(v) is obtained by substituting Eqs.
(3.21) in Eqs. (2.12) and (2.11). Two parameters go'
and g&') are thus necessary if the contributions of p and co

D(v) =-1+—
exchange are to be explicitly taken into account and not
included in the approximation to the short-range forces where the kernel is found to be,
described in Sec. IV.

Several parameters are necessary for our description
of low-energy E+p scattering. One of these, X, is a E+-
scattering length and was introduced in Sec. IH. The
others are residues of poles which provide a phe-
nomenological description of the short-range forces in
E+p scattering. (There may also be two unknown

couphng constants if we treat the p and ~ explicitly. )
The differential cross section do/dQ(k, x) is evaluated in
terms of these parameters which are then varied until a
fit to the low-energy IC+ pscattering d-ata is obtained.
The calculation of do/dQ(k, x) in parametric form is
described below, ' this involves a separate treatment of
each of the low partial waves (j=0, 1+ and 1 ) and an
approximation to the effect of all the remaining partial
waves by a closed term. That is, the amplitudes F, of
Eq. (2.10) are written in the form"

F;(k,x) =F;(k,x)+AF;(k,x), i 1, 2,=(4.1)

where F; is the contribution of the l= 0 and 3= 1 terms
and AP; is the contribution of the remaining partial
waves in Eq. (2.10).

I:k(y')/v' —k(y)/vj, (4.~)

with y= v/v+OR' and,

y1/2

k(y) =y"' ln
1+yl/2

for y) 0,
(4 6)

Imf &~'(v+ie) was calculated in Sec. III for v J.& v( —p'
under the assumption that the dominant contribution
comes from the I=0, 7=0 two-pion intermediate state.
The result is given in Eq. (3.20), and Ima&~'(v) for v in
the same range is immediately obtained from this and
Eq. (4.2). Equations (4.3) and (4.4) are solved for E
and D using a procedure proposed by Balazs."In this
method the contribution to the integrals corresponding
to the range of v' for which Ima(v') is not determined is
approximated by a sum of terms involving unknown
parameters n„, and Eqs. (4.3) and (4.4) become

(a) Contribution of the Lower Partial Waves

To determine the F,(k,x) de6ned above, we evaluate
the partial-wave amplitudes fo(v), fi+(v), and fi (v)
individually using the E/D method. Rather than deal
with the amplitudes f~~(v) directly, we define

D(v) =1+—
2

7l yr

dv' Ima(v')D(v')E(v, v')

1 —p' Ima(v')D(v') n„
X(v) =— dv' +P

7l yg P P 1—v/v„

V
p2

(4.7)

()=(+Bit')'"f+'()=& '()/D '() (42)

where 1V(v) has a cut for —~(v( —p,
' only, and D(v)

for 0&P( ~. 5K is an otherwise arbitrary mass satis-

fying —BR'(vr, . For E+p scattering the isotopic spin I
is 1.The angular momentum and isospin subscripts and
superscripts will be omitted.

' The coupling constants g,~g etc., are defined through the
interaction Lagrangian

&=~(4 )'"La '"(PY. 4)p."+g '"(Fv@),j
(4n.), Spv „S(g„+ gpNN vtv&vvvT Xvtv +gvvNN $0 yves'

gp, Sp

+g(4~)'" g»~g ~'eN —4N ~' P &'&
~/K g @K
8$p 8'

g~@x
+gcuxZ ~ f& @K ~ p,

Sp, gp,
27 See G. L. Kane and T. D. Spearman, Phys. Rev. Letters 11,45

(1963), vrhere a similar decomposition is used for m+-p scattering.

+-2 ~.v.E(v, ") (4 8)

These equations are discussed in Appendix B, particular
attention being devoted to choosing the optimum values
for the vv v. The Eqs. (4.7) and (4.8) maybe solved by the
usual techniques and the EX phase shift determined as
a function of the parameters O,„and 3, using the equation

v )'/' X(v)
5(v)=tan '

v+9K'/ ReD(v)
(4.9)

where ReD(v) denotes the real part of D(v). This
procedure is carried out for the j=0, 1+, 1—partial-
wave amplitudes, using in each case two parameters n~&

and n2& to approximate the unknown "short-range"
forces. However, in the case of each of the p-wave
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COMPLEX X-plane V. RESULTS

NEAREST CHANNEL K
SINGULARITY IS THE~g POLE AT x *-IO.'l

2 a
-I +I I++

)

RT
PHYSICAL
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Xe

Re X

p, e POLES

FiG. 4. The singularities of the invariant E., pEg am litudes in the
lane for a 6xed kaon laboratory momentum o

h t due to the double spectralMeV/t, . xg denotes the branc poin ue o
functions which is closest to the physical region.

The parameters introduced in the prece ing sections,
' o. ' o.i'+ and o,i' are determined by fitting the

all the availablecalculated differential cross section to all t" d f K+P scattering. ' ' The t was

achieved by computing the minimum value o t e

function
(do./-dQ) E (do/—dQ), c '

(5.1)

amplitu es, one od, f the parameters is determine y
that 8 (v)~v3~' at threshold. Thus, using qs.

(2.10), the contributions F; to the amplitu es o q.
(4.1) are obtained in terms of five parameters: bio, n2o,

(b) Contribution of the Higher Partial Waves

The contribution hF; may be expressed in terms of
the total amplitudes by simply subtracting off t e
and 7=1 terms in the partial-wave expansions of Eq.
(2.10); thus,

1

AFg(k, x) =Fr(k, x)—— dx'(1+3xx')Fi(k, x'),

(4.10)
1

AF2(k, x) =F2(k,x)—— dx'(1 —x")F2(k,x') .

The singularities of the invariant amplitudes of Eq.
(2.7) Land thus, also of the amplitudes F,(k,x)] in the
x—=cos8 plane, at a fixed value of k, are shown in Fig. 4.
These singularities move in towards the physica region
as k increases, but maintain approximately the form
shown in ig. . ince, eF' .4. S electively two subtractions ave

made in the amplitudes Ii;, it is reasonab e to
neg ec e is1 t the distant singularities in the cos0 pla

a oodassume that the following dispersion relation is a goo
approximation:

h . ect to the variations of the parameters. In Eq.wit respec o e
(5.1) (do/dD)PRE, represents the xth exp

d ~do/dQ~, ~ is the corresponding calculatedresult and &
g. , is

~s on the values ofdifferential cross section which depen s on
' o. '+ and o.~' ."The summation

in i is over all the experimental data in the ow-

tE . 3.15) o ldIt was pointed out in Sec. III that q. . c
be used to eliminate one of the s-wave ExKx scattering
len ths and that P would then be taken to be the re-
mainin one. In our calculation, aia was eliminated and
so X was chosen to be a~. It is clear, however, that t e

b t' +—=—'a'+-'u' occurs naturally inlinear combination a =—3a
atic terms in a'Eq. (3.14): But for the fact that quadratic terms in a

hen E . (3.10) is inserted into Eq. (3.9),
d 'tht da+ would be the only combination of a and a a

be involved in the calculation of E+p scattering. If a'
its A, c these quadraticand a' are small ( 0.1 in units pc, ese

terms are relatively unimportan, t and so the fit to the
entiall be regarded as a determination o

a+. Similarly, under such conditions, t e sum ru

iven by Eq. (3.15) essentially determines the linear
=-' ' —-' '. The validity of the calcula-combination a =—3a ——,u.

Sec. III was seen to depend on the assumptiontion in ec. was
that a' and a' were small. The solution ac ua y

aF;(k,x)=
+2@ iA:

ImAF, (k, x')

h th range of integration includes only the two-w ere e
pion cu ~i.e.,t ~i.e. the cuto6 is chosen to be in t e r g'

uated fromX~= p, p .=1+8 '/y). The integrand may be evaluated rom
Eq. (3.20) by making use of Eqs. (4.10), ( . ), an

g, and thus AF, , the contribution from the sum
total of the l&2 partial waves, is obtained in terms o
the parameter X.

esE andThe contributions from the low partial waves, an
the remaining partial waves AIi; are y~ re combined by means
f E . (4.1) and the result inserted into q.E . ,2.9, .

Coulomb scattering terms are also inc.u ed..1 ded. Thus the
diRerential cross section is obtained for ad for all E+ momenta
in the low-energy region as a function of the parameters

, O.ao, &20, O, l'+, and ni
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state, the estimated error is sufIiciently large that a'
could have a positive value; and, in particular, the
possibility of an s-wave ICx resonance at 725 MeV cg,n-
not be completely ruled out. An effective range formula
can give an s-wave resonance at 725 MeV with half-
width 5 MeV for a scattering length a'=0.07.

To see what effect the existence of such a low-energy
Em resonance in the I=~~ state" would have on the
present analysis, the fit to the data was repeated, ex-

plicitly including the contribution of this resonance
(denoted by E'), first, assuming that E' is an s-wave
Ex resonance, and second, assuming that it is in a
p-wave state. The E contribution is included using an
expression similar to Eq. (3.11) and taking a resonant
half-width of 5 MeV. With the first assumption, the
scattering length approximation for Im fs' is replaced by
the resonance expression; under the second assumption,
the E' contribution is added to the E~ contribution of
Eq. (3.11).

When an s-wave E' resonance was included, the 6t to
the data essentially led to the result a+= —0.11 and the
sum rule gave a =0.04, with the same errors as before.
These values correspond to c'= —0.03, a'= —0.15 and
are scarcely changed from the results in Eqs. (5.2),
(5.3), (5.4) with no E'. As was already mentioned, the
possible error in a' means that the above value is not
inconsistent with the positive value ( 0.07) which
would be expected if there actually were an I=-,',
s-wave resonance at 725 MeV with half-width 5 MeV.

With the assumption of a p-wave, I= —',, E' resonance,
again with half-width 5 MeV, the best fit to the E+p
data occurred for a+= —0.25. The sum rule gave
a =-0.05. This corresponds to a'= —0.14 @3=—0.30.

It should be pointed out that in the whole of this
analysis it was assumed that the E-~ scattering lengths
were small (&0.5A/pc, say). It was shown that a good
and unique fit to all the "low-energy" It.+p data could
be obtained under this assumption for values of a', a'
given in Eq. (5.4). The possibility of another solution
with large values of a', a' ( 1A/pc) cannot, however, be
ruled out in the framework of the present analysis. "It
should also be stressed that the calculation of the
discontinuity across the nearby cut in the E+-p partial-
wave amplitudes, which is of central importance in the
present analysis, depends on specific input information
about the I=-O, s-wave x-x phase shift. . This input
consists of ImD(v ) given by Eq. (3.19) and a]so,
indirectly, Imf+'(t) which, although determined from
an analysis of low-energy xX scattering, depends also on
the form assumed for the I=0, s-wave m-m- phase shift.
The assumption made about the I=0, 7=0 m-x scat-
tering was that this could effectively be approximated
by a solution of the iV/D equations in which 2V was
represented by a single pole. In Ref. 21 it was shown
that the low-energy m-X scattering data and also the

'9 Although, if this were the case, it would seem likely that a
large enhancement near the E'x threshold should have been seen
in production experiments, e.g., Ref. 23.

so-called ABC anomaly" were consistent with this as-
sumption, and the two parameters I', v~ of the pole
were determined from a fit to these data. In the event
that the I=O, s-wave phase shift has a more compli-
cated behavior, " the results described in this section
would probably need to be modi6ed.

Finally it should be emphasized that further accurate
data on the "low-energy" elastic E+p scattering could
provide more information about both the Em. and the
ES interaction. Accurate measurements of the polariza-
tion of the recoil proton for incident E+ mesons of
laboratory momenta in the range 500—800 MeV/c would
be particularly useful. The analysis of such data would
not only act as a probe to the dynamics of the Ex
interaction, but also should determine the behavior of
the E+ PP-wav-e amplitudes below 800 MeV/c. This
latter information would be of value as it would help us
to understand the transition from the s-dominant be-
havior at momenta below 800 Mev/c to that at higher
momenta where p and higher waves and inelasticity
become important.

ACKNOWLEDGMENTS

We wish to acknowledge helpful discussions with
Professor J.D. Jackson, Dr. G. L. Kane, Professor U. E.
Kruse, Professor R. L. Schult, and Dr. L. L. J. Vick.
We are grateful to J.T. Donohue for reading the manu-

script and checking the equations.
One of us (A.D.M.) would like to acknowledge the

hospitality of the Rutherford Laboratory, Berkshire,
England, where part of this work was carried out.

APPENDIX A: THE UNITARITY RELATION
FOR KK~ NN

The following assumptions are made about unitarity
and its relation to the discontinuities across cuts:

(1) That the matrix T(P„), defined by S (. P„)=I(P„)
+iT(P„), where S(P„) is the submatrix of S corre-
sponding ta a total four-momentum P„, may be written
as

T(P„)=PT, (P„)O;, -

where the 0; are Hermitian operators in spin (and
isospin) space, such that the matrix elements T;(P„),
between appropriately normalized states, are invariant
scalar amplitudes which satisfy a Mandelstam repre-
sentation. These invariant amplitudes are denoted by
T;(s,t,g), where

T;(s&,u)(rrs ~0;~ trr)= (8,4strs
~
T,(P„)0,~Heber, ). (A2)

30 A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 7, 35 (1961)."For example, the existence of an I=1=0 x-~ resonance at 400
MeV has been proposed by some authors: N. P. Samios, A.
Bachman, R. Lea, T. Kalogeropoulos, and W. Shephard, Phys.
Rev. Letters 9, 139 (1962); C. Richardson et a/. , International
Conference on High Energy Physics, CERN, 106Z (CERN Scien-
tific Information Service, Geneva, 1962), p. 96; J. Kirz, J.
Schwartz, and R. Tripp, Phys. Rev. 130, 2481 (1963); L. M.
Brown and P. Singer, Phys. Rev. 133, B812 (1964).
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le,@,o.;) are the appropriate two-particle states, the
direction (8,&,) is that of the relative momentum in the
center-of-mass system, and o; are the internal degrees
of freedom.

(2) T;(s,t,u)~ denote the boundary values of T;(s,t,u)
at a cut on the real axis, approached from above (+) or
below (—), then

T,(s,t,u) = T;*(s,t,u)+. . (A3)

x(meal T(P„) I m«)(m«le, y,«) (A9).
With the appropriate choice of n~ and e~, this equation
reduces to Eqs. (2.18). The important observation is
that if T(P„) is replaced by Tt(P„) in Eq. (A9), and if
this equation is reduced to the form of Eqs. (2.18) using
Eqs. (A3) and (A5), then the result is to reproduce
Eqs. (2.18), except that A, B on the left-hand side are
replaced by A*, B*, and Tqq ~(t) becomes T&q s(t)t,
where Tqq. s(t)t denotes (J3IIa~l Tt(P„)

I
JM«). The

values of s, t are taken to refer to a point close to the cut

"For a discussion of these assumptions see, for example, D, I.
Olive, Nuovo Cimento 26, 73 (1962).

Choosing the states le,g,n;), j= 1, 2, so that

(8+~2 I
T,(P„)0;I et/tnt) = T,(s,t,u)+(o2 I Og I(xl), (A4)

the assumption is that

«yu, l
T; (tP„)O, le,y,~,)= T;(s,t,u) (~, IO, I~,). (A5)

(3) Finally, it is assumed that unitarity holds in the
form

SST= 1 (A6)

whenever there are nonvanishing intermediate states. "
For the process EE~EE the states le,g;o.;) are

introduced through the equa, tion [cf. Eq. (2.3)7

(—pt —p2~~ I
T

I qtq2«)

—(2~)'&'(pt+ qt+ pl+ q2)

(4ploq10p20q20)

x(82$2NNI T(P„)Ietyt«), (A7)

where the states Iqtqm«) are normalized by

(qt'q2'o. , l qtq2tt;)= (2')'P(qt' —qt)e'(q2' —q2)eg;. (A8)

For this system the 0; are —I'I, —I'~~ ~~,
—,'iy(qt —q2)I, and —,'iy(qt —q2)~~ ~x, where I'and I are
the identity operators in spin and isospin space, re-
spectively. The corresponding amplitudes T,(s,t,u) are
A+, A—,8+, and 8, respectively.

The partial-wave decomposition is written

f+'(t) =k(p/~)"'~~(p~) 'T++'(t)~,
f ~(t)= (p/Ir, )»2(pg) sT+ s(t)—~

(A12)

Inserting a complete set of two-pion states, the uni-
tarity relation (A6) becomes

Tgg s(t) —T)g.s(t)t=iTg), .s(t)~T~(t)t. (A13)

Applying the same arguments as above and using Eqs.
(A11) and (3.7), it is clear that

(q~) 1/2 1

T'(t)"=-
8z8 ]

d(cose3) T(s,t)*P~(cose~), (A14)

and thus

T'(t)'= L
—(q~)'"/(4~~~)7(q"~) gz'(t), (A15)

since we are above the two-pion threshold and f(: is rea'. .
Equations (3.16) now follow from Eqs. (A10), (A12),
(A13), and (A15).

APPENDIX 3: THE APPROXIMATION TO
THE N AND D EQVATIONS

The substitution y= vr/v' is made over that part of
the range of integration in Eqs. (4.3) and (4.4) for
which Ima(v') is unknown, (i.e. , v(vL), and these
equations become

1 -&' Ima(v')D(v')
lV(v) =— dv'

7l pg V V

I gy 1
Im~(v~/y)D(v~/y)—

7l p 1—vy/vz
(B1)

V

D(v) = 1+— dv' Ima(v')D(v')E(v, v')
2

vl,

VVI. —Ima(vr/y)D(vt/y) E (v, vp/y) .
o

with Imt&0, thus,

A (s, t+ie) A—(s, t i—e)

—4~Wg (J+-,')
(T++'(t) T++—'(t)')Ps(y)

p ' (pq)'"-
23I yPs'(y)

(T+- (t)—T+— (") )[J(J+1)7'"
(A10)

B(s, t+ie) B(s—, t —ie)

ger (J+-,')

(pq)"
P '(y)

x(T, (t)-T, (t) )[J(J+1)7'"
With the convention TJ= —iSJ, the helicity amplitudes
introduced in Sec. III for the processes EK —+ ~x and
~m ~ XN can be shown to be, respectively,

gg(t) =[—4e.W,/(q~)'~27(qz) sTs(t), (A11)
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(o)

v a l0.2

LO

V a 4.92

0.5

fv= 2,50

s =0.42

Using an approximation erst applied by Balazs, " the
known part of the kernels of the y integrations are
written

F.(y)

0 I 0 I I t I I I & I

0 0.5 l0 0 0.5 1.0
Y V

Fro. 8. Plots of (1—vy/vr) ' and vvr/z (1/"y)Z(v, vr/y) against
y over the range 0&y(1.0 for values of s corresponding to E+
laboratory moments of 140, 355, 520, and 810 MeV/c and for
vl. = —7p', mP =7.5p'.

tion made for the unknown short-range forces in Sec.
IV. The values of y& and y2 are to be selected so that the
approximation of Eqs. (82) is as good as possible over
the Iow-energy region for EX scattering, i.e., for v in the
range 0& v(10. To see how this may be accomplished,
the kernels to be approximated are plotted over the
appropriate range of y for fixed values of v, a typical
plot being shown in Fig. 8. One particular way of
making the approximation of Eqs. (82), with R=2, is
to choose F„(y) such that the curves of Fig. 8 are fitted
by straight lines, i.e., F„(y)=g,&„(y—y,)/(y„—y, ).
This procedure was adopted in our calculation and y&, y2
were given the values y&=0.05 and y2=0.7.

As known functions are approximated in this ap-
proach, a certain degree of arbitrariness has been re-
moved from the usual "pole approximation" for the
unknown short-range forces; no assumption about the
form of Ima(v) on the distant left-hand cut is necessary,
although of course some knowledge of its dominant
features could be used to improve the accuracy of the
approximation. "

Finally, a simplification to the method of solution of
the S and D equations is mentioned. '4 By substituting
into Eqs. (4.8) the expansions

1—vy/vi "=' 1 vy, /vr. —

z F,(y)
K(v, v—r /y) P K(v, vr/y„), -

r=l
y

(82)
rV= rip(v)+Q cr„~,.(v),

D= dp(v)+g n,d„(v),

1 dy

y
(83)

Consider the case where R= 2, which is the approxima-

where the values of y„are chosen, and the functions
F,(y) are such as to make the fit achieve the desired
accuracy over the energy range of interest with the
minimum value of R Applying this approximation, the
Eqs. (81) may be written in the form given by Eqs.
(4.7) and (4.8) where v„= vr/y„and

integral equations are obtained for m, (v) and d„(v),
r=0, 1 R, that do not contain the parameters n„.
Solving these equations at the start of the variational
procedure thus considerably reduces the amount of
computation that is necessary.

"For instance, if p exchange were known to be dominant then
it would be desirable to ensure an optimum 6t in the region about
y =—4vL, /m, '. Alternatively one can choose 5K~~m, ' and so damp
out the amplitude in this region, In this calculation 5R' was given
the value 7.5p' and so this damping out of the p (and a&) was
achieved.

"H. P. Noyes, Phys. Rev. 119, 1736 (1960).


